

Note: Please upload your assignment in the olat course under "Übungsaufgaben". Only the problems marked by a **►** have to be submitted.

► Problem 18. *Half harmonic oscillator* (6 points)

Consider a harmonic oscillator in one dimension with frequency ω and mass m . The corresponding energy eigenvalues and functions are E_n and $\phi_n(x)$. An infinite potential well is added at $x = 0$

$$V(x) = \begin{cases} \infty & \text{for } x \leq 0 \\ \frac{m\omega^2}{2}x^2 & \text{for } x > 0. \end{cases} \quad (1)$$

(a) Explain why the eigenfunction of the harmonic oscillator with the potential barrier, besides a normalization factor, is a subset of eigenfunctions ϕ_n of the harmonic oscillator. What are the corresponding eigenenergies?

(b) Let $\Psi_0(x)$ be an arbitrary wave function in the potential $V(x)$ at time $t = 0$. Show that at time $t = T$ the wave function evolves into its negative, i.e.

$$\Psi(x, T) = -\Psi(x, 0) = -\Psi_0(x). \quad (2)$$

T is the period of the oscillation $\omega T = 2\pi$. What happens at $t = 2T$?

► Problem 19. *Sum rule* (8 points)

Consider a particle in a one dimensional Potential $V(x)$ which has bound states $|E_n\rangle$ to the eigenvalues E_n of the Hamiltonian

$$\hat{H} = \frac{\hat{p}^2}{2m} + V(\hat{x}) \quad (3)$$

$$\hat{H} |E_n\rangle = E_n |E_n\rangle. \quad (4)$$

(a) Show that

$$\left[\left[\hat{x}, \hat{H} \right], \hat{x} \right] = \frac{\hbar^2}{m}. \quad (5)$$

(b) Use (a) and the identity operator $\mathbb{1} = \sum_k |E_k\rangle \langle E_k|$, prove the sum rule of the dipole matrix element $\hat{d} = e\hat{x}$

$$\sum_k \omega_{kn} |\langle E_n | \hat{d} | E_k \rangle|^2 = \sum_k \omega_{kn} \langle E_n | \hat{d} | E_k \rangle \langle E_k | \hat{d} | E_n \rangle = \frac{\hbar e^2}{2m}, \quad (6)$$

where $\hbar\omega_{kn} = E_k - E_n$.

(c) Check explicitly the sum rule for the one-dimensional harmonic oscillator.

► **Problem 20.** *Virial theorem* (6 points)

Given the Hamilton operator in one dimension

$$\hat{H} = \hat{H}_{\text{kin}} + \hat{H}_{\text{pot}} = \frac{\hat{p}^2}{2m} + V(\hat{x}). \quad (7)$$

(a) Show that in position space the commutator of \hat{H} and $\hat{x}\hat{p}$ reads:

$$\frac{1}{i\hbar} [\hat{H}, \hat{x}\hat{p}] = \hat{x} \left(\frac{dV}{dx} \right) - \frac{1}{m} \hat{p}^2. \quad (8)$$

(b) Let φ_E be an eigenstate of \hat{H} with Energy E . Show from equation (8) that

$$\left\langle \frac{\hat{p}^2}{2m} \right\rangle_E = \frac{1}{2} \left\langle \hat{x} \frac{d}{dx} V(x) \right\rangle_E, \quad (9)$$

where $\langle \bullet \rangle_E$ denotes the expectation value in the state φ_E .

(c) Show that in the special case

$$V(\lambda x) = \lambda^n V(x), \quad (10)$$

i.e. if $V(x)$ is a homogeneous function of order n , holds:

$$\left\langle \hat{H}_{\text{kin}} \right\rangle_E = \frac{n}{2} \left\langle \hat{H}_{\text{pot}} \right\rangle_E \quad (\text{Virial theorem}). \quad (11)$$

Hint: Calculate the first derivative (10) with respect to λ .