

Problem 12. –Return of the Klein-Gordon equation

Show, that the the functions φ and χ , which are defined by

$$\psi = \varphi + \chi \quad i\hbar \frac{\partial}{\partial t} \psi = m_0 c^2 (\varphi - \chi)$$

fulfil the following equation:

$$i\hbar \frac{\partial}{\partial t} \begin{pmatrix} \varphi \\ \chi \end{pmatrix} = \hat{H} \begin{pmatrix} \varphi \\ \chi \end{pmatrix} \quad (1)$$

where

$$\hat{H} = \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix} \frac{\hat{p}^2}{2m_0} + \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} m_0 c^2$$

Problem 13. – Solutions of the Klein-Gordon equation

Show, that the following wave functions are solutions of equation (1) for negative or positive frequency resp.:

$$\begin{aligned} \Psi_{(+)} &= \int d^3p \ A(\vec{p}) \begin{pmatrix} m_0 c^2 + \hbar \omega_p \\ m_0 c^2 - \hbar \omega_p \end{pmatrix} e^{i(\frac{\vec{p} \cdot \vec{x}}{\hbar} - \omega_p t)} \\ \Psi_{(-)} &= \int d^3p \ \tilde{A}(\vec{p}) \begin{pmatrix} m_0 c^2 - \hbar \omega_p \\ m_0 c^2 + \hbar \omega_p \end{pmatrix} e^{i(\frac{\vec{p} \cdot \vec{x}}{\hbar} + \omega_p t)} \end{aligned}$$

where $\hbar \omega_p = c \sqrt{p^2 + m_0^2 c^2}$.

Show, that the non relativistic limit yields:

$$\begin{aligned} \begin{pmatrix} \varphi_{(+)} \\ \chi_{(+)} \end{pmatrix} &\rightarrow \frac{1}{\sqrt{L^3}} \begin{pmatrix} 1 \\ 0 \end{pmatrix} e^{i(\frac{\vec{p} \cdot \vec{x}}{\hbar} - \omega_p t)} \\ \begin{pmatrix} \varphi_{(-)} \\ \chi_{(-)} \end{pmatrix} &\rightarrow \frac{1}{\sqrt{L^3}} \begin{pmatrix} 0 \\ 1 \end{pmatrix} e^{i(\frac{\vec{p} \cdot \vec{x}}{\hbar} + \omega_p t)} \end{aligned}$$

Problem 14. –Charged Klein-Gordon particle

Consider a Klein-Gordon particle in a Coulomb potential

$$V(\vec{r}) = V(r) = \frac{-Ze^2}{r}$$

Show, that the stationary Klein-Gordon equation for the energy E can be written as

$$[(E - V(r))^2 - m_0^2 c^4 + \hbar^2 c^2 \Delta] \psi = 0$$

Hint: Separate the radial and angular parts and derive an equation for the radial part.

Problem 15. – Gamma matrices

Show, that the 4×4 gamma matrices

$$\alpha_m = \begin{pmatrix} 0 & \sigma_m \\ \sigma_m & 0 \end{pmatrix}, \quad \beta = \begin{pmatrix} \mathbb{1}_2 & 0 \\ 0 & -\mathbb{1}_2 \end{pmatrix}$$

fulfil the following relations:

$$\begin{aligned} \{\alpha_m, \alpha_n\} &= \alpha_m \alpha_n + \alpha_n \alpha_m = 2\delta_{mn} \mathbb{1}_4 \\ \{\alpha_m, \beta\} &= \alpha_m \beta + \beta \alpha_m = 0 \\ \alpha_m^2 \beta^2 &= \mathbb{1}_4 \end{aligned}$$

where σ_m are the Pauli matrices and $\mathbb{1}_d$ is the d-dimensional identity matrix.