

Note: Please insert your assignment into the mailboxes 5th floor, building 46. The problems marked by a \blacktriangle have to be submitted.

\blacktriangle **Problem 42.** *Spin precession*

Consider a spin-1/2 particle in an external magnetic field $\vec{B}(t) = (0, 0, B(t))$. Neglecting the motion of a particle the Hamiltonian is

$$\hat{H} = \frac{2\mu}{\hbar} \vec{B}(t) \cdot \hat{\vec{S}}. \quad (1)$$

At time $t = 0$ the state of the particle is given by the two-component vector

$$\chi(0) = \alpha\chi_+ + \beta\chi_-, \quad (2)$$

where χ_{\pm} are the eigenstates of \hat{S}_z with eigenvalues $\pm\hbar/2$. Calculate the expectation values of $\langle \hat{S}_x(t) \rangle$, $\langle \hat{S}_y(t) \rangle$ and $\langle \hat{S}_z(t) \rangle$.

\blacktriangle **Problem 43.** *magnetic resonance*

Consider again a spin-1/2 particle in an external magnetic field as in problem 42. Now consider $B(t) = (-B_{\perp}\cos(\omega t), B_{\perp}\sin(\omega t), B_{\parallel})$. The state of the particles at time t can be expressed by

$$\chi(t) = \alpha(t)\chi_+ + \beta(t)\chi_-. \quad (3)$$

(a) Show that the Schrödinger equation for $\chi(t)$ with the Hamiltonian \hat{H} from Eq. (1) can be expressed as

$$\frac{d}{dt} \begin{pmatrix} \alpha(t) \\ \beta(t) \end{pmatrix} = -i \begin{pmatrix} \Omega_{\parallel} & \Omega_{\perp} e^{i\omega t} \\ \Omega_{\perp} e^{-i\omega t} & -\Omega_{\parallel} \end{pmatrix} \cdot \begin{pmatrix} \alpha(t) \\ \beta(t) \end{pmatrix}, \quad (4)$$

with $\hbar\Omega_{\parallel} = \mu B_{\parallel}$ and $\hbar\Omega_{\perp} = \mu B_{\perp}$.

(b) Solve Eq. (4) with the initial conditions $\alpha(0) = 1, \beta(0) = 0$.

(c) At which frequency ω and at which time is $\chi(t) \propto \chi_-$?