

**Note:** Please insert your assignment into the mailboxes 5th floor, building 46.

► **Problem 10. Operator derivatives**

The derivative of a continuous operator  $A(\lambda), \lambda \in \mathbb{R}$ , is defined as

$$\frac{dA(\lambda)}{d\lambda} := \lim_{\epsilon \rightarrow 0} \frac{A(\lambda + \epsilon) - A(\lambda)}{\epsilon} \quad (1)$$

(provided the limit exist). Show:

**(a)**

$$\frac{d}{d\lambda}(AB) = \frac{dA}{d\lambda}B + A\frac{dB}{d\lambda}; \quad (2)$$

**(b)** \*

$$\frac{d}{d\lambda}A^{-1} = -A^{-1}\frac{dA}{d\lambda}A^{-1}; \quad (3)$$

**(c)**

$$\frac{d}{d\lambda}e^{\lambda C} = Ce^{\lambda C}, \quad \text{if } C \neq C(\lambda); \quad (4)$$

**(d)**

$$\frac{d}{d\lambda}A^n = \sum_{l=1}^n A^{l-1}\frac{dA}{d\lambda}A^{n-l}, \quad n \in \mathbb{N}. \quad (5)$$

Determine especially for  $A \neq A(\lambda), B \neq B(\lambda)$  the derivatives

$$(e) \quad \frac{d}{d\lambda}(e^{\lambda B}Ae^{-\lambda B}) \quad \text{and} \quad (f) \quad \frac{d}{d\lambda}(e^{\lambda A}e^{\lambda B}). \quad (6)$$

\*(Instruction to (b) : Use  $A^{-1}A = \mathbb{1}$  and the product rule from (a).)

► **Problem 11. Matrix exponential**

Given a selfadjoint matrix

$$\hat{A} = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}. \quad (7)$$

Determine the matrix exponential

$$\hat{T}(\alpha) := e^{i\alpha\hat{A}}, \quad \alpha \in \mathbb{R}. \quad (8)$$

**(a)** Use the matrix exponential series (Taylor series).

**(b)** Use the spectral decomposition.

**Problem 12. Uncertainty principle**

**(a)** Let  $[\hat{B}, \hat{C}] = \hat{A}$  and  $[\hat{A}, \hat{C}] = \hat{B}$  be two operators. Show that

$$\Delta(\hat{A}\hat{B})\Delta\hat{C} \geq \frac{1}{2}\langle\hat{A}^2 + \hat{B}^2\rangle. \quad (9)$$

**(b)** In one spatial dimension holds:

$$\langle\Delta\hat{r}_\alpha^2\rangle\langle\Delta\hat{p}_\alpha^2\rangle \geq \frac{\hbar^2}{4}, \quad (10)$$

where  $\alpha = x, y, z$ . Show:

$$\langle\Delta\hat{r}^2\rangle\langle\Delta\hat{p}^2\rangle \geq \frac{9\hbar^2}{4}. \quad (11)$$

Use the simplifying assumption that  $\langle\hat{r}_\alpha\rangle = \langle\hat{p}_\alpha\rangle = 0$  and use the inequality.

$$\frac{a}{b} + \frac{b}{a} \geq 2 \quad \text{für } a, b > 0. \quad (12)$$

**Problem 13. Free fall**

The one dimensional Schrödinger equation in the presence of a constant force  $F = -mg$  (free fall) can be written as:

$$i\hbar\frac{\partial}{\partial t}\psi(x, t) = \left[-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2} + mgx\right]\psi(x, t). \quad (13)$$

**(a)** Derive from the above equation a partial differential equation of first order for the wave function  $\tilde{\psi}(\tilde{k}, t)$  in  $k$ -space.

**(b)** Show that the partial differential equation can be written as an ordinary differential equation, when substituting  $k = k_0 + \frac{mg}{\hbar}t$

$$\frac{\partial}{\partial t}\tilde{\psi}(k_0 + \frac{mg}{\hbar}t, t) = -i\frac{\hbar}{2m}(k_0 + \frac{mg}{\hbar}t)^2\tilde{\psi}(k_0 + \frac{mg}{\hbar}t, t). \quad (14)$$

**(c)** Determine  $\tilde{\psi}(k, t)$  and show that the average momentum  $\langle\hat{p}\rangle = \hbar\langle k\rangle$  of a particle is a linear function in time  $t$ .