

Note: Please insert your assignment into the mailboxes 5th floor, building 46. The problems marked by a **►** have to be submitted.

► Problem 30. Virial theorem

Given the Hamilton operator in one dimension

$$\hat{H} = \hat{H}_{\text{kin}} + \hat{H}_{\text{pot}} = \frac{\hat{p}^2}{2m} + V(\hat{x}). \quad (1)$$

(a) Show that in position space the commutator of \hat{H} and $\hat{x}\hat{p}$ reads:

$$\frac{1}{i\hbar} [\hat{H}, \hat{x}\hat{p}] = \hat{x} \left(\frac{dV}{dx} \right) - \frac{1}{m} \hat{p}^2. \quad (2)$$

(b) Let φ_E be an eigenstate of \hat{H} with Energy E . Show from equation (2) that

$$\left\langle \frac{\hat{p}^2}{2m} \right\rangle_E = \frac{1}{2} \left\langle \hat{x} \frac{d}{dx} V(x) \right\rangle_E, \quad (3)$$

where $\langle \bullet \rangle_E$ denotes the expectation value in the state φ_E .

(c) Show that in the special case

$$V(\lambda x) = \lambda^n V(x), \quad (4)$$

i.e. if $V(x)$ is a homogeneous function of order n , holds:

$$\left\langle \hat{H}_{\text{kin}} \right\rangle_E = \frac{n}{2} \left\langle \hat{H}_{\text{pot}} \right\rangle_E \quad (\text{Virial theorem}). \quad (5)$$

Hint: Calculate the first derivative (4) with respect to λ .

► Problem 31. Angular momentum; ladder operators

In Cartesian coordinates holds:

$$\hat{L}^2 = \frac{1}{2} \left(\hat{L}_+ \hat{L}_- + \hat{L}_- \hat{L}_+ \right) + \hat{L}_z^2, \quad (6)$$

where $\hat{L}_\pm = \hat{L}_x \pm i\hat{L}_y$ are the ladder operators of the angular momentum.

(a) Making use of the representation of the angular momentum operators $\hat{L}_x, \hat{L}_y, \hat{L}_z$ in spherical coordinates, determine the representation of the ladder operators in the spherical coordinates.

(b) Derive with the help of (6) the representation of \hat{L}^2 in spherical coordinates and show that in three dimensions the Laplace operator in spherical coordinates can be expressed through \hat{L}^2 by:

$$\vec{\nabla}^2 = \frac{\partial^2}{\partial r^2} + \frac{2}{r} \frac{\partial}{\partial r} - \frac{\hat{L}^2}{\hbar^2 r^2} \quad (7)$$

Problem 32. Spin 1

(a) Show that the spin matrices

$$\hat{s}_x = \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \hat{s}_y = \frac{\hbar}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \quad \text{and} \quad \hat{s}_z = \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},$$

obey the commutation relations $[\hat{s}_i, \hat{s}_j] = i\hbar\epsilon_{ijk}\hat{s}_k$ and $[\hat{s}_i, \hat{s}^2] = 0$. What is \hat{s}^2 and determine the eigenvalues of the operator.

(b) The eigenstates (eigenspinors) of \hat{s}_z are

$$\Psi_+ = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad \text{and} \quad \Psi_- = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

Which linear combinations of Ψ_{\pm} are eigenspinors of \hat{s}_x and \hat{s}_y ?

Problem 33. Spin 2

The general spin-components of a spin-1/2 system is $\hat{s}_{\vec{n}} := 1/2\vec{n}\hat{\vec{\sigma}}$, where $\vec{n} = (\sin\theta\cos\phi, \sin\theta\sin\phi, \cos\phi)$ is the generalized unity vector. Determine the eigenvalues of $\hat{s}_{\vec{n}}$ and a complete set of orthonormal eigenstates. Determine the expectation value $\langle \hat{\sigma}_z \rangle$ in these eigenstates.