

Note: Please upload your assignment in the olat course under "Übungsaufgaben". Only the problems marked by a **►** have to be submitted.

► Problem 5. Operator derivatives (8 points)

The derivative of a continuous operator $A(\lambda)$, $\lambda \in \mathbb{R}$, is defined as

$$\frac{dA(\lambda)}{d\lambda} := \lim_{\epsilon \rightarrow 0} \frac{A(\lambda + \epsilon) - A(\lambda)}{\epsilon} \quad (1)$$

(provided the limit exist). Show:

(a)

$$\frac{d}{d\lambda}(AB) = \frac{dA}{d\lambda}B + A\frac{dB}{d\lambda}; \quad (2)$$

(b) *

$$\frac{d}{d\lambda}A^{-1} = -A^{-1}\frac{dA}{d\lambda}A^{-1}; \quad (3)$$

(c)

$$\frac{d}{d\lambda}e^{\lambda C} = Ce^{\lambda C}, \quad \text{if } C \neq C(\lambda); \quad (4)$$

(d)

$$\frac{d}{d\lambda}A^n = \sum_{l=1}^n A^{l-1}\frac{dA}{d\lambda}A^{n-l}, \quad n \in \mathbb{N}. \quad (5)$$

Determine especially for $A \neq A(\lambda)$, $B \neq B(\lambda)$ the derivatives

$$(e) \quad \frac{d}{d\lambda}(e^{\lambda B}Ae^{-\lambda B}) \quad \text{and} \quad (f) \quad \frac{d}{d\lambda}(e^{\lambda A}e^{\lambda B}). \quad (6)$$

*(Instruction to (b) : Use $A^{-1}A = \mathbb{1}$ and the product rule from (a).)

► Problem 6. Matrix exponential (6 points)

Given a selfadjoint matrix

$$\hat{A} = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}. \quad (7)$$

Determine the matrix exponential

$$\hat{T}(\alpha) := e^{i\alpha\hat{A}}, \quad \alpha \in \mathbb{R}. \quad (8)$$

(a) Use the matrix exponential series (Taylor series).

(b) Use the spectral decomposition.

► **Problem 7. Uncertainty principle (6 points)**

(a) Let $[\hat{B}, \hat{C}] = \hat{A}$ and $[\hat{A}, \hat{C}] = \hat{B}$ be two operators. Show that

$$\Delta(\hat{A}\hat{B})\Delta\hat{C} \geq \frac{1}{2}\langle\hat{A}^2 + \hat{B}^2\rangle. \quad (9)$$

(b) In one spatial dimension holds:

$$\langle\Delta\hat{r}_\alpha^2\rangle\langle\Delta\hat{p}_\alpha^2\rangle \geq \frac{\hbar^2}{4}, \quad (10)$$

where $\alpha = x, y, z$. Show:

$$\langle\Delta\hat{r}^2\rangle\langle\Delta\hat{p}^2\rangle \geq \frac{9\hbar^2}{4}. \quad (11)$$

Use the simplifying assumption that $\langle\hat{r}_\alpha\rangle = \langle\hat{p}_\alpha\rangle = 0$ and use the inequality.

$$\frac{a}{b} + \frac{b}{a} \geq 2 \quad \text{für } a, b > 0. \quad (12)$$

Problem 8. Commutators

(a) Let \hat{A} , \hat{B} and \hat{C} be different operators. Show:

- (i) $[\hat{A} + \hat{B}, \hat{C}] = [\hat{A}, \hat{C}] + [\hat{B}, \hat{C}]$,
- (ii) $[\hat{A}\hat{B}, \hat{C}] = \hat{A}[\hat{B}, \hat{C}] + [\hat{A}, \hat{C}]\hat{B}$.

(b) Let \hat{A} , \hat{B} be hermitian operators. Show that $\hat{A}\hat{B}$ is hermitian, if $[\hat{A}, \hat{B}] = 0$.

(c) Let \hat{A} , \hat{B} be two commuting operators and let $|a\rangle$ be the eigenstate of \hat{A} with eigenvalue a . Show that $\hat{B}|a\rangle$ is also an eigenstate of \hat{A} . Find the corresponding eigenvalue to that state.