

”Anyone who is not shocked by quantum theory has not understood it.“ – Niels Bohr

Problem 1. Operators

The following operators are given:

- (i) $\hat{D} = \frac{\partial}{\partial x}$ with $\hat{D}\psi(x) = \frac{\partial\psi(x)}{\partial x}$
- (ii) $\hat{1}$ with $\hat{1}\psi(x) = \psi(x)$
- (iii) \hat{F} with $\hat{F}\psi(x) = f(x)\psi(x)$
- (iv) \hat{P} with $\hat{P}\psi(x) = \psi(x)^3 + 3\psi(x)^2 - 4$
- (v) \hat{Q} with $\hat{Q}\psi(x) = \int_0^1 dx\psi(x).$

- (a) Which of these operators are linear?
- (b) \hat{A}^{-1} with $\hat{A} = \hat{D}, \hat{1}, \hat{F}$ is the inverse of A iff the inverse of A exist. Construct the inverse of A .
- (c) Show that $i\hat{D}$ is hermitian.

Problem 2. Adjoint Operators

Show:

- (a) $(\hat{A}\hat{B})^\dagger = \hat{B}^\dagger\hat{A}^\dagger$
- (b) $(\hat{A}^\dagger)^\dagger = \hat{A}$
- (c) If an operator \hat{B} has the eigenvalue b with $b \neq b^*$, then $\hat{B} \neq \hat{B}^\dagger$.

The *commutator* of two operators \hat{A}, \hat{B} is defined as

$$[\hat{A}, \hat{B}] \equiv \hat{A}\hat{B} - \hat{B}\hat{A}. \quad (1)$$

- (d) Show: If $\hat{A} = \hat{A}^\dagger$ and $\hat{B} = \hat{B}^\dagger$ then

$$[\hat{A}, \hat{B}]^\dagger = -[\hat{A}, \hat{B}] \quad (2)$$

Problem 3. Complex Conjugation

Consider an operator \hat{C} with the following property

$$\hat{C}\psi(x) = \psi(x)^* \quad (3)$$

- (a) Is \hat{C} hermitian?
- (b) What are the eigenfunctions of \hat{C} ?
- (c) What are the eigenvalues of \hat{C} ?

Problem 4. Scalar product and expectation values

(a) Show that the scalar product of two vectors $|f\rangle$ and $|g\rangle$ can be written as an integral in position space or momentum space respectively

$$\int dx f^*(x)g(x) \quad \text{or} \quad \int dk \tilde{f}^*(k)\tilde{g}(k). \quad (4)$$

(b) Show that since $\langle f|f\rangle = 1$ it follows

$$\int dx |f(x)|^2 = 1 \quad \text{or} \quad \int dk |\tilde{f}(k)|^2 = 1. \quad (5)$$

(c) Consider the Gaussian wave function

$$\Psi(x) = \mathcal{N}e^{-x^2/d^2}. \quad (6)$$

Compute the normalization factor \mathcal{N} and the expectation values

$$(i) \quad \langle \hat{x} \rangle = \langle \Psi | \hat{x} | \Psi \rangle \quad (7)$$

$$(ii) \quad \langle \hat{x}^2 \rangle = \langle \Psi | \hat{x}^2 | \Psi \rangle \quad (8)$$

$$(iii) \quad \langle \hat{p} \rangle = \langle \Psi | \hat{p} | \Psi \rangle \quad (9)$$

$$(iv) \quad \langle \hat{p}^2 \rangle = \langle \Psi | \hat{p}^2 | \Psi \rangle, \quad (10)$$

where $\hat{p} = -i\hbar\partial_x$.