

"Quantum mechanics is certainly imposing. But an inner voice tells me that it is not yet the real thing. The theory says a lot, but does not really bring us any closer to the secret of the 'old one.' I, at any rate, am convinced that He does not throw dice." – Albert Einstein

Problem 6. Fourier transformation

Sometimes it is a good idea to consider the wave function not in the position space but the Fourier transformed wave function in the momentum space (k-space). In one dimension it holds:

$$\tilde{\psi}(k) = \int_{-\infty}^{\infty} dx e^{-ikx} \psi(x). \quad (1)$$

Show that for the expectation values of x^n and k^n holds:

$$\langle x^n \rangle = \int_{-\infty}^{\infty} dx \ x^n |\psi(x)|^2 = \frac{1}{2\pi} \int_{-\infty}^{\infty} dk \ \tilde{\psi}^*(k) \left(i \frac{\partial}{\partial k} \right)^n \tilde{\psi}(k), \quad (2)$$

$$\langle k^n \rangle = \frac{1}{2\pi} \int_{-\infty}^{\infty} dk \ k^n |\tilde{\psi}(k)|^2 = \int_{-\infty}^{\infty} dx \ \psi^*(x) \left(i \frac{\partial}{\partial x} \right)^n \psi(x). \quad (3)$$

Problem 7. Scalar product and expectation values

(a) Show that the scalar product of two vectors $|f\rangle$ and $|g\rangle$ can be written as an integral in position space or momentum space respectively

$$\int dx \ f^*(x)g(x) \quad \text{or} \quad \int dk \ \tilde{f}^*(k)\tilde{g}(k). \quad (4)$$

(b) Show that since $\langle f|f \rangle = 1$ it follows

$$\int dx |f(x)|^2 = 1 \quad \text{or} \quad \int dk |\tilde{f}(k)|^2 = 1. \quad (5)$$

(c) Consider the Gaussian wave function

$$\Psi(x) = \mathcal{N} e^{-x^2/d^2}. \quad (6)$$

Compute the normalization factor \mathcal{N} and the expectation values

$$(i) \quad \langle \hat{x} \rangle = \langle \Psi | \hat{x} | \Psi \rangle \quad (7)$$

$$(ii) \quad \langle \hat{x}^2 \rangle = \langle \Psi | \hat{x}^2 | \Psi \rangle \quad (8)$$

$$(iii) \quad \langle \hat{p} \rangle = \langle \Psi | \hat{p} | \Psi \rangle \quad (9)$$

$$(iv) \quad \langle \hat{p}^2 \rangle = \langle \Psi | \hat{p}^2 | \Psi \rangle, \quad (10)$$

where $\hat{p} = -i\hbar\partial_x$.

Problem 8. Matrices

(a) Show that the matrix

$$M = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \quad (11)$$

is non-hermitian, but has real eigenvalues. Further show that there is *no complete set* of eigenvectors.

(b) Given

$$R = \begin{bmatrix} 6 & -2 \\ -2 & 9 \end{bmatrix} \quad \text{and} \quad |\Psi\rangle = \begin{bmatrix} a \\ b \end{bmatrix}, \quad (12)$$

where $|a|^2 + |b|^2 = 1$. Determine $\langle \Psi | R^2 | \Psi \rangle$ in two different ways: (i) Compute $\langle R^2 \rangle$ directly. (ii) Compute the eigenvalues and eigenvectors of R

$$R |r_n\rangle = r_n |r_n\rangle, \quad n = 1, 2 \quad (13)$$

and write $|\Psi\rangle$ as a linear combination

$$|\Psi\rangle = c_1 |r_1\rangle + c_2 |r_2\rangle. \quad (14)$$

Then determine

$$\langle R^2 \rangle = r_1^2 |c_1|^2 + r_2^2 |c_2|^2. \quad (15)$$

Problem 9. Commutators

(a) Let \hat{A} , \hat{B} and \hat{C} be different operators. Show:

$$\begin{aligned} \text{(i)} \quad & [\hat{A} + \hat{B}, \hat{C}] = [\hat{A}, \hat{C}] + [\hat{B}, \hat{C}], \\ \text{(ii)} \quad & [\hat{A}\hat{B}, \hat{C}] = \hat{A}[\hat{B}, \hat{C}] + [\hat{A}, \hat{C}]\hat{B}. \end{aligned}$$

(b) Let \hat{A} , \hat{B} be hermitian operators. Show that $\hat{A}\hat{B}$ is hermitian, if $[\hat{A}, \hat{B}] = 0$.

(c) Let \hat{A} , \hat{B} be two commuting operators and let $|a\rangle$ be the eigenstate of \hat{A} with eigenvalue a . Show that $\hat{B}|a\rangle$ is also an eigenstate of \hat{A} . Find the corresponding eigenvalue to that state.