

Note: Please insert your assignment into the mailboxes 5th floor, building 46. The problems marked by a \blacktriangle have to be submitted.

\blacktriangle **Problem 36. Kinetic momentum**

Different from the canonical momentum \hat{p} the kinetic momentum $m\hat{v} = \hat{p} - \frac{q}{c}\vec{A}$ describes a charged particle in an external electromagnetic field and is invariant under gauge transformation. Show that for \hat{v} the following commutation relations hold:

$$[\hat{x}_i, m\hat{v}_j] = i\hbar\delta_{ij} \quad (1)$$

$$[m\hat{v}_i, m\hat{v}_j] = i\hbar\frac{q}{c}\epsilon_{ijk}B_k, \quad (2)$$

where $\vec{B} = \vec{\nabla} \times \vec{A}$.

\blacktriangle **Problem 37. Unitary invariants**

Let $\hat{A}, \hat{B}, \hat{C}$ be operators on a separable Hilbert space \mathcal{H} and let \hat{U} be a unitary operator on \mathcal{H} . Show:

(a)

$$\text{Tr}\{\hat{A}\hat{B}\hat{C}\} = \text{Tr}\{\hat{B}\hat{C}\hat{A}\} = \text{Tr}\{\hat{C}\hat{A}\hat{B}\}. \quad (3)$$

(b)

$$\text{Tr}\{\hat{A}\} = \text{Tr}\{\hat{U}^{-1}\hat{A}\hat{U}\} = \sum_{i=1}^{\infty} a_i, \quad (4)$$

$$\det\{\hat{A}\} = \det\{\hat{U}^{-1}\hat{A}\hat{U}\} = \prod_{i=1}^{\infty} a_i, \quad (5)$$

where a_i are the eigenvalues of \hat{A} .

\blacktriangle **Problem 38. Determinant and trace 1**

Let \hat{A} be a self-adjoint operator on a separable Hilbert space \mathcal{H} . Show that for $\epsilon \ll 1$:

$$\det\{1 + \epsilon\hat{A}\} = 1 + \epsilon\text{Tr}\{\hat{A}\} + \mathcal{O}(\epsilon^2). \quad (6)$$

Problem 39. Determinant and trace 2

Use problem 38 to show that for a self-adjoint operator on a separable Hilbert space holds:

$$\det\{\exp\{\hat{A}\}\} = \exp\{\text{Tr}\{\hat{A}\}\}. \quad (7)$$

Hint: Consider $\hat{D}(\lambda) = \det\{\exp\{\lambda\hat{A}\}\}$ and write $\frac{d\hat{D}(\lambda)}{d\lambda}$ as the difference quotient. Alternatively consider a unitary transformation \hat{U} , that diagonalises \hat{A} .

Problem 40. Landau levels - alternative access

Let $\vec{B} = (0, 0, B)$ be a constant, homogeneous magnetic field in z -direction. Let the electric field and the scalar potential be zero, so that the vector potential \vec{A} is a function of space only. Show that the Hamilton operator

$$\hat{H} = \frac{1}{2m} \left(\hat{\vec{p}} - q\vec{A} \right)^2 = \hat{H}_\perp + \hat{H}_\parallel \quad (8)$$

can be separated in a transversal and longitudinal part

$$\hat{H}_\perp = \frac{m}{2} (\hat{v}_x^2 + \hat{v}_y^2), \quad \hat{H}_\parallel = \frac{m}{2} \hat{v}_z^2. \quad (9)$$

Show that both parts commute, i.e. $[\hat{H}_\perp, \hat{H}_\parallel] = 0$. Define the following operators

$$\hat{Q} = \frac{\sqrt{m/M}}{\omega_c} \hat{v}_x, \quad \hat{P} = \sqrt{mM} \hat{v}_y, \quad (10)$$

where $\omega_c = qB/m$ is the cyclotron frequency. Show that \hat{Q} and \hat{P} obey $[\hat{Q}, \hat{P}] = i\hbar$. Express \hat{H}_\perp through \hat{Q} and \hat{P} and determine the eigenvalues of \hat{H}_\perp . What are the energy eigenvalues of \hat{H} (*Landau levels*)?