

Note: Please upload your assignment in the olat course under "Übungsaufgaben". Only the problems marked by a **►** have to be submitted.

► Problem 32. Kinetic momentum (4 points)

Different from the canonical momentum $\hat{\vec{p}}$ the kinetic momentum $m\hat{\vec{v}} = \hat{\vec{p}} - \frac{q}{c}\vec{A}$ describes a charged particle in an external electromagnetic field and is invariant under gauge transformation. Show that for $\hat{\vec{v}}$ the following commutation relations hold:

$$[\hat{x}_i, m\hat{v}_j] = i\hbar\delta_{ij} \quad (1)$$

$$[m\hat{v}_i, m\hat{v}_j] = i\hbar\frac{q}{c}\epsilon_{ijk}B_k, \quad (2)$$

where $\vec{B} = \vec{\nabla} \times \vec{A}$.

Problem 33. Landau levels - alternative access

Let $\vec{B} = (0, 0, B)$ be a constant, homogeneous magnetic field in z -direction. Let the electric field and the scalar potential be zero, so that the vector potential \vec{A} is a function of space only. Show that the Hamilton operator

$$\hat{H} = \frac{1}{2m} \left(\hat{\vec{p}} - \frac{q}{c}\vec{A} \right)^2 = \hat{H}_\perp + \hat{H}_\parallel \quad (3)$$

can be separated in a transversal and longitudinal part

$$\hat{H}_\perp = \frac{m}{2} (\hat{v}_x^2 + \hat{v}_y^2), \quad \hat{H}_\parallel = \frac{m}{2} \hat{v}_z^2. \quad (4)$$

Show that both parts commute, i.e. $[\hat{H}_\perp, \hat{H}_\parallel] = 0$. Define the following operators

$$\hat{Q} = \frac{\sqrt{m/M}}{\omega_c} \hat{v}_x, \quad \hat{P} = \sqrt{mM} \hat{v}_y, \quad (5)$$

where $\omega_c = qB/mc$ is the cyclotron frequency. Show that \hat{Q} and \hat{P} obey $[\hat{Q}, \hat{P}] = i\hbar$. Express \hat{H}_\perp through \hat{Q} and \hat{P} and determine the eigenvalues of \hat{H}_\perp . What are the energy eigenvalues of \hat{H} (Landau levels)?

► **Problem 34. Spin precession** (6 points)

Consider a spin-1/2 particle in an external magnetic field $\vec{B}(t) = (0, 0, B(t))$. Neglecting the motion of a particle the Hamiltonian is

$$\hat{H} = \frac{2\mu}{\hbar} \vec{B}(t) \cdot \hat{\vec{S}}. \quad (6)$$

At time $t = 0$ the state of the particle is given by the two-component vector

$$\chi(0) = \alpha\chi_+ + \beta\chi_-, \quad (7)$$

where χ_{\pm} are the eigenstates of \hat{S}_z with eigenvalues $\pm\hbar/2$. Calculate the expectation values of $\langle \hat{S}_x(t) \rangle$, $\langle \hat{S}_y(t) \rangle$ and $\langle \hat{S}_z(t) \rangle$.

► **Problem 35. magnetic resonance** (8 points)

Consider again a spin-1/2 particle in an external magnetic field as in problem 34. Now consider $B(t) = (-B_{\perp}\cos(\omega t), B_{\perp}\sin(\omega t), B_{\parallel})$. The state of the particles at time t can be expressed by

$$\chi(t) = \alpha(t)\chi_+ + \beta(t)\chi_-. \quad (8)$$

(a) Show that the Schrödinger equation for $\chi(t)$ with the Hamiltonian \hat{H} from Eq. (6) can be expressed as

$$\frac{d}{dt} \begin{pmatrix} \alpha(t) \\ \beta(t) \end{pmatrix} = -i \begin{pmatrix} \Omega_{\parallel} & \Omega_{\perp} e^{i\omega t} \\ \Omega_{\perp} e^{-i\omega t} & -\Omega_{\parallel} \end{pmatrix} \cdot \begin{pmatrix} \alpha(t) \\ \beta(t) \end{pmatrix}, \quad (9)$$

with $\hbar\Omega_{\parallel} = \mu B_{\parallel}$ and $\hbar\Omega_{\perp} = \mu B_{\perp}$.

(b) Solve Eq. (9) with the initial conditions $\alpha(0) = 1, \beta(0) = 0$.

(c) At which frequency ω and at which time is $\chi(t) \propto \chi_-$?