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Problem 1. — Phase damping of a harmonic oscillator
A coupling of a harmonic oscillator to a reservoir of oscillators that does not exchange excitations
but leads to fast fluctuations of the oscillator energy results in the following Lindblad equation
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where # = a'a is the number operator, and I' > 0. The above equation describes a dephasing.

(a) Find the general time-dependent solution of the equation in the occupation number basis,
i.e.
p(t) = pum(t) [n)(m].
b) Consider as an initial state a so-called ”cat” state:
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Discuss your result.

c¢) Consider now a different ”cat” state:
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where |a) is a coherent state, i.e. a|la) = a|a).

Problem 2. — Conservation of positivity

Show that if at ¢ = 0 the density matrix is positive semi-definite it remains so after a small time
interval At if the time evolution is governed by a Lindblad equation, i.e. that p(At) > 0if p(0) > 0.
Remember that an operator A is called positive semi-definite if

(9| Alp) > 0, for all states |¢).

Hint: Expand p(At) in lowest order in At and use the Lindblad equation.

Problem 3. — Infinite-temperature steady state
Consider a spin 1/2 system, whose dynamics is governed by a Lindblad equation with arbitrary
Hamiltonian and only hermitian Lindblas operators
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Show that the infinite-temperature state is a stationary state of the open system dynamics.



