

Note: Please insert your assignment into the mailboxes 5th floor, building 46. The problems marked by a **►** have to be submitted.

► Problem 47. Ritz method of variations

Consider the double-delta potential from problem 19. Determine the energies of the bound states using the Ritz method of variation. Use the ansatz

$$\phi(x) = \alpha_1 \phi_0(x - d/2) + \alpha_2 \phi_0(x + d/2)$$

($\alpha_1, \alpha_2 \in \mathbb{C}$) where ϕ_0 is the stationary wave function for a single delta-potential.

► Problem 48. Greenberger-Horne-Zeilinger state

Given a state of 3 indistinguishable spin-1/2 particles

$$|\psi\rangle_{\text{GHZ}} = \frac{1}{\sqrt{2}} (|\uparrow\rangle_A |\uparrow\rangle_B |\uparrow\rangle_C - |\downarrow\rangle_A |\downarrow\rangle_B |\downarrow\rangle_C)$$

where $|\uparrow\rangle_A$ is the eigenstate of $\hat{\sigma}_z^A$ of the eigenvalue +1 and $|\downarrow\rangle_A$ is the eigenstate of the eigenvalue -1 and analogously for B and C. Show that $|\psi\rangle_{\text{GHZ}}$ is an eigenstate of the following observables

$$\hat{\sigma}_y^A \hat{\sigma}_y^B \hat{\sigma}_x^C, \quad \hat{\sigma}_y^A \hat{\sigma}_x^B \hat{\sigma}_y^C, \quad \hat{\sigma}_x^A \hat{\sigma}_y^B \hat{\sigma}_y^C, \quad \hat{\sigma}_x^A \hat{\sigma}_x^B \hat{\sigma}_x^C.$$

What are the corresponding eigenvalues? Discuss the non-classical behaviour of $|\psi\rangle_{\text{GHZ}}$. What result would you expect when measuring $\hat{\sigma}_x^A \hat{\sigma}_x^B \hat{\sigma}_x^C$ *classically*. Meaning you assume classical random variables for the spins and a previous measurement of $\hat{\sigma}_y^A \hat{\sigma}_y^B \hat{\sigma}_x^C$, $\hat{\sigma}_y^A \hat{\sigma}_x^B \hat{\sigma}_y^C$ and $\hat{\sigma}_x^A \hat{\sigma}_y^B \hat{\sigma}_y^C$ to yield the quantum mechanical result from above.

Problem 49. Two spin-1 particles

A system of two *distinguishable* spin-1 particles (without orbital angular momentum) possesses the eigenvalues $S = 0, 1, 2$ of the squared total spin $\hat{S}^2 = \hat{\vec{S}} \cdot \hat{\vec{S}}$ with $\hat{\vec{S}} = \hat{\vec{S}}_1 + \hat{\vec{S}}_2$. What are the limitations for *indistinguishable* spin-1 particles? Construct the common eigenstates of \hat{S}^2 and \hat{S}_z of the particle pair in $\mathcal{H} \otimes \mathcal{H}$ of the eigenstates $\{|-1\rangle, |0\rangle, |1\rangle\}$ of the considered observable for one particle.

Problem 50. Two spin- $\frac{1}{2}$ particles in a box potential

Consider two spin- $\frac{1}{2}$ particles move in a one-dimensional box with infinite high walls

$$V(x) = \begin{cases} 0 & 0 \leq x \leq L \\ \infty & x < 0, x > L. \end{cases} \quad (1)$$

(a) What is the ground state energy of the spin triplet state?

(b) What is the ground state energy in the spin-singlet state?

(c) Consider in lowest order perturbation theory an interaction

$$V_1(x_1, x_2) = -\lambda \delta(x_1 - x_2) \quad \text{with } \lambda > 0. \quad (2)$$

Which effect has the perturbation on the ground state energy in case (a) and which in case (b)?