Quantum Theory: Assignment Prof. M. Fleischhauer SS 2023
2. Assignment Submission: 03.05.23, 12 PM

Note: Please upload your assignment in the olat course under ”Ubungsaufgaben”. Only the
problems marked by a & have to be submitted.

& Problem 5. Operator derivatives (8 points)
The derivative of a continuous operator A(A), A € R, is defined as
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(provided the limit exist). Show:
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Determine especially for A # A()\), B # B()) the derivatives
(e) i(e’\BAe_”\B) and (f) i(eAAe)‘B) (6)
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*(Instruction to (b) : Use A7'A = 1 and the product rule from (a).)

& Problem 6. Matriz exponential (6 points)
Given a selfadjoint matrix

Determine the matrix exponential

(a) Use the matrix exponential series (Taylor series).

(b) Use the spectral decomposition.
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Problem 7. Uncertainty principle (6 points)

(a) Let [B,C] = A and [A,C] = B be two operators. Show that
(b) In one spatial dimension holds:
where a = x, 9, z. Show:

Use the simplifying assumption that
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Problem 8. Commutators

(a) Let A, B and C be different operators. Show:
() [A+B.C]=[4,0]+B,C)
(i) [AB,C]= A[B,C]+ [A,C]B.

(b) Let A, B be hermitian operators. Show that AB is hermitian, if [A, B] = 0.

o) = (Pa) = 0 and use the inequality.
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(c) Let A, B be two commuting operators and let |a) be the eigenstate of A with eigenvalue a.
Show that B |a) is also an eigenstate of A. Find the corresponding eigenvalue to that state.



