

Note: Please upload your assignment in the olat course under "Übungsaufgaben". Only the problems marked by a **►** have to be submitted.

► Problem 9. Free fall (8 points)

The one dimensional Schrödinger equation in the presence of a constant force $F = -mg$ (free fall) can be written as:

$$i\hbar \frac{\partial}{\partial t} \psi(x, t) = \left[-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + mgx \right] \psi(x, t). \quad (1)$$

(a) Derive from the above equation a partial differential equation of first order for the wave function $\tilde{\psi}(k, t)$ in k -space.

(b) Show that the partial differential equation can be written as an ordinary differential equation, when substituting $k = k_0 + \frac{mg}{\hbar}t$

$$\frac{\partial}{\partial t} \tilde{\psi}(k_0 + \frac{mg}{\hbar}t, t) = -i \frac{\hbar}{2m} (k_0 + \frac{mg}{\hbar}t)^2 \tilde{\psi}(k_0 + \frac{mg}{\hbar}t, t). \quad (2)$$

(c) Determine $\tilde{\psi}(k, t)$ and show that the average momentum $\langle \hat{p} \rangle = \hbar \langle k \rangle$ of a particle is a linear function in time t .

Problem 10. Infinite square well

Given be a one-dimensional square well with infinite walls, i.e.,

$$V(x) = \begin{cases} 0 & \text{for } 0 \leq x \leq L \\ +\infty & \text{else.} \end{cases} \quad (3)$$

The stationary wave function $\phi_n(x)$ and the associate energy eigenvalues E_n were calculated in the lecture.

(a) Show that the general time depending solution of the Schrödinger equation with the initial condition $\psi(x, 0) = \psi_0(x)$ can be written in the form

$$\psi(x, t) = \sum_n \alpha_n \phi_n(x) e^{-\frac{i}{\hbar} E_n t}. \quad (4)$$

How are the α_n determined?

(b) At time $t = 0$ let the wave function be $\psi(x, t = 0) = \psi_0(x)$. Let the period of the fundamental oscillation be T . Show that after a time $t = T/2$ the function evolves into its reflection with respect to $x = L/2$, i.e. that $\psi(x, T/2) = -\psi(L - x, 0) = -\psi_0(L - x)$. What happens after multiples of T ?

► **Problem 11. Free fall II (8 points)**

Let us reconsider Problem 9.

(a) Show that the stationary wave function of energy E is given by

$$\phi_E(x) = \mathcal{N} \text{Ai} \left(\frac{x}{l_0} - \frac{E}{\epsilon_0} \right). \quad (5)$$

Here \mathcal{N} is a normalization constant, $l_0 = (\hbar^2/2m^2g)^{1/3}$ and $\epsilon_0 = (\hbar^2mg^2/2)^{1/3}$ are the standard length and energy, respectively.

$$\text{Ai}(x) \equiv \frac{1}{2\pi} \int_{-\infty}^{\infty} dy \exp \left(i(yx + \frac{1}{3}y^3) \right) \quad (6)$$

is the Airy function. First show that this function fulfills the differential equation

$$\text{Ai}''(x) - x\text{Ai}(x) = 0. \quad (7)$$

Its lowest zeros are $-2.3381\dots, -4.0879\dots, -5.52055\dots$

(b) Now the particle falls onto a hard surface at $x = 0$, meaning the potential be

$$V(x) = \begin{cases} mgx & \text{for } x > 0 \\ +\infty & \text{for } x \leq 0. \end{cases} \quad (8)$$

What has to hold for $\phi(x)$ when $x \leq 0$? What follows for the allowed energy values, if you use the above ansatz for the wave function in the case of $x > 0$?