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Problem 12. –Return of the Klein-Gordon equation
Show, that the the functions ϕ and χ, which are defined by

ψ = ϕ+ χ i~
∂

∂t
ψ = m0c

2(ϕ− χ)

fulfil the following equation:
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Problem 13. – Solutions of the Klein-Gordon equation
Show, that the following wave functions are solutions of equation (1) for negative or positive
frequency resp.:
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d3p A(~p)
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)
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2.

Show, that the non relativistic limit yields:(
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Problem 14. –Charged Klein-Gordon particle
Consider a Klein-Gordon particle in a Coulomb potential

V (~r) = V (r) =
−Ze2

r

Show, that the stationary Klein-Gordon equation for the energy E can be written as[
(E − V (r))2 −m2

0c
4 + ~2c2∆

]
ψ = 0

Hint: Separate the radial and angular parts and derive an equation for the radial part.



Problem 15. – Gamma matrices
Show, that the 4 × 4 gamma matrices

αm =

(
0 σm
σm 0

)
, β =

(
12 0
0 −12

)
fulfil the following relations:

{αm, αn} = αmαn + αnαm = 2δmn14

{αm, β} = αmβ + βαm = 0

α2
mβ

2 = 14

where σm are the Pauli matrices and 1d is the d-dimensional identity matrix.
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