
thermodynamische Potentiale des idealen, einatomigen Gases
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Man erkennt, dass die Kenntnise beider Zustandsgleichungen notwendig ist um die Poten-
tiale S(U, V ) bzw. U(S, V ) zu berechnen.

Umgekehrt erhält man sofort
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andere thermodynamische Potentiale ergeben sich mittels Legendretransformation
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analog
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letztlich kann man ebenfalls berechnen
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