

Problem 1. – Hard-sphere potential

Consider the hard-sphere potential

$$V(r) = \begin{cases} \infty & \text{for } r \leq r_0 \\ 0 & \text{for } r > r_0. \end{cases}$$

The stationary solutions of the Schrödinger equation take the form

$$\varphi_k = \sum_{l=0}^{\infty} c_l R_{kl}(r) P_l(\cos \theta),$$

where $R_{kl}(r)$ fulfills the radial part of the Schrödinger equation for $r > r_0$

$$\left[\frac{1}{r} \frac{d^2}{dr^2} r - \frac{l(l+1)}{r^2} + k^2 \right] R_{kl}(r) = 0 \quad (1)$$

for $E = \hbar^2 k^2 / 2m$ and vanishes for $r \leq r_0$

(a) Show that the general solution of eq.(1) has the form

$$R_{kl}(r) = B_l \left[\cos(\delta_l) j_l(kr) - \sin(\delta_l) n_l(kr) \right]$$

where $j_l(kr)$ and $n_l(kr)$ denote the spherical Bessel- and Neumann-functions and δ_l denotes the scattering phase of the l -th partial wave.

(b) Give an expression for the scattering phase δ_l .
 (c) Find the s -wave scattering length a_0 , as well as the scattering cross section in s -wave approximation.

Problem 2. – Scattering amplitudes

In the lecture we used the following expression to derive the connection between scattering amplitude and scattering phase:

$$e^{ikz} = e^{ikr \cos \theta} = \sum_{l=0}^{\infty} (2l+1) i^l j_l(kr) P_l(\cos \theta),$$

where j_l denotes the spherical Bessel-functions. Show, that this expression holds true. Use

$$j_l(x) = \frac{(-i)^l}{2} \int_{-1}^1 d\xi e^{ix\xi} P_l(\xi).$$

Hint: Expand $e^{ikr \cos \theta}$ in Legendre polynomials $P_l(\cos \theta)$ using the completeness relation of the P_l . and determine the coefficients.

continued on next page

Problem 3. – Scattering of point particles

Assume that the following scattering phases were found for point particles with mass m , energy $E = \frac{\hbar^2 k^2}{2m}$ and characteristic length r_0 :

$$\tan \delta_l = -\frac{(r_0 k)^{2l+1}}{(2l+1) [(2l-1)!!]^2}$$

- (a) Find a closed expression for the total cross section as a function of the energy E .
- (b) For what energies E does the s -wave scattering provide a good approximation?