
Mikrokanonische Zustandssumme des idealen Gases

Wir betrachten ein klassisches ideales Gas aus N Teilchen im Volumen V mit Hamiltonfunk-
tion
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Für das Zustandsvolumen Ω(E) erhalten wir
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Der Integrand ist sphärisch symmetrisch in 3N Dimensionen, d.h.
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Das Oberflächenintegral über die Oberfläche einer d-dimensionalen Kugel ist

∫
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wobei Γ(x) die Gammafunktion ist für die gilt Γ(n) = (n− 1)! mit n positiv ganzzahlig.
Dies liefert
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wobei O.B.d.A. angenommen wurde, dass N gerade ist.

Mit Hilfe der Stirling Formel

N ! ∼ NN e−N (2πN)1/2

findet man schliesslich
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