

Problem 20. – *Velocity operator*

Find the true single-particle-velocity-operator of a Dirac-particle $\left[\frac{d\hat{\vec{x}}}{dt} \right]$ and compare the result with

$$\frac{d\hat{\vec{x}}}{dt} = \frac{-i}{\hbar} \left[\hat{\vec{x}}, \hat{H} \right] = c\vec{\alpha}$$

What are the eigenvalues and eigenstates of the true single-particle-velocity-operator? Compare the results with a classical relativistic particle.

Problem 21. – *Sigma-matrices*

Calculate all 6 matrices $\sigma_{\mu\nu}$, that fulfil

$$\sigma_{\mu\nu} = \frac{i}{2} [\gamma_\mu, \gamma_\nu]$$

where $\gamma^0 = \beta$ and $\gamma^j = \beta\alpha_j$.

Problem 22. – *Lorentz-transformation*

Show, that the transformation-operator for Lorentz-transformations of Dirac-spinors

$$S = e^{\frac{-i}{\hbar} \omega \sigma_{\mu\nu} I^{\mu\nu}}$$

fulfils

$$S^{-1} = \gamma_0 S^\dagger \gamma_0$$

Problem 23. – *Boost of a Dirac particle*

The following equation is an eigenstate of the Dirac-Hamiltonian for vanishing momentum $\vec{p} = 0$:

$$\Psi_1(\vec{r}, t) = \frac{1}{\sqrt{V}} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} e^{\frac{-i}{\hbar} m_0 c^2 t}$$

Start with Ψ_1 and construct a solution for finite momentum $\vec{p} = (p_x, 0, 0)$ by using a Lorentz-transformation and compare your result with the one from **Problem 18**.

Problem 24. – *Invariance under gauge transformation*

Show explicitly, that the Dirac-equation in an external electromagnetic field

$$i\hbar \frac{\partial}{\partial t} \Psi = \left\{ c\vec{\alpha}(\vec{p} - \frac{e}{c} \vec{A}) - eA_0 + m_0 c^2 \right\} \Psi$$

is invariant under gauge transformation

$$\begin{aligned} A_\mu &\rightarrow A'_\mu = A_\mu + \frac{\partial \lambda(x)}{\partial x^\mu} \\ \Psi(x) &\rightarrow \Psi'(x) = \Psi(x) e^{-i \frac{e\lambda(x)}{\hbar c}} \end{aligned}$$