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Quantum Theory: Assignments Prof. M. Fleischhauer Winter 2017

3. Assignment

Submission: 09.11.17, 4 pm

Note: Please insert your assignment into the mailboxes 5th floor, building 46.

Problem 10. Operator derivatives
The derivative of a continuous operator A(A), A\ € R, is defined as
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(provided the limit exist). Show:
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Determine especially for A # A(X), B # B()) the derivatives
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*(Instruction to (b) : Use A7'A = 1 and the product rule from (a).)

Problem 11. Matriz exponential
Given a selfadjoint matrix

Determine the matrix exponential

(a) Use the matrix exponential series (Taylor series).

(b) Use the spectral decomposition.
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Problem 12. Uncertainty principle

(a) Let [B,C] = A and [A,C] = B be two operators. Show that

(b) In one spatial dimension holds:
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where a = x, 9, z. Show:
~ ~ 9h?
NI REES (1)
Use the simplifying assumption that (7,) = (po) = 0 and use the inequality.
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Problem 13. Free fall
The one dimensional Schrédinger equation in the presence of a constant force F' = —myg (free fall)
can be written as:
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(a) Derive from the above equation a partial differential equation of first order for the wave
function ¢ (k,t) in k-space.
(b) Show that the partial differential equation can be written as an ordinary differential equa-
tion, when substituting k = ko + %2t
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(c) Determine v(k,t) and show that the average momentum (p) = h(k) of a particle is a linear
function in time ¢.



