

"Anyone who is not shocked by quantum theory has not understood it." – Niels Bohr

Problem 1. Double Slit Experiment

Consider the sketched double slit experiment. If only one slit is opened, the wave amplitude on the screen is

$$\psi_1(y) = \frac{1}{\sqrt{2}} e^{-\frac{y^2}{2}} e^{i(wt-ay)} \quad (1)$$

and

$$\psi_2(y) = \frac{1}{\sqrt{2}} e^{-\frac{y^2}{2}} e^{i(wt-(a+b)y)}, \quad (2)$$

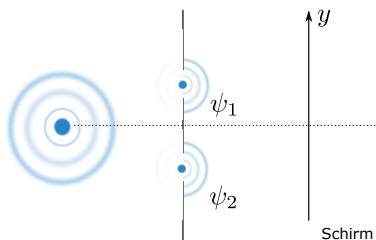
if the other slit is opened. Compute the total intensity I on the screen if:

(a) The intensities are summed as

$$I = |\psi_1(y)|^2 + |\psi_2(y)|^2. \quad (3)$$

(b) The wave functions are summed as

$$I = |\psi_1(y) + \psi_2(y)|^2. \quad (4)$$



Problem 2. Wave Functions

Let the wave function of a particle in one dimension be

(a) $\psi_1 = A_1 e^{-\frac{x^2}{4}}$

(b) $\psi_2 = A_2 x e^{-\frac{x^2}{8}}$

(c) $\psi_3 = A_3 \left(e^{-\frac{x^2}{4}} + x e^{-\frac{x^2}{8}} \right)$

Determine the absolute value of A_1 , A_2 and A_3 . Note that wave functions are normalized

$$\int_{-\infty}^{\infty} dx |\psi_j|^2 = 1. \quad (5)$$

Problem 3. Operators

The following operators are given:

- (i) $\hat{D} = \frac{\partial}{\partial x}$ with $\hat{D}\psi(x) = \frac{\partial\psi(x)}{\partial x}$
- (ii) $\hat{1}$ with $\hat{1}\psi(x) = \psi(x)$
- (iii) \hat{F} with $\hat{F}\psi(x) = f(x)\psi(x)$
- (iv) \hat{P} with $\hat{P}\psi(x) = \psi(x)^3 + 3\psi(x)^2 - 4$
- (v) \hat{Q} with $\hat{Q}\psi(x) = \int_0^1 dx\psi(x).$

- (a) which of these operators are linear?
- (b) \hat{A}^{-1} with $\hat{A} = \hat{D}, \hat{1}, \hat{F}$ is the inverse of A iff the inverse of A exist. Construct the inverse of A .
- (c) Show that $i\hat{D}$ is self-adjoint.

Problem 4. Adjoint Operators

Show:

- (a) $(\hat{A}\hat{B})^\dagger = \hat{B}^\dagger\hat{A}^\dagger$
- (b) $(\hat{A}^\dagger)^\dagger = \hat{A}$
- (c) If an operator \hat{B} has the eigenvalue b with $b \neq b^*$, then $\hat{B} \neq \hat{B}^\dagger$.

The *commutator* of two operators \hat{A}, \hat{B} is defined as

$$[\hat{A}, \hat{B}] \equiv \hat{A}\hat{B} - \hat{B}\hat{A}. \quad (6)$$

- (d) Show: If $\hat{A} = \hat{A}^\dagger$ and $\hat{B} = \hat{B}^\dagger$ then

$$[\hat{A}, \hat{B}]^\dagger = -[\hat{A}, \hat{B}] \quad (7)$$

Problem 5. Complex Conjugation

Consider an operator \hat{C} with the following property

$$\hat{C}\psi(x) = \psi(x)^* \quad (8)$$

- (a) Is \hat{C} hermitian?
- (b) What are the eigenfunctions of \hat{C} ?
- (c) What are the eigenvalues of \hat{C} ?

Consult "Introductory Quantum Mechanics" by Richard Liboff chapter 2 and chapter 4.