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Allgemeine Hinweise: Die mit � gekennzeichneten Aufgaben sind als Hausaufgabe zu bearbeiten und in

den dafür vorgesehenen Kästen im 5. Stock, Geb. 46 abzugeben.

Aufgabe 28. (6 Punkte) Niedrig-Temperatur Entwicklung�

Bei der Beschreibung von idealen Fermigasen bei niedriger Temperatur müssen Integrale der Form

I =

∫ ∞
0

dε f(ε)n(ε) (1)

ausgewertet werden, wobei n(ε) die Fermiverteilung zur Energie ε ist. Für niedrige Temperaturen
weicht n(ε) nur wenig von der Sprungfunktion Θ(µ − ε) ab. Daher kann man näherungsweise
setzen

I =

∫ µ

0

dε f(ε) +

∫ ∞
0

dε f(ε) [n(ε)−Θ(µ− ε)] (2)

'
∫ µ

0

dε f(ε) +

∫ ∞
−∞

dε f(ε) [n(ε)−Θ(µ− ε)] . (3)

Zeigen Sie durch die Reihenentwicklung von f(ε) an der Stelle ε = µ, dass gilt

I =

∫ µ

0

dε f(ε) +
π2

6
(kBT )2 f ′(µ) +

7π4

360
(kBT )4 f ′′′(µ) + . . . . (4)

Leiten Sie damit, unter Zuhilfenahme der in der Vorlesung abgeleiteten Ausdrücke für das Groß-
kanonische Potential und die Teilchenzahl, die Zustandsgleichungen des idealen Fermigases bei
niedrigen Temperaturen ab (TF = εF/kB)
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Was ist die Wäremekapazität des idealen Fermigases bei konstantem Volumen?

Aufgabe 29. (6 Punkte) Phononengas�

Gitterschwingungen in einem Festkörper können durch eine Kette gekoppelter harmonischer Os-
zillatoren beschrieben werden. In einer Dimension lautet die klassische Hamiltonfunktion

H =
∑
n

(
m

2
ẏ2n +

K
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(yn − yn−1)2

)
, (8)

wobei yn = xn − x0n die Auslenkungen aus der Ruhelage x0n bedeuten und x0n+1 − x0n = a die Git-
terkonstante ist. Zeigen Sie, dass sich (8) auf eine Summe harmonischer Oszillatoren zurückführen
lässt, die einem quantenmechanischem Hamiltonoperator
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entsprechen. Man nennt die Anregungen akustische Phononen.

Aufgabe 30. Phononengas
Betrachten Sie erneut das Phononengas aus Aufgabe 29. Zeigen Sie, dass für niedrige Temperaturen
gilt

E = E0(V ) + C1T
4 (Debye’sches Gesetz), (11)

d.h. CV ∼ T 3, sowie für hohe Temperaturen

E = E0(V ) + 3NkBT (Dulong Petit’sche Regel), (12)

d.h. CV ∼ 3NkB.
Hinweis : Benutzen Sie die formale Analogie zum Photonengas.

2


