

Problem 1. – Lorentz Transformation

Consider two inertial frame Σ, Σ' with parallel axes and relative speed $\vec{v} = v \vec{e}_x$. The transformation between Σ and Σ' is given by

$$\begin{pmatrix} x^{0'} \\ x^{1'} \end{pmatrix} = A(v) \begin{pmatrix} x^0 \\ x^1 \end{pmatrix}, \quad x^{2'} = x^2, \quad x^{3'} = x^3. \quad (1)$$

Find the matrix $A(v)$ by using the 2. postulate of relativity, the linearity of the transformation, and $A^{-1}(v) = A(-v)$.

Problem 2. – Relativistic Momentum- and Position operator

The contravariant four-vectors of position and momentum are : $x^\mu : \{ct, x, y, z\} = \{ct, \vec{r}\}$, $p^\mu : \{\frac{E}{c}, p_x, p_y, p_z\} = \{\frac{E}{c}, \vec{p}\}$. Find the form of the corresponding operators in position space and momentum space, that satisfy the commutation relation

$$[x^\mu, p^\nu] = -i\hbar g^{\mu\nu}$$

Problem 3. – Klein-Gordon-Equation

Show that the Klein-Gordon-Equation

$$-\hbar^2 \frac{\partial^2}{\partial t^2} \psi = (-\hbar^2 c^2 \Delta + m_0^2 c^4) \psi$$

remains invariant under Lorentz transformation.