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13.9 Messung zweier Observablen Â, B̂ . . . . . . . . . . . . . . . . . . . . 226
13.10Dynamik in der Quantenmechanik . . . . . . . . . . . . . . . . . . . . 227
13.11Zeitabhängige Schrödingergleichung . . . . . . . . . . . . . . . . . . . 227
13.12Stationäre Schrödingergleichung . . . . . . . . . . . . . . . . . . . . . 228
13.13Erhaltungsgrößen in der Quantenmechanik . . . . . . . . . . . . . . . 229
13.14Einteilchenmechanik in einer räumlichen Dimension . . . . . . . . . . 229
13.15Propagatoren; G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
13.16Zerfließen von Wellenpaketen . . . . . . . . . . . . . . . . . . . . . . 231
13.17das unendlich hohe Kastenpotential . . . . . . . . . . . . . . . . . . . 232
13.18Inversion (Paritätsoperator) . . . . . . . . . . . . . . . . . . . . . . . 234
13.19Allg. Eigenschaften gebundener Zustände in 1D . . . . . . . . . . . . 235
13.20Der endliche Potentialtopf . . . . . . . . . . . . . . . . . . . . . . . . 236

4



Vorlesung Quantenmechanik Theorie



Vorwort

Als Hörer der Vorlesung Quantentheorie bei Herrn Prof. Dr. Fleischhauer haben
wir dieses Skript verfasst. In erster Linie dient es dazu, das in der Vorlesung ver-
mittelte Wissen zu archivieren. Darüber hinaus soll eine strukturierte, geordnete
Zusammenschrift beim Lernen der Inhalte helfen. Es soll weiterhin zum Diskutieren
von Inhalten, zum Verbessern von Sachverhalten und zum allgemeinen Verständnis
beitragen. Es bietet die Möglichkeit, Kommentare und Verbesserungen ohne großen
Aufwand den mathematischen Sachverhalten beizufügen und/ oder mathematische
Sachverhalte gegebenenfalls einfacher und/oder übersichtlicher darzustellen.
Da der Einstieg in die Quantentheorie sehr abstrakt ist, befindet sich ab Seite 217
eine besonders ausführliche Ausführung der ersten paar Kapitel.



1. Vorlesung Quantentheorie Quantenmechanik

1. Vorlesung

Geschichtlicher Hintergrund

Die Physik zu Beginn des 20. Jahrhunderts bestand hauptsächlich aus den Gebieten
der Mechanik, der Thermodynamik sowie der Elektrodynamik. Allmählich häuften
sich aber die experimentellen Resultate, die nicht mit klassischer Physik erklärbar
waren. Die meisten dieser Resultate betrafen das Verhalten von Atomen, deren Ver-
ständnis noch in den Kinderschuhen steckte.
Durch die Versuche von Thomson (1897), sowie durch den berühmten Milikan-
Versuch (1909/10), war die Existenz des Elektrons als Träger einer quantisierten
Ladung bewiesen. Auf dieser Tatsache stellte Thomson ein erstes Atommodell auf,
das „Rosinenkuchenmodell“.
Dieses Modell wurde von Rutherford (1911) widerlegt, indem α-Teilchen auf eine
Goldfolie geschossen wurden. Aus den streutheoretischen Resultaten konnte man
schließen, dass der Hauptteil der Masse des Atoms in einem sehr kleinen Kern kon-
zentriert war, während eine leichte Hülle von Elektronen den Kern umgibt. Die
klassische Theorie ging nun von einer Kreisbewegung der Elektronen analog zum
Sonnensystem aus, jedoch war diese Annahme nicht ohne Probleme:

Eine kreisende Ladung wirkt wie eine Antenne. Die Kreisbewegung ist eine harmo-
nische Oszillation in zwei Dimensionen, analog zu einem Herz’schen Dipol:
Das Elektron müsste aus der kinetischen Bewegung Energie abstrahlen, weswegen
es in nach kürzester Zeit in den Atomkern stürzen würde.

Damit stellen sich nun einige Fragen:

• Warum sind Atome überhaupt stabil?

• Warum gibt es Spektrallinien bzw. warum fehlen im Sonnenspektrum einige
Linien?

• Welche Mechanismen erzeugen die chemische Bindung?

• Woher stammen die Eigenschaften von Festkörpern (Isolator, Leiter, ...)?

• ...
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0 Einleitung

• Planck (1900) formuliert eine Quantenhypothese mit der er die Schwarzkör-
perstrahlung quantitativ korrekt erklären konnte:

E = ~ · ω

• Davisson & Germer 1925: Beugung von Elektronen am Doppelspalt
→ Elektronen haben Welleneigenschaften (1928)

• de Broglie 1924: Hypothese der Materiewellen, Schrödinger 1926:

λ

2π = ~
mv

mit λ = Wellenlänge, v=Geschwindigkeit (1)

→ Elektronen sind auch Wellen (Mikroskopische Teilchen haben Wellen-
charakter)

~p = ~ · ~k |~p| = m · v |~k| = 2π
λ

Beispiel: (Staubkorn) Warum sehen wir den Effekt der Materiewellen nicht im
täglichen Leben?

m ≈ 10−9 kg v = 10 m
s

nach (1) gilt:

λ = 2π · ~
mv

= 6, 67 · 10−26 m

Dies ist zu klein um nachweisbar zu sein.

Beispiel: (Elektron) In welchen Größenordnungen liegen die Materiewellenlängen



1. Vorlesung Quantentheorie Quantenmechanik

von mikroskopischen Teilchen?

m ≈ 9, 1 · 10−31kg p2

2me

= e · U

mit U = 100 V errechnet sich λ mit (1)
λ ≈ 1, 2 · 10−10 m. Solch eine Wellenlänge fällt in den Bereich der Röntgenstrahlung
und ist absolut nachweisbar.

0.1 Analogie zu Elektrodynamik

Wir betrachten die Wellengleichung für das Vektorpotential aus der Elektrodyna-
mik: (

∆− 1
c2
∂2

∂t2

)
~A(~r, t) = 0 (2)

mit ~A(~r, t) =
∫

d3~k ~A~k · e
i(~k·~r−ωt)

Wir erhalten eine Lösung, wenn:

→
(
−|~k|2 + ω2

c2

)
~A~k = 0

→ k2 = |~k|2 = ω2

c2 Dispersionsrelation

mit E = ~ · ω und ~p = ~ · ~k folgt:(
|~p|2 − E2

c2

)
~A~k = 0 (3)

Aus einem Vergleich mit der Gleichung 3 und 2 folgt:

~p→ −i~∇ E → i~ ∂
∂t

freies massives Teilchen gilt:

E = p2

2m
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1. Vorlesung Quantentheorie Quantenmechanik

Daraus ergibt sich die Schrödingergleichung:

i~ ∂
∂t
ψ(~r, t) = − ~2

2m∇
2ψ(~r, t) = − ~2

2m∆ψ(~r, t)

Dies ist eine lineare partiale Differentialgleichung erster Ordnung.
Aus der Linearität folgt das ⇒ Superpositionsprinzip ( Wenn wir Lösungen ha-
ben, ist die Summe dieser Lösungen auch wieder eine Lösung der Differentialglei-
chung)

falls ψA (~r, t) und ψB(~r, t) Lösungen ⇒ ψ(~r, t) = α · ψA(~r, t) + β · ψB(~r, t)

ψ(~r, t) =
∑
~k

A~k · e
i(~k·~r− ~~k2

2m t)

mit ω = E

~
= p2

2m~
= ~k2

2m

ψ(~r, t) =
∫

d3k A~kei
(
~k·~r− ~k2

2m t

)

Wellencharakter

Experimentell: Beugung von Teilchen am Doppelspalt
Was ist die Bedeutung von ψ(~r, t) ?
ψ(~r, t) ist selber keine messbare Größe wie das elektrische - oder magnetische Feld.

Beispiel: (Elektronen am Doppelspalt)

ψ(x, t) = 1√
2
(
ψ1 ei~k~r1 + ψ2 ei~k~r2

)

|ψ(x, t)|2 = 1
2 |ψ1|2 + 1

2 |ψ2|2

+1
2 ψ

∗
1 ψ2 ei~k(~r1−~r2) + C.C.

Wenn gilt: ψ∗1 = ψ1 = ψ∗ = ψ2 = ψ0

Dann: |ψ(x, t)|2 = ψ2
0

(
1 + cos

(
~k (~r1 − ~r2)

))
> 0

|ψ(~r, t)|2 ist die Wahrscheinlichkeitsdichte das Teilchen am Ort ~r zu finden.
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1. Vorlesung Quantentheorie Quantenmechanik

0.2 Wahrscheinlichkeitsinterpretation

Die Wahrscheinlichkeit, das Teilchen in einem bestimmten Intervall (Volumen) I zu
finden, lässt sich mit folgender Formel berechnen:

P (I) =
∫
I
d3r |ψ(~r)|2

Es folgt die Normierungsbedingung:∫
V∞

d3r · |ψ(~r)|2 != 1

Die Wahrscheinlichkeit das Teilchen im gesamten Raum zu finden muss gleich eins
sein.

Kontinuitätsgleichung:

Analog zur Elektrodynamik lässt sich eine Koninuitätsgleichung herleiten. Dazu wer-
tet man die zeitliche Ableitung der Wahrscheinlichkeitsdichte (ρ = |ψ(~r, t)|2 ) aus

d
dt |ψ(~r, t)|2 = ψ̇∗ · ψ + ψ∗ · ψ̇

Nun setzten wir die zeitabhängige Schrödingergleichung ein

− ~2

2m∇
2ψ = i~ ∂

∂t
ψ

⇒ ψ̇ = i~
2m∇

2ψ

⇒ ψ̇∗ = − i~
2m∇

2ψ∗

⇒ d
dt |ψ(~r, t)|2 = − i~

2m
(
∇2ψ∗

)
ψ + i~

2mψ∗∇2ψ

= − i~
2m∇

(
ψ∇ψ∗ − ψ∗∇ψ

)
definiere

~j ≡ ~
2mi

(
ψ∗∇ψ − ψ∇ψ∗

)
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1. Vorlesung Quantentheorie Quantenmechanik

Es folgt die Kontinuitätsgleichung

∂

∂t
ρ+∇ · ~j = 0

ρ := Wahrscheinlichkeitsdichte
~j := Wahrscheinlichkeitsstromdichte

Weiterhin gilt nach Satz von Gauß

∂

∂t

∫
V

d3r ρ(~r, t)︸ ︷︷ ︸
Änderung der

Wahrscheinlichkeit in V

= −
∫
V

d3r ∇~j = −
∫
∂V

d~Ω ~j︸ ︷︷ ︸
Wahrscheinlichkeitsstrom

durch Oberfläche

Für V →∞ folgt:

d
dt

∫
V∞

d3r ρ(~r, t) = 0

Dies war eine heuristische Motivation für die Quantenmechanik. Wie wir sehen wer-
den, müssen einige Konzepte der klassischen Physik aufgegeben werden.
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1 Formulierung der
Quantenmechanik Teil 1

2.Vorlesung

1.1 Quantenmechanischer Zustand und Hilbertraum

Wir hatten argumentiert, dass Quantenmechanische Systeme durch Wellenfunktio-
nen beschrieben werden sollen, die einer linearen Wellengleichung genügen und deren
Betragsquadrat eine Wahrscheinlichkeitsdichte ist.
⇒ fordern: Superponierbarkeit, Normierbarkeit

Postulat 1
Der Zustand eines physikalischen Systems wird bis auf einen komplexen Vor-
faktor von Betrag 1 durch einen normierten Vektor |ψ〉 in einem Hilbertraum (
linearer Raum mit gewissen Eigenschaften) beschrieben.

1.1.1 Hilbertraum

Menge H von Elementen |f〉, |g〉, |h〉, ... (Vektoren) mit folgenden Eigenschaften

Axiom 1:

H ist ein linearer Raum über komplexen Zahlen: α, β, εC; |f〉, |h〉 εH

i) α(|f〉+ |g〉) = α|f〉+ α|g〉 εH

ii) (α + β)|f〉 = α|f〉+ β|f〉 εH

iii) α(β|f〉) = (α · β)|f〉 εH



2.Vorlesung Quantentheorie Quantenmechanik

iv) 1|f〉 = |f〉

v) 0|f〉 = |0〉v
mit |0〉v:=Nullvektor

vi) α|0〉v = |0〉v

Axiom 2:

es existiert ein positiv definiertes Skalarprodukt:

|f〉 , |g〉 ∈ H −→ (|f〉 · |g〉 ) = 〈f |g〉 ∈ C

|f〉 · |g〉 =
(
|g〉 · |f〉

)∗
Beziehungsweise:

〈f |g〉 = 〈g|f〉∗ > 0

Damit können wir eine Norm definieren:

i) ‖ |f〉 ‖ =
√
〈f |f〉

0 falls |f〉 6= |0〉
√

ii) ‖α · |f〉 ‖ = |α| · ‖ |f〉 ‖ ∀α ∈ C

iii) Dreiecksungleichung: ‖ψ1 + ψ2‖ ≤ ‖ψ1‖+ ‖ψ2‖

Ein Hilbertraum H heißt seperabel, wenn es eine abzählbare, vollständige Or-
thonomalbasis (ONB) gibt, wenn also gilt:

{|Φn〉 }n∈N ∈ H

〈Φn|Φm〉 = δnm

∀ |f〉 ∈ H : |f〉 =
∞∑
n=1
〈 |f 〉|φn〉 · |φn〉

Hat die Basis endlich viele Elemente d, so heißt H endlichdimensional und d Di-
mension von H.

Beispiel:

14



2.Vorlesung Quantentheorie Quantenmechanik

i)

Cn , n ∈ N , c1, ..., cn, d1, ..., dn ∈ C

(c1, ..., cn) · (d1, ..., dn) =
n∑
i=1

c∗i di

ii) L2(R3) Raum der auf R3 definierten komplexwertigen und quadratintegra-
blen Funktionen.

f ∈ L2(R3) :
∫
R3

d3x |f(x)|2 <∞ f : R3 −→ C

f · g =
∫
R3

d3x f ∗(x) · g(x)

1.2 Observablen in der Quantenmechanik

Messbare Größen sind immer reellwertig. Wir hatten gesehen, dass diese in der
Mirkowelt statistischen Charakter haben.

|ψ|2 ist die Wahrscheinlichkeitsdichte. Dann gilt für den Erwartungswert einer Orts-
messung: ∫

dx x |ψ(x)|2 := 〈x〉

=
∫

dx ψ∗(x) xψ(x)︸ ︷︷ ︸
φ(x)

=
∫

dx ψ∗(x)φ(x)

=〈ψ|φ〉 = 〈ψ|xψ〉

⇒ Zustand: φ(x) = x · ψ(x) entsteht aus ψ durch Multiplikation (“Anwendung “)
mit x ("von x").

Px = ~
i ·

d
dx stellt den Impuls eines Teilchens dar

15



2.Vorlesung Quantentheorie Quantenmechanik

wir erwarten:

〈p̂〉 =
∫

dx ψ∗(x) ~i
d

dx ψ(x)

=
∫

dx ψ∗(x)φ(x)

= 〈ψ|φ〉 = 〈ψ| pψ〉

φ = ~
i

d
dx ψ(x) ist ein Zustand der aus ψ entsteht

Observablen ⇒ Operatoren

Postulat 2:
Jeder Observable eines quantenmechanischen Mikrosystems entspricht ein selbst-
adjungiert linearer Operator. Die möglichen Messwerte der Observablen entspre-
chen gerade den Eigenwerten des Operators.

Definition (linearer Operator):

Â heißt linearer Operator in H, falls:

Â(α
∣∣∣f〉+β

∣∣∣g〉) = α · Â
∣∣∣f〉+β · Â

∣∣∣g〉 ∀α, β ∈ C

Definition (Norm):

Norm von Â ∥∥∥Â∥∥∥ = sup
Â 6=|0〉

∥∥∥Â · ∣∣∣f〉∥∥∥∥∥∥∣∣∣f〉∥∥∥ (4)

falls
∥∥∥Â∥∥∥ <∞ heißt Â beschränkt

Ab jetzt betrachten wir, falls nicht anders angegeben, beschränkte Operator Â†
† = Dagger

Definition (hermitesch konjugierter Operator):

16



2.Vorlesung Quantentheorie Quantenmechanik

zu Â konjugierter (hermitesch konjugierter) Operator Â†

Â : DA
Def-Be

−→ WA
Werte-Be.

Â† : DA† −→ WÂ†

im Allgemeinen : DA,WA, D
†
A,W

†
A ⊆ H

〈f | Âg〉 = 〈Â†f |g〉 ∀ |f〉 ∈ DA† , |g〉 ∈ DA

Definition (hermitesche Operatoren):

Â heißt hermitesch, falls:

Â† = Â auf DA ∩DA†

Definition (selbstadjungierte Operatoren):

Â† = Â und DA = DA† = H

Dann heißt Â selbstadjungiert.

Bemerkung:

Im unendlich dimensionalem nicht seperablen Hilbertraum gilt im Allgemeinen nicht
"hermitesch=selbstadjungiert"

Beispiel:

H = C2

A =
(
a b
b∗ c

)
mit a, c ∈ R

b ∈ C

17



2.Vorlesung Quantentheorie Quantenmechanik

〈f |A · g〉 = (f ∗1 , f ∗2 ) ·
(
a b
b∗ c

)
·
(
g1
g2

)

= (f ∗1 , f ∗2 ) ·
(
ag1 bg2
b∗g1 cg2

)

= af ∗1 g1 + bf ∗1︸︷︷︸
(b∗f1)∗

g2 + b∗f ∗2︸ ︷︷ ︸
(bf2)∗

g1 + cf ∗2 g2

A† = (AT )∗ =
(
a b∗

b c

)∗
=
(
a b
b∗ c

)
= A

⇒ |A†f〉 =
(
a b
b∗ c

)
·
(
f1
f2

)
= ...⇒ 〈A∗f |g〉

= ... = 〈f |Ag〉

2

1.2.1 wichtige Eigenschaften selbstadjungierter Operatoren

Sei Â selbstadjungiert, dann gilt:

i) 〈f |Âf〉 ist reell

ii) die Eigenwerte von Â sind reell

iii) Eigenvektoren zu verschiedenen Eigenwerten sind orthogonal

iv) aus den Eigenvektoren von Â kann ein vollständiger Satz von normierten
orthogonalen Basisvektoren konstruiert werden.

Folgerung:

A ist selbstadjungiert, Eigenzustände |an〉
das heißt Â|an〉 = an|an〉

i) ∀ |f〉 ∈ H |f〉 =
∑
n

cn|an〉 wobei cn = 〈an|f〉

18



3.Vorlesung Quantentheorie Quantenmechanik

ii) für jeden linearen Operator B̂ gilt:

B̂| f〉 =
∑
n

〈an|B̂| f〉 |an〉

=
∑
n,m

〈an|B̂|am〉 cm|an〉

eingesetzt mit:
|f〉 =

∑
m

cm |am〉

das heißt, es besteht ein eindeutiger Zusammenhang:

B̂ ⇐⇒ Bnm =
〈
an
∣∣∣B̂∣∣∣ an〉

Jeder Operator in einem seperablen Hilbertraum kann als endlich oder unendlich
dimensionale Matrix geschrieben werden. Es gilt:

Â|an〉 = an|an〉

f(Â)|an〉 = f(an)|an〉 f(Â) ist definiert über f(x) = a+ bx+ cx2 + ...

f(Â) = a+ b · Â+ c · Â...

Ân = Â · ... · Â︸ ︷︷ ︸
n

Das heißt jeder selbstadjungierte Operator Â bzw. jede Funktion von Â kann wie
folgt durch die Eigenwerte dargestellt werden:

f(Â) =
∑
n

f(an)P̂n Spektralzerlegung von f(Â)

P̂n ist orthogonaler Projektor auf |an〉

3.Vorlesung Wiederholung:

(|f〉 · |g〉) = 〈f |g〉 = 〈g|f〉 e∗

〈f |f〉 ≥ 0

‖ |f〉‖ =
√
〈f |f〉e∗ (Norm)

Definition (Observable):
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3.Vorlesung Quantentheorie Quantenmechanik

Unter einer Observable versteht man eine Messaparatur für eine bestimmte physi-
kalische Größe. (Nolting)

Hilbertraum:
H:= Hilbertraum
Hilbertraum = linearer, komplexer Raum mit Skalarprodukt.

hermitesche Adjungation Â†:

Â|g〉 = |Âg〉 ∈ H
〈f |Â†g〉 = 〈Âf |g〉
〈f |Â†g〉 = 〈Âf |g〉

 versch. Definitionen von Â, Â†

hermitescher Operator:

Â = Â† DA ∩DA†

für n× n−Matrizen:( )†
=
( )T ∗ (transponieren und komplex konjugieren)

selbstadjungierter Operator:

Â = Â† DÂ = DÂ† = H

Es muss ein hermitescher Operator sein, da ansonsten manche Messwerte nicht exis-
tieren (nicht reellwertig ) wären. Ein selbstadjungierter Operator ist insbesondere
auch hermitesch.

• 〈f |Âf〉 = 〈f |Â|f〉 reell

• Eigenwerte von Â reell , Eigenwerte hermitescher Operatoren sind reell.
Â|λ〉 = λ|λ〉 mit λ = λ∗

• Eigenvektoren zu verschiedenen Eigenwerten sind orthogonal
〈λ1|λ2〉 = 0 für λ1 6= λ2

• alle Eigenvektoren eines selbstadjungierten Operators Â bilden einen vollstän-
digen Satz da.
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3.Vorlesung Quantentheorie Quantenmechanik

P 2

2m −→
p̂2

2m i.A. f(Â)

f(Â) = a0 + a1 + a2Â
2 + ...

f(Â) = a01+ a1(Â) + a2ÂÂ+ ...

f(Â) =
∑
n

f(an) P̂n

Mit P̂ als Projektionsoperator. Definiert als dyadisches Produkt:
P̂n := |an〉〈an|.
Ein linearer, selbstadjungierter Operator P heißt Projektionsoperator,
wenn gilt: P̂ 2 = P̂

Â|an〉 = an|an〉

Ende Wiederholung

Definition (Projektionsoperator):

P̂ 2
n = P̂n

Q̂n = 1− P̂n
hier mit Projektionsoperator:

P̂n|f〉 = 〈an|f〉 |an〉

= |an〉 〈an|f〉

P̂n = |an〉〈an|

Definition (unitär):

ein beschränkter Operator auf H, Û heißt unitär, wenn Û−1 existiert

(Û−1Û = 1 = Û Û−1 ) und Û−1 = Û †

Beispiel: (
0 −1
1 0

) (
0 −1
1 0

)−1

=
(

0 1
−1 0

)
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3.Vorlesung Quantentheorie Quantenmechanik

(
Û |f〉 · Û | g〉

)
= 〈Ûf |Ûg〉

〈f |Û †Û g〉 = 〈f |Û−1 · Ûg〉
= f |Û−1Û g〉

unitäre Transformation: |f〉 −→ Û f |〉 = 〈f |g〉

Definition (Kommutator Â, B̂):

[Â, B̂] = ÂB̂ − B̂Â
Â, B̂ kommutieren falls: [Â, B̂] = 0

Beispiel (Drehungen):

Gx =
(

0 1
1 0

)
Gy =

(
0 −i
i 0

)
Gz =

(
1 0
0 −1

)

Frage: Wie sieht der Kommutator aus? [Gx, Gy] =?

GxGy =
(

0 1
1 0

) (
0 −i
i 0

)
=
(

i 0
0 −i

)
= iGz

GxGy =
(

0 1
1 0

) (
0 −i
i 0

)
=
(

i 0
0 −i

)
= iGz

GyGx =
(

0 −i
i 0

) (
0 1
1 0

)
=
(
−i 0
0 i

)
= −iGz

G2 = G2
x +G2

y +G2
z = 3 ·

(
1 0
0 1

)

[Gx, G
2] = [Gy, G

2] = [Gz, G
2] = 0

Satz: Falls Â und B̂ kommutieren, d.h. [Â, B̂] = 0 (auf ganz H) . Dann existieren
ein gemeinsamer vollständiger Satz von Eigenvektoren.
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3.Vorlesung Quantentheorie Quantenmechanik

Beweis:
„⇒ “ Sei: Â|λ1〉 = λ1|λ1〉 und B̂|λ1〉 = ε1|λ1〉

⇒ ÂB̂|λ1〉 = ε1Â|λ1〉
= ε1λ1|λ1〉
= λ1ε1|λ1〉
= B̂Â|λ1〉

⇒ ÂB̂|λ1〉 − B̂Â|λ1〉 = 0
⇒
(
ÂB̂ − B̂Â

)
|λ1〉 = 0

Teilen sich die Operatoren Â, B̂ nun mehrere Eigenvektoren, die eine vollständige
Basis des Hilbertraumes bilden, so gilt die letzte Implikation für alle |λ〉 ∈ H und
damit gilt

[
Â, B̂

]
= 0.

„⇐ “Sei nun
[
Â, B̂

]
= 0

⇒
(
ÂB̂ − B̂Â

)
|ψ〉 = 0 ∀ |ψ〉 ∈ H.

Aus Basisdarstellung |ψ〉 =
∑
i

〈λi|ψ〉|λi〉 folgt direkt die Behauptung. �

Was nun passieren kann, ist, das ein Operator ein entartetes Spektrum besitzt.
Dann gilt z.B.:

Â|λ1〉 = λ|λ1〉 und Â|λ2〉 = λ|λ2〉 sodass auch α|λ1〉+ β|λ2〉 Eigenzustand ist.

Derselbe Eigenwert tritt also bei verschiedenen Eigenzuständen auf. Da die Eigen-
werte das Einzige sind, was durch Messungen ermittelt werden kann, benötigt es
weitere Informationen um den Zustand des Systems zu bestimmen. Dazu behilft
man sich weiterer, kommutierender Operatoren, sodass durch die Kombination der
Eigenwerte der gemessene Zustand eindeutig bestimmt wird:

1.2.2 Vollständige Sätze von Operatoren

Es sei (Â, B̂, Ĉ, ...) ein Satz kommutierender Operatoren.
Falls zu jedem Satz von Eigenwerten λ = (an, bn, cn, ...) nur ein Eigenvektor |λ〉
gehört, dann nennt man diesen Satz einen vollständigen Satz von Operatoren.
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3.Vorlesung Quantentheorie Quantenmechanik

Vollständigkeit:

Satz Ein Operator ĉ der mit jedem Operator {Â, B̂, ...} eines vollständigen Sat-
zes kommutiert, lässt sich als Funktion dieser Operatoren darstellen.

Beispiel:

σx =
(

0 1
1 0

)

λ+ = +1 |λ+〉 = 1√
2

(
1
1

)

λ− = −1 |λ−〉 = 1√
2

(
1
−1

)
; 1√

2

(
−1
1

)

σ2
y =

(
0 −i
i 0

)2

=
(

1 0
0 1

)
d.h. [σx, σ2

y] = 0

σx

(
1
−1

)
=
(

0 1
1 0

)(
1
−1

)
=
(
−1
1

)
= −

(
1
−1

)

σx

(
−1
1

)
=
(

0 1
1 0

)(
−1
1

)
=
(

1
−1

)
= −1 ·

(
−1
1

)

Also muss sich σ2
y durch σx darstellen lassen:

σ2
y

?= σ2
x =

(
0 1
1 0

)(
0 1
1 0

)
=
(

1 0
0 1

)
X

−→ am Ende kommt raus, das bei vollständigem Satz von Operatoren nur ein 1
Eigenvektor gehört. siehe Definition 1.2.2
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3.Vorlesung Quantentheorie Quantenmechanik

1.3 Fundamentale Operatoren in der
Quantenmechanik

klassische Mechanik qj, Pj

Poissonklammer {A(qj, Pj), B(qj, Pj)} =
∑
j

(
∂A

∂qj
· ∂B
∂Pj
− ∂A

∂Pj
· ∂B
∂qj

)
{qj, ql}p = {Pj, Pl}p = 0
{qj, Pl} = δjl

1.3.1 Korrespondenzprinzip

kartesische Koordinaten q und Impulse p werden durch selbstadjungierte Operatoren
q̂ und p̂ ersetzt.
Poisson Algebra −→ Heisenberg Algebra {·, ·}p︸ ︷︷ ︸

δjl

= − i
~ [·, ·]

[q̂j, q̂l] =
[
P̂j, P̂l

]
= 0[

q̂j, P̂l
]

= i~δjl

1.3.2 Mechanik

F (qj, Pl) −→ F (q̂j, P̂l) |symm

i) x · P = P · x −→����
�XXXXXx̂P̂ 6= P̂ x̂

1
2(P̂ x̂+ x̂P̂ )

ii) ~L = ~r × ~p ~̂L = ~̂r × ~̂p
= ~ei

∑
ijk x̂j · P̂k

Mit dem Levi-Civita kommt eine identische Darstellung zu Stande, da der
Kommutator der einzelnen Komponenten=0 ist. Als Beispiel:
Erste Zeile: Y Pz − ZPy (diese sind unabhängig voneinander )
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4.Vorlesung Quantentheorie Quantenmechanik

iii) H = p2

2m + V (r) Ĥ = p̂2

2m + V (r̂)

1.3.3 Ortsdarstellung

x̂|x〉 = x|x〉 x ∈ R, kontinuierlich

Annahme: Ort sei diskret: xn; |xn〉

|ψ〉 =
∑
n

〈xn |ψ〉︸ ︷︷ ︸
ψn

|xn〉

Die Zahl ψn heißt Ortsdarstellung von |ψ〉
im Kontinuum:

|ψ〉 =
∫

dx 〈x |ψ |x〉

ψ(x) = 〈x |ψ〉 komplexwertige Funktion von x, Ortsdarstellung von|ψ〉

während im diskreten Fall

〈xn|xm = δnm

hat man im Kontinuum

〈x|y〉 = δ(x− y)

|y〉 =
∫

dx 〈x|y〉|x〉

=
∫

dx δ(x− y)|x〉 = |y〉X

4.Vorlesung Wiederholung:

qj, pl −→ q̂j, p̂l

{qj, ql} = {Pj, Pl} = 0 [q̂j, q̂l] = [P̂j, P̂l] = 0

{qj, Pl} = δjl [q̂j, P̂l] = i~δjl
f(qj, Pj) −→ f(q̂j, P̂l) |symmetrisch
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1.3.4

Ortsdarstellung

x̂|x〉 = x|x〉

x diskret: xn|xn〉∑
n

|xn〉〈xn| = 1 Vollständig

|xn〉〈xn| ist Operator |xn〉 〈xn|ψ〉︸ ︷︷ ︸
komplexe

Zahl

∈ H

P̂n = |xn〉〈xn|

P̂ 2
n = |xn〉

=1︷ ︸︸ ︷
〈xn︸ ︷︷ ︸

P̂n

|xn〉〈xn|︸ ︷︷ ︸
P̂n

= |xn〉〈xn|

damit:

|ψ〉 = 1|ψ〉 =
∑
n

|xn〉 〈xn|ψ〉

Linearkombination der |xn〉 mit Fakt. 〈xn|ψ〉
ψn : Ortsdarstellung von |ψ〉
Wenn x kontinuierlich:

|ψ〉 =
∫

dx |x〉 〈x|ψ〉

mit 〈x|ψ〉 := Ortsdarstellung von |ψ〉

ψ(x) = 〈x|ψ〉

diskret: 〈xn|xm〉 = δnm

kontinuierlich: |y〉 = δ(x− y)
nehmen: |ψ〉 = |y〉
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|y〉 =
∫

dx |x〉 〈x|y〉

=
∫

dx |x〉 δ(x− y)

= |y〉 �

Ende Wiederholung

Â←→ Anm = 〈xn|Â|xm〉

diskreter Fall:

Â = 1 · Â · 1 =
∑
n,m

|xn〉〈xn| Â |xn〉〈xm|

=
∑
n,m

|xn〉〈xm|︸ ︷︷ ︸
Operator

〈xn| Â |xn〉︸ ︷︷ ︸
=Anm

kontinuierlicher Fall:

Â =
∫

dx
∫

dx |x〉〈y| 〈x|Â|y〉

mit〈x|Â|y〉 := Ortsdarstellung von|ψ〉

A(x, y) ≡ 〈x|Â|y〉

〈φ|Â|ψ〉 ≡ 〈φ|Âψ〉 =
∫

dx
∫

dx 〈φ|x〉 〈y |ψ〉A(x, y)

〈φ|Â|ψ〉 =
∫

dx
∫

dx φ∗(x)ψ(y)A(x, y)

〈ψ|Â|ψ〉 =
∫

dx
∫

dx ψ∗(x)ψ(y)A(x, y)

〈x|x̂|y〉 = y〈x|y〉 = y δ(x− y)

das heißt:

〈φ |x̂|ψ〉 =
∫

dx
∫

dy φ∗(x)ψ(y)x δ(x− y) =
∫

dx φ∗(x) xψ(x)
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〈φ|f(x̂)|ψ〉 =
∫

dx φ∗(x) f(x)ψ(x)

Neue Frage:

〈x| p̂ |y〉 = ?
[x̂, p̂] = i~

〈x|[x̂, p̂]|y〉 = i~〈x|y〉 = i~ δ(x− y)

〈x|x̂︸ ︷︷ ︸
〈x|x̂=x〈x|

p̂|y〉 − 〈x|p̂ x̂|y〉︸ ︷︷ ︸
=y|ŷ〉

= i~ δ(x− y)

aus: x̂|x〉 = x|x〉 −→ 〈ψ|x̂ = 〈x̂†ψ| = 〈x̂†ψ|
⇒ 〈x|x̂| = x〈x|

x〈x|p̂|y〉 − 〈x|p̂|y〉 y = i~ δ(x− y)

〈x|p̂|y〉 = ~
i
∂

∂x
δ(x− y) = +~

i
∂

∂y
δ(x− y)

~
i

(
x
∂

∂y
δ(x− y)− ∂

∂y
δ(x− y y

)
) = ~

i

(
x
��

��
�
��∂

∂y
δ(x− y)− δ(x− y)− y

��
��

�
��∂

∂y
δ(x− y)

)

= i~δ(x− y)X

〈φ |P̂ |ψ〉 =
∫

dx
∫

dy φ∗(x)~i
∂

∂x
δ(x− y)ψ(y) =

∫
dx φ∗(x) ~

i
∂
∂x
ψ(x)

〈φ|f (p̂) |ψ〉 =
∫
dx φ∗ (x) f

(
~
i
∂

∂x

)
ψ(x)

29



4.Vorlesung Quantentheorie Quantenmechanik

Äquivalenzen:

Ortsdarstellung Impulsdarstellung

x̂|x〉 = x |x〉 p̂ |p〉 = p |p〉 = ~k |p〉
H ↔ L2(R3) H ↔ L2(R3)
|ψ〉 ↔ ψ(x) |ψ〉 ↔ ψ̃(k)
〈φ|ψ〉 ↔

∫
dx φ∗(x)ψ(x) 〈φ|ψ〉 ↔

∫
dk φ̃∗(k) ψ̃(k)

p̂|ψ〉 ↔ ~
i
∂
∂x
ψ(x) p̂|ψ〉 ↔ pψ̃(k) = ~k ψ̃(k)

x̂ |ψ〉 ↔ xψ(x) x̂|ψ〉 ↔ i ∂
∂k
ψ(k)

ψ (x)⇐⇒ ψ̃ (k) : Fouriertransformation

1.4 Messungen in der Quantenmechanik

Spektrum von selbstadjungierten Operatoren Â
Eigenzustände/werte Â|ψ〉 = λ|ψ〉

diskretes Spektrum von λ : λn n = 1, 2, 3, ...

kontinuierliches Spektrum von λ : λ ∈ R oder Intervall

auch möglich: λ sowohl kontinuierliche Intervalle
als auch diskrete Werte

Â|ψ1〉 = λ|ψ1〉
Â|ψ2〉 = λ|ψ2〉
Â|ψn〉 = λ|ψn〉

 n-fache Entartung︸ ︷︷ ︸
(mehrere Eigenzustände
zu einem Eigenwert )
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Postulat 3a: Die Messung einer Observablen Â mit nicht-entartetem, diskretem
Spektrum in einem Zustand |ψ〉 liefert als Messergebnis einen Eigenwert an mit
der Wahrscheinlichkeit:
P (an) = | 〈an |ψ 〉|2
wobei |an〉 Eigenvektor zum Eigenwert an ist. Der Zustand geht über in |an〉

|ϕ〉 Â−→
↓
an

|an〉 (5)

p〈an| = |〈an|ψ〉|2

Bemerkung:

Entartung p(an) = ∑
|an〉 = |〈an|ψ〉|2

Beispiel:

|ψ〉 = 1√
2

(
1
1

)

Observable:σz =
(

1 0
0 −1

)

Eigenzustände: |φ+〉 =
(

1
0

)
mit λ+ = 1

|φ−〉 =
(

0
1

)
mit λ− = −1

p(1) = |〈φ+|ψ〉|2 = 1
2

p(−1) = |〈φ−|ψ〉|2 = 1
2

Momente der Wahrscheinlichkeitsverteilung:
Erwartungswert 〈Â〉 = 〈ψ|Â|ψ〉
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wissen:
∑
n

|an〉〈an| = 1 Â|an〉 = an|an〉

〈Â〉 = 〈ψ|1 · Â · 1 |ψ〉

Man multipliziert mit dem 1-Operator (neutrales Element) und setzt die Beziehung
von Oberhalb ein.

=
∑
n,m

〈ψ|an〉 〈an|Â|am〉︸ ︷︷ ︸
an·δn,m

〈am|ψ〉

=
∑
n

|〈an|ψ〉2 · an

〈Â〉 =
∑
n

p(an) · an

〈Âm〉 =
∑
n

p(an) · amn

Schwankungsquadrat:

〈4Â2〉 = 〈(Â− 〈Â〉)2〉
= 〈Â2〉 − 〈Â〉2

Varianz:

4Â =
√
〈4Â2〉
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Beispiel:

|ψ〉 = 1√
2

(
1
1

)
〈σz〉 = p(+1) · 1 + p(−1) · (−1)

= 1
2 −

1
2 = 0

〈4σ̂2
z〉 = 〈σ̂2

z〉 − 〈σz〉2︸ ︷︷ ︸
=0

= p(+1)(+1)2 + p(−1)(−1)2 = 1

Wiederholte Messung einer Observable?

Selbe Observable bildet von Zustand in den selben Zustand:
Messung zweier Observable Â, B̂

Â|an〉 = an|an〉
B̂|bm〉 = bm|bm〉

I

|ψ〉 Â−→
↓
an

|an〉
B̂−→
↓
bm

|bm〉

p1 = |〈an|ψ〉|2 p2 = |〈bm|an〉|2

II

|ψ〉 B̂−→
↓
bm

|bm〉
Â−→
↓
an

|an〉

p3 = |〈bm|ψ〉|2 p4 = |〈an|bm〉|2

p(bm, an) = p1 · p2

p(an, bm) = p3 · p4 = p3 · p2
i.A.

6= p(bm, an)
p(an, bm) 6= p(bm, an)

|ψ′〉 6= |ψ′′〉
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Messwahrscheinlichkeit und Zustände nach der Messung hängen von der Reihen-
folge der Messung ab!

Ausnahme:
[Â, B̂] = 0
Â|an〉 = an|an〉
B̂|an〉 = bn|an〉
p(bm, an) = |〈an|ψ〉|2 · |〈am|an〉|2︸ ︷︷ ︸

δm,n

= δm,n|〈an|ψ〉|2

p(an, bm) = |〈an|ψ〉|2 · |〈an|am〉|2︸ ︷︷ ︸
δm,n

= δm,n|〈am|ψ〉|2

p(bm, an) = p(an, bm)

Bei kommutierenden Operatoren sind wir in der Lage Gleichzeitig und
in beliebiger Reihenfolge zu messen.

5.Vorlesung Wiederholung

|ϕ〉
Â
−→
↓
an

|an〉 (6)

Â|am〉 = am|am〉

p(an) = |〈an|ψ〉|2∑
n

p(an) =
∑
n

|〈an|ψ〉|2 =
∑
n

〈ψ|an〉〈an|ψ〉 = 〈ψ|ψ〉 = 1
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5.Vorlesung Quantentheorie Quantenmechanik

〈Â〉 ?=
∑
n

p(an)an

= 〈ψ|Â|ψ〉

= 〈ψ|Â ·
∑
n

|an〉〈an|︸ ︷︷ ︸
1

ψ〉

= 〈ψ|
∑
n

an|an〉〈an|ψ〉

=
∑
n

an 〈ψ|an〉〈an|ψ〉︸ ︷︷ ︸
p(an)

=
∑
n

an p(an)

〈M Â〉2 = 〈(Â− 〈Â〉)2〉 = 〈Â2〉 − 〈Â〉2 ≥ 0

|ψ〉 Â−→
an
|an〉

B̂−→
bm
|bm〉

p(bm; an) = |〈ψ|an〉|2︸ ︷︷ ︸
1.Messung

|〈an|bm〉|2︸ ︷︷ ︸
2.Messung

|ψ〉 B̂−→
bm
|bm〉

Â−→
an
|an〉

p(an; bm) = |〈ψ|bm〉|2 · |〈bm|an〉|2

p(an; bm) 6= p(bm; an)

In der Quantenmechanik ist im Allgemeinen die Reihenfolge der Messung rele-
vant.

Ende Wiederholung

Ausnahme : [Â, B̂] = ÂB̂ − B̂Â = 0
⇒ p(an; bm) = p(bm; an)

Ein Satz paarweise kommutierender Observablen kann gleichzeitig genau gemes-
sen werden, d.h. das Messergebnis hängt nicht von der Reihenfolge ab.
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„verträgliche“ Observable

• |ψ〉 ←→ Â

• |ψ〉 ←→ Â, B̂, ... falls alle paarweis kommutieren

• |ψ〉 ←→ Â, B̂, ... mit [Â, B̂] 6= 0

1.4.1 allgemeine Unschärferelation

Ã ≡ Â− 〈Â〉 B̃ = B̂ − 〈B̂〉

[Ã, B̃] = [Â, B̂]

da 〈Ã〉 = 〈B̃〉 = 0

〈∆Â2〉 = 〈Ã2〉

〈∆B̂2〉 = 〈B̃2〉
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5.Vorlesung Quantentheorie Quantenmechanik

||(Ã− iλB̃) · |ψ〉||2 Norm

= 〈(Ã− iλB̃) · |ψ〉||(Ã− iλB̃) · |ψ〉

= 〈ψ| · (Ã− iλB̃)† · (Ã− iλB̃) · ψ〉

= 〈ψ| · (Ã+ iλB̃)(Ã− iλB̃) · |ψ〉

= 〈ψ| · Ã2 + λ2B̃2 − iλ(ÃB̃ − B̃Ã)] · |ψ〉

= 〈Ã2〉+ λ2〈B̃2〉 − iλ〈[Â, B̂]〉 ≥ 0

Minimalterm : d
dλ | = 0

0 = 2 · λ0〈B̃2〉 − i〈[Â, B̂]〉

y λ0 = i〈[Â, B̂]〉
2〈B̃2〉

0 ≤ 〈Ã2〉 − 〈[Â, B̂]〉2

4〈B̃2〉
+ 〈[Â, B̂]〉2

2〈B̃2〉

0 ≤ 〈Ã2〉+ 〈[Â, B̂]〉2

4〈B̃2〉
= 〈Ã2〉 − i〈[Â, B̂]〉2

4〈B̃2〉

〈[Â, B̂]〉∗ = 〈ÂB̂〉∗ − 〈B̂Â〉∗

= 〈B̂†Â†〉 − 〈Â†B̂†〉
= 〈B̂Â〉 − 〈ÂB̂〉
= −〈[Â, B̂]〉

(
i
[
Â, B̂

])†
= i

[
Â, B̂

]
⇒ hermitesch

〈
Ã2
〉 〈
B̃2
〉
≥ 1

4
〈
i
[
Â, B̂

]〉2
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allgemeine Unschärferelation:
〈
4Â2

〉 〈
4B̂2

〉
≥ 1

4
〈
i
[
Â, B̂

]〉2

„= “ für Zustände minimaler Unschärfe

Beispiel:

x̂, p̂ [x̂, p̂] = i~

Heisenbergsche Unschärferelation:
〈
4x̂2

〉 〈
4p̂2

〉
≥ ~2

4

Intervall a1 > a ≤ a2 ⇔ p̂(â1, â2)︸ ︷︷ ︸
Projektor

a seien Eigenwerte einer Observablen Â mit kontinuierlichem. Spektrum

Postulat 3b:

Die Messung einer Observable Â mit kontinuierlichem Spektrum im Zustand |ψ〉
liefert ein Intervall I : a1 < a ≤ a2 von Eigenwerten mit Wahrscheinlichkeit:
p(I) = 〈ψ|p̂(a1, a2)|ψ〉
( diskret p(an)) = ||〈an|ψ〉||2 = 〈ψ|an〉〈an|ψ〉 )
Nach der Messung ist der Zustand |ψť〉 = N p̂(a1, a2)|ψ〉
mit N :=Normierung

Beispiel:

|ψ〉; x̂
I : x1 < x ≤ x2

p̂(x1, x2) =?
in Ortsdarstellung
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p̂(x1, x2) = Θ(x2 − x) Θ(x− x1)

mit Heavyside-Funktion =: Θ(x) =
1 x ≥ 0

0 x ≤ 0

damit: P (I) = 〈ψ| p̂(x1, x2) |ψ〉

=
∫ ∞
−∞

dx ψ∗(x) Θ(x2 − x) Θ(x− x1)ψ(x)

=
∫ x2

x1
dx |ψ(x)|2

1.5 Dynamik in der Quantenmechanik

|ψ(t0)〉 −→ |ψ(t)〉 (7)

linearer Operator:

|ψ(t)〉 = Û(t, t0) |ψ(t0)〉
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Norm soll erhalten bleiben!

Û =?

0 = d
dt〈ψ(t)|ψ(t)〉

= d
dt〈Û(t, t0)ψ(t0)〉+ 〈Û(t, t0)ψ(t0)〉

= 〈 ˙̂
UÛ−1 ψ(t0)|Û ψ(t0)〉+ 〈Û ψ(t0)| ˙̂UÛ−1 ψ(t0)〉

= 〈 ˙̂
UÛ−1 Û ψ(t0)︸ ︷︷ ︸

ψ(t)

| Û ψ(t0)︸ ︷︷ ︸
ψ(t)

〉+ 〈Û ψ(t0)︸ ︷︷ ︸
ψ(t)

| ˙̂UÛ−1 Û ψ(t0)︸ ︷︷ ︸
ψ(t)

〉

= 〈ψ(t)| ( ˙̂
UÛ−1)†|ψ(t)〉+ 〈ψ(t) | ˙̂

UÛ−1 |ψ(t)〉

⇒ 0 = ˙̂
UÛ−1 + ˙̂

UÛ−1

( ˙̂
UÛ−1)† = − ˙̂

UÛ−1 = ±i

⇒ k† = k

DGL:
d
dtÛ = ∓ikÛ

Anfangsbedingungen:

Û(t0, t0) = 1

Û(t, t0) = e−ik(t−t0)

Die einzige dimensionsbehaftete Größe in der Quantenmechanik ist: ~.

k̃=̂E
~

k̃ = 1
~
· Ĥ

⇒ Û(t, t0) = e− i
~ Ĥ(t−t0)

unitär Û−1 = U † ⇒ Û · Û † = 1
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Û † = e i
~ ·Ĥ(t−t0) = Û−1

Û−1Û = e i
~ Ĥ(t−t0) e− i

~ Ĥ(t−t0) = 1

zeitabhängige Schrödingergleichung:

d
dt |ψ(t)〉 =?

= d
dtÛ(t− t0) · |ψ(t0)〉 = − i

~
ĤÛ(t, t0) |ψ(t0)〉

= − i
~
Ĥ |ψ(t0)〉

zeitabhängige Schrödingergleichung:

i~ d
dt |ψ(t)〉 = Ĥ |ψ(t)〉

Beispiel:

1 Teilchen im Potential V (~r):

H = ~p2

2m + V (~r)

i~ d
dt |ψ(t)〉 =

(
~p2

2m + V (~r)
)
|ψ(t)〉

Ortsdarstellung:

|ψ(t)〉 → 〈~r|ψ(t)〉 = |ψ(t, t)
~̂r → ~r

~̂p→ ~
i∇
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Schrödingergleichung (im Ortsraum):

i~ d
dt |ψ(~r, t)〉 =

[
− ~2

2m ∇
2 + V (~r, t)

]
|ψ(~r, t)〉

stationäre Zustände; Zeitunabhängige (stationäre) Schrödingergleichung

Physikalische Größen sollten Zeitunabhänig sein.

〈Â〉t = 〈ψ(t)| Â |ψ(t)〉 != 〈Â〉t0

Das ist gerade der Fall für |ψ(t)〉 ∼ |φn〉.

stationäre Schrödingergleichung:

Ĥ |φn〉 = En |φn〉

Wir wollen diese Gleichung lösen.

Ortsdarstellung:[
− ~2

2m ∇
2 + V (~r, t)

]
φn(~r) = En φn(~r)

zur Zeit t = t0: |ψ(t)〉 = |φn〉

i~ d
dt |ψ(t)〉 = Ĥ |ψ(t)〉 = Ĥ |φn〉 = E |φn〉 = E |ψ(t)〉

y Lösung

|ψ〉 = e− i
~ E(t−t0) |φn〉
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〈Â〉t = 〈 e− i
~ E(t−t0) φn | Â | e−

i
~ E(t−t0) |φn〉

= 〈φn| Â
(
e− i

~ E(t−t0)
)†
· e− i

~ E(t−t0)︸ ︷︷ ︸
=1

|φn〉

= 〈φn| Â |φn〉

�

Kenntnis aller Eigenvektoren |φn〉 und Eigenwerte En erlauben allgemeine Lösung
der Schrödingergleichung.

Ĥ|φn〉 = E|φ〉
{|φ〉} bilden vollständige Orthonormal Basis (ONB)
|ψn(t)〉 = e− i

~ E(t−t0) |φ〉

wegen Vollständigkeit gilt für jeden Zustand:

|ψ(t)〉 =
∑
n

αn(t) e− i
~ E(t−t0) |φn〉

einsetzen in die Schrödingergleichung:

⇒ α̇n(t) = 0
αn(t) = αn = const

d.h.: |ψ(t = t0)〉 = |ψ0〉

i~ d
dt |ψ(t)〉 = Ĥ|ψ(t)〉

|ψ(t)〉 =
∑
n

αn e− i
~ E(t−t0) |φn〉

αn = 〈φn|ψ0)〉

6.Vorlesung Wiederholung
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Für die Dynamik in der Quantenmechanik erhielten wir folgende Relationen in der
Übersicht:

Û(t, t0) = e−i Ĥ~ (t−t0)∣∣∣∣ψ(t)
〉

= Û(t, t0)
∣∣∣∣ψ(t0)

〉

i~ d
dt

∣∣∣∣ψ(t)
〉

= Ĥ

∣∣∣∣ψ(t)
〉

Ĥ
∣∣∣∣φE〉 = E

∣∣∣∣φE〉∣∣∣∣ψE(t)
〉

= e−i Ĥ~ ·(t) |φE
〉

stationärer Zustand: 〈
Â
〉
t

=
〈
ψE(t)

∣∣∣∣ Â ∣∣∣∣ψE(t)
〉

=
〈
Â
〉
t0

Sei nun der Zustand eine lineare Superposition mehrerer Zustände:

α ·
∣∣∣∣ψE1(t)

〉
+β ·

∣∣∣∣ψE2(t)
〉

=
∣∣∣∣ψ(t)

〉

⇒
〈
ψ(t)

∣∣∣∣ Â ∣∣∣∣ψ(t)
〉

= |α|2 ·
〈
ψE1(t)

∣∣∣∣Â∣∣∣∣ψE1(t)
〉

+ |β|2 ·
〈
ψE2(t)

∣∣∣∣ Â ∣∣∣∣ψE2(t)
〉

+ α∗ β ei (E1−E2)t
~ ·

〈
ψE1(t)

∣∣∣∣ Â ∣∣∣∣ψE2(t)
〉

+ C.C.

Dieser Ausdruck ist im Allgemeinen nicht stationär.

allgemeine Lösung der DGL:∣∣∣∣ψ(t)
〉

=
∑
n

αn e−
iEnt
~

∣∣∣∣En〉
αn =

〈
En

∣∣∣∣ψ(t = 0)
〉

Ende Wiederholung

Kenntnis der Eigenwerte und Eigenzustände von Ĥ erlauben vollständige Lösung
eines Anfangswertproblems.
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Erhaltungsgrößen in der Quantenmechanik:

Â ist Erhaltungsgröße falls:〈
ψ(t)

∣∣∣ Â ∣∣∣ψ(t)
〉

= const

⇒ 0 = d
dt
〈
ψ(t)

∣∣∣ Â ∣∣∣ψ(t)
〉

0 !=
〈

d
dtψ(t)

∣∣∣ Â ∣∣∣ψ(t)
〉

+
〈
ψ(t)

∣∣∣ Â ∣∣∣ d
dtψ(t)

〉
=
〈
− i

~Ĥ ψ(t)
∣∣∣ Â ∣∣∣ψ(t)

〉
+
〈
ψ(t)

∣∣∣ Â ∣∣∣− i
~Ĥ ψ(t)

〉
=
〈
ψ(t)

∣∣∣∣ (− i
~Ĥ

)†
Â

∣∣∣∣ψ(t)
〉
− i

~
〈
ψ(t)

∣∣∣ Â · Ĥ ∣∣∣ψ(t)
〉

= i

~
〈
ψ(t)

∣∣∣ [ĤÂ− ÂĤ] ∣∣∣ψ(t)
〉

Â ist Erhaltungsgröße, genau dann wenn:[
Ĥ, Â

]
= 0

Bemerkung: [
Ĥ, Â

]
= 0

⇒ d
dt
〈
f(Â)

〉
= 0

Beispiel (freies Teilchen):

Ĥ = ~p2

2m
y
[
~̂p, Ĥ

]
= 0[

~̂px, Ĥ
]

=
[
~̂py, Ĥ

]
=
[
~̂pz, Ĥ

]
= 0
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2 Einteilchen-QM in einer
räumlichen Dimension

Die Klassische Hamiltonfunktion lautet: Ĥ = ~p2

2m + V (~r)

Schrödingergleichung
Ortsraum:

|ψ〉 → ψ(~r, t) = 〈~r|ψ〉

~̂r → ~r ~p→ ~
i · ∇

i~ d
dtψ(~r, t) = − ~2

2m ∆ψ(~r, t) + V (~r)ψ(~r, t)

Impulsraum:

|ψ〉 → ψ̃(~k, t) = 〈~k|ψ〉

~̂p→ ~~k, ~r → i∇~k

i~ ψ̃(~k, t) = ~2k2

2m ψ̃(~k, t) + V (i∇~k) ψ̃(~k, t)
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Zusammenhang ψ(x, t)↔ ψ̃(k, t):

ψ(x, t) = 〈x|ψ〉

|k〉 =
∫ ∞
−∞

dx |x〉 〈x|k〉

ψ̃(~k, t) = 〈k|ψ〉

=
∫ ∞
−∞

dx 〈k|x〉〈x|ψ〉

=
∫ ∞
−∞

dx f(k, x)ψ(x)

f(k, x) ≡ 〈k|x〉 =?

dazu: 〈k|p̂|x〉 =
∫ ∞
−∞

dy 〈k|y〉︸ ︷︷ ︸
f(k,y)

〈y|p̂|x〉︸ ︷︷ ︸
− ~

i
∂
∂x
δ(y−x)

= −~
i
∂

∂x
f(k, x)

andererseits: p̂|k〉 = ~k |k〉

〈k|p̂|x〉 = ~k 〈k|x〉

��~k · f(k, x) = −��~i
∂

∂x
f(k, x)

f(k, x) = e−ikxψ̃(k, t) =
∫ ∞
−∞

dx e−ikx ψ(x, t)

ψ(x, t) = 1
2π

∫ ∞
−∞

dk eikx · ψ̃(k, t)

Bemerkung:

Faktor 1
2π kann verschieden sein „verteilt“ werden. Der Zusammenhang zwischen

Orts- und Impulsraum ist also die Fouriertransformation.
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2.1 Kontinuitätsgleichung für
Wahrscheinlichkeitsdichte (3D)

Die Wahrscheinlichkeitsdichtefunktion lautet:

ρ (~r, t) = |ψ(~r, t)|2

d
dtρ (~r, t) = ψ̇∗ψ + ψ∗ψ̇

= −i ~
2m(∆ψ∗)ψ + ~

2mψ∗∆ψ

+ i
~
V ψ∗ψ − i

~
ψ∗V ψ︸ ︷︷ ︸

=0

= i~
2m ∇

[
ψ∗~∇ψ −

(
∇(ψ∗)

)
ψ
]

Aus der obigen Relation folgt mit der passenden Definition die quantenmechanische
Version der Kontinuitätsgleichung:

Wahrscheinlichkeitsstromdichte:

~j(~r, t) = − i~
2m

[
ψ∗∇ψ −

(
∇(ψ∗)

)
ψ
]

Kontinuitätsgleichung:

d
dtρ (~r, t) +∇~j = 0

ψ(~r, t) = 2
√
ρ(~r, t) exp

{
iρ
~

}
~j(~r, t) = ρ

m
∇S
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Beispiel:

ψk(x, t) = 〈x|k〉 = eikx

~j = 1
m
∇(~kx) = ~k

m
· ~ex

ρ

~
= kx

Damit ~j und ∇~j definiert sind für endliche Potentiale V (r) müssen ψ(~r) und
∇ψ(~r) stetig sein.

Übergangsbedingungen:

Wir müssen also die folgenden Forderungen für gültige Wellenfunktionen aufstel-
len:

x0I II x

V (x)

Abbildung 2.1: Übergangsbedingung

ψI(x0) != ψII(x0)
d

dx ψI(x0) != d
dx ψII(x0)

2.2 freies Teilchen in einer Dimension

Wir betrachten nun das wohl einfachste System in der Quantenmechanik. "Frei"bedeutet
hier, dass das Potential im ganzen Raum gleich null ist. Das Problem im Ortsraum
zu lösen ist unnötig schwierig, da wir dort eine partielle Differentialgleichung (DGL)
zweiter Ordnung im Ort zu lösen hätten, im Impulsraum jedoch nur eine gewöhn-
liche DGL erster Ordnung in der Zeit. Die Lösung im Ortsraum erhalten wir dann
aus der Lösung im Impulsraum, in dem wir diese fouriertransformieren.
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V (x) = 0

Ortsraum: i~ d
dtψ(x, t) = − ~2

2m
d2

dx2ψ(x, t)

Impulsraum: i~ d
dtψ̃(k, t) = ~2k2

2m ψ̃(k, t)

d
dtψ̃ = − i~k2

2m ψ̃

y Lösung: ψ̃(k, t) = ψ̃(k, t0) · e−
i~k2 (t−t0)

2m

Ortsraum durch Rück-Fouriertransformation:

ψ(x, t) = 1
2π

∫ ∞
−∞

dk ψ̃(k, t0) · eikx · e−
i~k2 (t−t0)

2m

= 1
2π

∫ ∞
−∞

dk
∫ ∞
−∞

dy ψ(y, t0) · e−iky · eikx e−
i~k2 (t−t0)

2m

Propagator des freien Teilchens:

G(x, y, t, t0) ≡ 1
2π

∫ ∞
−∞

dk eik(x−y) · e−
i~k2 (t−t0)

2m

Mit dieser Formulierung hat jedes Anfangswertproblem die Lösung:

ψ(x, t) =
∫ ∞
−∞

dy G(x, y, t, t0) · ψ(y, t0)︸ ︷︷ ︸
A,B

⇒ ...⇒ G(x, y, t, t0) = 2

√
m

2π~i(t− t0) · e
im (x−y)2
2~ (t−t0)

Für die folgenden Themen ist es hilfreich, einige spezielle Integrale und deren Lösung
zu kennen. Für dieses Zweck machen wir den folgenden Exkurs:
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Exkurs (Gaußintegrale):

(i) ∫ ∞
−∞

dx e−αx2 = I1 = 2

√
π

α

⇒ I2
1 =

∫ ∞
−∞

dx e−αx2
∫ ∞
−∞

dy e−αy2

=
∫ ∞
−∞

dx
∫ ∞
−∞

dy e−α(x2+y2)

Pol.=
∫ ∞

0
dr︸ ︷︷ ︸

(∗): = 1
2 dz

·r ·
∫ 2π

0
dϕ︸ ︷︷ ︸

2π

·e−αr2

= π
∫ ∞

0
dz e−αz = π

α

(∗) : Nebenrechnung: z = r2 ⇒ dz = 2r dr ⇒ dz
2 = dr r

(ii) ∫ ∞
−∞

dx e−αx2 eβx =
∫ ∞
−∞

dx e−α(x+x0)2 · eαx02

���
�−αx2 + βx = −α(x+ x0)2 + αx0

2

=����−αx2 − 2αxx0��
��−αx0

2
���

�+αx0
2

x0 = − β

2α

I2 =
∫ ∞
−∞

dx exp

−α (x+ x0)2︸ ︷︷ ︸
y2

︸ ︷︷ ︸∫∞
−∞dy e−αy2= 2

√
π
α

·e�
α β2

4·α�2

=
√
π

α
· exp

{
β2

4α

}
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Die wichtigen Methoden bei der Lösung von Gaußintegralen sind also:

• Berechne das Quadrat des Intgrals und ehe zu ebenen Polarkoordinaten über

• Führe quadratische Ergänzung im Exponent der Exponentialfunktion durch

Mit diesem Wissen lassen sich die folgenden Relationen zeigen:

〈p̂(t)〉 = 〈p̂(0)〉

4p(t) = 4p(0) ≡ 〈4p̂(0)〉

klar, da
[
p̂, Ĥ

]
= 0

4x2(t) = 4x2(0) + ~2t2

4m24 x2(0)

Beispiel (Gauß´sches Wellenpaket):

ψ̃(k, 0) = A · e−
k2

4σk2 ←→ ψ(x, 0) = A

2σx 2
√
π
· e−

x2
4σx2

σx = 1
2σx

ψ(x, t) = A

2
√
π
√
σx2 + i~

2m

· e
x2

4·(σx2+ ~2t2
2m )

Aus diesem Beispiel mit den vorangegangenen Ausdruck für 4x2(t) lässt sich erken-
nen, dass die Wellenfunktion mit fortschreitender Zeit äuseinanderläuft", der Bereich
mit signifikanter Aufenthaltswahrscheinlichkeit also mit der Zeit anwächst.

x

σx t = 0
σx t 6= 0

Abbildung 2.2: Auseinanderlaufen des Wellenpakets

Dies mag befremdlich erscheinen, jedoch stellt diese Tatsache eine einfache Konse-
quenz aus der Unschärferelation dar: Ist der Impuls zu t = t0 nicht exakt bekannt, so
wird sich diese Unschärfe bei fortschreitender Zeit zu immer größeren Abweichungen
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7. Vorlesung Quantentheorie Quantenmechanik

äufschaukeln".
Da die Quantenmechanik bei großen Energien in die klassische, newtonsche Mecha-
nik übergehen muss, ist nun die Frage, warum der Effekt des Zerlaufens des Wel-
lenpakets nicht im alltäglichen Leben beobachtet wird. Das folgende Zahlenbeispiel
soll das illustrieren.

Beispiel: (zerlaufendes Wellenpaket)

Wie lange dauert es, bis ein Wellenpaket auf das doppelte seiner ursprünglichen
Größe auseinandergelaufen ist?

4 x(T ) = 24 x(0) T =?

T = 2
√

3m
~
4 x(0)2

Elektron:

4x(0) = 1 µm =̂ 10−6 m

m =̂ 9 · 10−31 kg

T =̂ 3 · 10−8 s =̂ 30 ns

Murmel:

4x(0) =̂ 1 cm =̂ 10−2 m

m =̂ 100g =̂ 10−1kg

T =̂ 3 · 1029 s =̂ 1022 Jahre

7. Vorlesung Wiederholung
Zunehmende Unschärfe des Wellenpakets:

x

σx t = 0
σx t 6= 0

Abbildung 2.3: Dispersion des Wellenpakets
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7. Vorlesung Quantentheorie Quantenmechanik

∆x2(t) = ∆x2(0) + ~2t2

4m2∆x2(0)
p(t) = p(0) ∆p(t) = ∆p(0)

Ende Wiederholung

2.3 Gebundene Zustände: unendlich hohes
Kastenpotential

0 LI II III

Abbildung 2.4: unendliches Kastenpotential

V (x) =
0 0 ≤ x ≤ L

∞ sonst
(8)

Es muss gelten:

∫ ∞
−∞
|ψ|2 dx = 1

Übergangsbedingungen
Φ stetig
Φ′ stetig falls V (x) 6=∞

− ~2

2m
d2

dx2 ΦE(x) + V (x) ΦE(x) = E ΦE(x)

I und III:
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7. Vorlesung Quantentheorie Quantenmechanik

V (x) =∞
⇒ ΦI,III(x) = 0

II:

V (x) = 0⇒ Φ′′II(x) = −2mE
~2 ΦII(x)

Randbedingung: ΦII(0) = ΦII(L) = 0

E < 0:

ΦII(x) = e±i
√

2m|E|
~ x

E = −|E|

ΦII(x) = A ei
√

2m|E|
~ x +B e−i

√
2m|E|

~ x

0 = ΦII(0) = A+B ⇒ A = −B

0 = ΦII(L) = A ei
√

2m|E|
~ L +B e−i

√
2mE

~ L 6= 0

Allgemein gilt also:
Es existiert keine Lösung der Schrödingergleichung mit E < Minimum von
V (x)

E > 0 :

ΦII(x) ∼ exp
±i

√
2mE
~2 x


ΦII(x) = A cos

±
√

2mE
~2 x

+B sin
±

√
2mE
~2 x


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7. Vorlesung Quantentheorie Quantenmechanik

0 = ΦII(0) ⇒ A = 0

0 = ΦII(L) = B sin
(√2mE

~
L︸ ︷︷ ︸

vielfaches
von 2π

)

⇒ B = 0 � keine Lösung oder
√

2mE
~

L = nπ n = 1, 2, 3, ..., n

Randbedingung (Normierbarkeit) fürt zur Quantisierung der Energie:

Energieeigenwerte:

En = n2π2~2

2ml2

Eigenfunktionen:

Φn(x) = B sin
(
nπ

L
x
)

Es bleibt, B zu bestimmen:

∫ L

0
dx |Φn(x)|2 = 1 ⇒ B =

√
2
L
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L

n = 1

n = 2

n = 3

0

Abbildung 2.5: zustände im Potentialtopf

Verschiebe nun V (x) um L
2 für ein symmetrisches Potential um die senkrechte Ach-

se:

−L
2

L
2

Abbildung 2.6: verschobener Potentialtopf

Φn(x) =
√

2
π

sin
(
nπ

L
x+ nπ

2

)
Wir beobachten zwei verschiedene Arten von Eigenfunktionen, die sich in ihrer Pa-
rität unterscheiden:

n = 2m+ 1 Φn(−x) = Φn(x) symmetrisch
n = 2m Φn(−x) = −Φn(x) antisymmetrisch

Für beides gilt aber:

|Φn(−x)|2 = |Φn(x)|2
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2.3.1 Inversion (Paritätsoperator) (bezüglich x = 0)

Π̂Φ(x) = Φ(−x)

Π̂2 = 1 Π̂† = Π̂ = Π̂−1

⇒ Π̂ ist hermitesch (selbstadjungiert) und unitär

Außerdem gilt: Π̂, p̂2

2m︸︷︷︸
Ekin

 = 0

[
Π̂,− ~2

2m
d2

dx2

]
Φ(x) = Π̂

(
− ~2

2m
d2

dx2 Φ(x)
)
−
(
− ~2

2m
d2

dx2 Π̂Φ(x)
)

= − ~2

2m
d2

dx2 Φ(−x)− ~2

2m
d2

dx2 Φ(−x) = 0

[
Π̂, V (x)

]
= 0 da hier V (−x) = V (x)

d.h es existiert ein gemeinsamer Satz von Eigenzuständen zwischen Π̂ und Ĥ.
Nun fragen wir nach dem Spektrum von Π̂:

Π̂Φ(x) = λΦ(x)

Φ(x) = Π̂2 Φ(x) = λ Π̂Φ(x)︸ ︷︷ ︸
λΦ(x)

= λ2 Φ(x)

⇒ λ± = ±1

Es gibt also zwei Arten von Eigenfunktionen des Paritätsoperators:

Φ+(−x) = Π̂Φ+(x) = Φ+(x) symmetrische Wellenfunktionen
Φ−(−x) = Π̂Φ−(x) = −Φ−(x) antisymmetrische Wellenfunktionen

58



7. Vorlesung Quantentheorie Quantenmechanik

Allgemeine Eigenschaften gebundener Zustände in 1D:

i diskrete Eigenfunktionen von Ĥ können reell gewählt werden.

ii Sei Em > En, dann hat Φm(x) mindestens eine Nullstelle zwichen zwei
Nullstellen (Knoten) von Φn(x)

Beweis:

Sei Em > En und a < b Nullstellen von Φn(x)

OBdA Φn(x) > 0 in a < x ≤ b

− ~
2mΦ′′m(x) + V (r)Φm(x) = EmΦm(x)

∣∣∣∣ · ∫ b

a
dx Φn(x)

− ~
2mΦ′′n(x) + V (r)Φn(x) = EnΦn(x)

∣∣∣∣ · ∫ b

a
dx Φm(x)

− ~
2m

∫ b

a
dx (Φn(x)Φ′′m(x)− Φ′′n(x)Φm(x))︸ ︷︷ ︸

d
dx

Φn(x)Φ′m(x)−Φ′n(x)Φm(x))

= (Em − En)
∫ b

a
dx Φn(x)Φm(x)

= ~
2m(Φn(x)Φ′m(x)

∣∣∣b
a
− Φ′n(x)Φm(x))

∣∣∣b
a
)

= (Em − En)
∫ b

a
dx Φn(x)Φm(x)

= − ~
2m(Φ′n(b)︸ ︷︷ ︸

<0

Φm(b)− Φ′n(a)︸ ︷︷ ︸
>0

Φm(a))

= (Em − En)︸ ︷︷ ︸
>0

∫ b

a
dx Φn(x)Φm(x)︸ ︷︷ ︸

>0

⇒ Φn muss Vorzeichen wechsel in a ≤ x ≤ b 2

59



7. Vorlesung Quantentheorie Quantenmechanik

2.4 Gebundene Zustände und Streuzustände des
endlichen Kastenpotenials

I II III

−L
2

L
2

V (x)

x

E2

E1

−V0

Abbildung 2.7: endliches Kastenpotential

− ~2

2mΦ′′E(x) + V (x)ΦE(x) = EΦE(x)

Randbedingung:

ΦE(x) stetig
Φ′E(x) stetig

I, III:

− ~2

2m Φ′′I, III(x) = E(ΦI, III(x)) |x| ≥ L

2

II

− ~2

2m Φ′′II(x) = (E + V0) (ΦII(x)) |x| ≤ L

2

Übergangsbedingung:

ΦI

(
−L2

)
= ΦII

(
−L2

)
ΦII

(
L

2

)
= ΦIII

(
L

2

)

Φ′I
(
−L2

)
= Φ′II

(
−L2

)
Φ′II

(
L

2

)
= Φ′III

(
L

2

)

E ≥ −V0
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A) −V0 < E < 0 gebundene Zustände

I, III:

Φ′′(x) = 2m
~2 |E|Φ(x) = κ2 Φ(x)

Φ(x) = A+ eκx + A− e−κxκ ∈ R

Normierbarkeit:

ΦI(x) = A+ eκx

ΦIII(x) = A− e−κx

II:

Φ′′(x) = −2m(E + V0)
~2 Φ(x) = −k2 Φ(x)

ΦII(x) = C+ eikx + C− e−ikx

Aufgrund der Symmetrie V (x) = V (−x) können wir unterscheiden:

⇒ symmetrische Lösung: Φ(x) = Φ(−x)
⇒ antisymmetrische Lösung: Φ(x) = −Φ(−x)

symmetrisch: A+ = A− C+ = C−

antisymmetrisch: A+ = −A− C+ = −C−

Auswertung der Übergangsbedingung:

symmetrische Lösung κ = k tan
(
k
L

2

)
⇒ η = ξ tan(ξ)

antisymmetrische Lösung κ = −k cot
(
k
L

2

)
⇒ η = −ξ cot(ξ)

η := k
L

2 ξ := k
L

2

stimmt das?

η2 + ξ2 = L2

4

[
−2m��E

~2 + 2m(��E + V0)
~2

]
= L2m

2~ V0 = R2
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Diese Gleichung lässt sich nicht analytisch lösen. Neber einer nummerischen Lösung
gibt es auch die Möglichkeit sie grafisch zu lösen. Dies ist in Abbildung 2.8 gezeigt
wobei hier die Schnittpunkte möglichen Paare (η, ξ) sind. [Siehe dazu: Quantentheo-
rie, Gernot Münster S.42/43 [Münster, 2010]]

ξ

η

π
2 R

R

s sas

Abbildung 2.8: grafische Lösung

- es existiert stets einen gebundenen Zustand
- existieren nur endlich viele gebundene Zustände
-Grundzustände sind immer symmetrisch

ekx e−kx

Abbildung 2.9: Zustände im endlichen Potentialtopf

Wir sehen, dass eine Aufenhaltswahrscheinlichkeit auch im klassisch verbotenen Be-
reich existiert, jedoch exponentiell mit der Eindringtiefe abnimmt.
Eindringtiefe:

− V0 < E < 0 d =

√√√√ ~2

2m|E|
|E|→0→ ∞
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B) E > 0 Streuzutände

8.Vorlesung Wiederholung

2.4.1 Gebundene- und Streuzustände

I II III

−L
2

L
2

V (x)

x

E2

E1

−V0

Abbildung 2.10: endliches Kastenpotential

V (x) =
−V0 für − L/2 ≤ x ≤ L/2

0 sonst

A) −Vz < E < 0 gebundene Zustände

B) E > 0 Streuzutände

Ende Wiederholung
Klassisch erlaubt: gesamte x-Achse

I, III:

Φ′′ = −k2
0Φ

k2
0 = 2mE

~2Ĺ
(9)

63
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II:

Φ′′ = −k2Φ

k2 = 2m(E + V0)
~2 > k2

0

Ansatz:

ΦI = α+eik0x + α−e−ik0x

ΦIII = β+eik0x + β−e−ik0x

ΦII = γ+eikx + γ−e−ikx

eik0x transmittiert
transmittiert

reflektiertreflektiert

Abbildung 2.11: ebene Welle im Potentialtopf

Dabei stehen folgende Terme für:

eik0x−iE t
~ einlaufende Welle

α0e−ik0x−iE t
~ reflektierte Welle

β+eik0x−iE t
~ transmittierte Welle

ebeneWelle======⇒ Wellenfunktion ist nicht normierbar! Ebene Wellen sind keine normierba-
ren Wellenfunktionen. Formal braucht es nun eine Erweiterung des Hilbertraumes.

∫
dx ψ∗(k, x)ψ(k′, x) = δ(k − k′)

⇒ ψ(k′, x) ∝ eik′x∫
dx ψ∗k(k, x)ψk′(x) = δk,k′

⇒ ψ(k′, x) ∝ eik′x

Normierung auf δ -Distribution
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Aber:Wellenpakete, das heißt Superposition von ebenen Wellen sind normierbar!

⇒Es ist sinnvoll, auch ebene Wellen und analoge Streuzustände als Wellenfkt. zuzulassen.

Was ist die physikalische Bedeutung von α− und β+?

Stromdichte: (Abschnitt 2.1)

~j = ~
2mi (Φ

∗Φ′ − ΦΦ∗′)

für einlaufende Welle: jein = ~k0

m

für reflektierte Welle: jrefl = −~k0

m
|α−|2

für transmittierte Welle: jtrans = ~k0

m
|β−|2

Aus diesen Einzelstromdichten definiert man folgende Koeffizienten:
Transmissionskoeffizient:

T = |jtrans|
|jein|

= |β+|2

Reflexionskoeffizient:

T = |jrefl|
|jein|

= |α−|2

Bei den Koeffizienten α+, α−, β+,... hat man gegebenenfalls die Wahlfreiheit einer
Größe. Die anderen passen sich entprechend an, da T und R materialabhängige
Konstanten sind.

Kontinuitätsgleichung:

ρ(x, t) = |ψ(x, t)|2 = |φ(x)|2 = constt

⇒ ∂j

∂x
= −ρ = 0 ⇒ j = constx
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I:

jI = ~
2mi (φIφ′I − φIφI ‘)

= ~
2mi

[(
e−ikx + α∗−eik0x)iko(eik0x − α−eok0x

)
− c.c

]
= ~

2mi2(1− |α−|2)ik0

= ~
mi (1− |α−|

2) = jein + jref

III:

jIII = 2~
2im ik0|β−|2 = jtrans

jein + jref = jtrans

T +R = 1

⇒ T = 1
1 + V 2

0 sin2(kL)
4E(E+V0)

mit L = breite des Potentialtopfs k =

√
2m(E + V0)

~

T=1
R=0

T=1
1

Abbildung 2.12: Transmissionsanteil mit eingezeichneten Resonanzen

Betrachtet man den Plot bzw. die Funktion, so lässt sich feststellen, dass bei

kL = nπ mit n ∈ N ⇒T = 1

auftritt. Diese Stellen bezeichnet man als Transmissionsresonanzen. Dieser Effekt
liegt an destruktiver Interferenz der an der ersten Kante (von links kommend) und
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der an der zweiten Kante reflektierten Wellenanteile.

2.5 endliche Kastenbarrieren und Tunneleffekt

I II III−L
2

L
2

V (x)

x

E2

E1

V0

Abbildung 2.13: endliche Kastenbarriere

E > V0:
Mit unserer bisherigen Erfahrung mit Kastenpotentialen setzen wir folgende Fälle
für einlaufende, reflektierte und transmittierte Wellenteile an:

ψ(x) =


eik0x + α−e−ik0x x ≤ −L

2
γ+eikx + γ−eikx −L

2 < x ≤ L
2

β+eik0x x > L
2

k2
0 = 2mE

~2 k2
1 = 2m(E − V0)

~2 > 0

analog zu 2L mit k → k1
Interessanter ist der Fall:

0 < E < V0

Klassisch gibt es in diesem Fall keine Transmision.
Ansatz:

ψ(x) =


eik0x + α−e−ik0x x ≤ −L

2
γ+ekx + γ−ekx −L

2 < x ≤ L
2

β+eik0x x > L
2
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mit

k2 = 2m(V0 − E)
~2 > 0

analog zu 9 mit k = ik

⇒ T = 1
1 + V 2

0
4E(V0−E) sinh2(kL)

⇒ Es gibt Transmission im klassisch verbotenem Energiebereich
⇒ Tunneleffekt

Interferenz von
Einlaufender
und Reflektierter
Welle

exponentielles
abklingen im
klassische
Verbotenen
bereich

-nur transmitierte
Welle
-gleiche Wellenlänge
-geringere Amplitude
-keine Interferenz

Abbildung 2.14: Tunneleffekt

Gamow Formel:
Nachdem wir nun eine (sehr idealisierte) Potentialbarriere behandelt haben, wol-
len wir nun allgemeinere Barrieren betrachten. Eine Möglichkeit dafür bietet der
folgende Ansatz:

V (x)

Abbildung 2.15: allgemeine Kastenbarriere

Näherung von V (x) durch kleine Kastenpotential
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· einzelne Kastenbarriere habe Länge L; L sei groß, sodass: kL«1

⇒ sinh2(kL) ≈ 1
4e2kL

⇒ T ≈
16E(V0 − E)

V 2
0

e−
2
√

2m(V0−E)L
~

Abfolge von Kästen mit

Ti ∼ e− 2
~

√
2m(V (xi)−E)∆x

⇒ T =
N∏
i=1

Ti ∼ e− 2
~

√
2m(V (xi)−E)∆x

T ≈ e−
2
~

∫ b
a
dr
√

2m(V (x)−E)

Dieses approximative Resultat bezeichnet man als die Gamow Formel.

2.6 attraktives δ - Potential

(A) Betrachteter Potentialtopf aus 2.4.1 mit V0 → −∞, L→ 0
Aber V0L = A = const. Anschaulich machen wir also den Kasten unendlich
tief, aber auch unendlich schmal.∫

dx V (x) = V0L = A = const

dh. V (x)→ Aδ(x) analog zur Rechnung aus (2.5)

R2 = η2 + ξ2 = L2

2
mV0

~2 = Lm

2~2A
L→0→ 0

⇒ Es existiert nur ein gebundener Zustand

κ = k tan(kL2 ) L→0→ k2L

2√
2m|E|

~
= m(E + V0)L

~

|E| = mL2

2~ (E2 − 2EV0 + V 2
0 ) ≈ mL2V 2

0
2~2

E = −mA
2

2~2
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Φ(x) = Nek|x| = Ne−
mA(x)

~2

(B) diskrete Rechnung:

I II

Abbildung 2.16: delta Potential

V (x) = −aδ(a)

freies Teichen x < 0 t > 0

ΦI(0) = ΦII(0) Stetigkeit

Φ′I(0) =? Stetigdifferenzierbarkeit

Die Stetigkeit der Ableitung der Wellenfunktion soll nun untersucht werden.
Dafür bilden wir das Integral über die Schrödingergleichung in einer ε-Umgebung
um null: ∫ ε

−ε
dx

[
− ~2

2m
d2ΦE(x)
dx2 − Aδ(a)ΦE(x)

]
= EΦE(0)

− ~2

2m
d2ΦE(x)
dx2

∣∣∣∣∣
ε

−ε
− Aδ(a)ΦE(x)) = EΦE(x)

ε→0⇒ Φ′E(ε)− Φ′E(−ε) = −2mA
~2 ΦE(0)

Wir sehen also, dass bei einem δ-Potential die Ableitung der Wellenfunktion
an dieser Stelle eine Unstetigkeit besitzt.
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3 Der Harmonische Oszillator

9.Vorlesung

3.1 Hamiltonoperator und dessen Spektrum

• klassisches Federpendel

Abbildung 3.1: klassisches Federpendel

V (x) = 1
2kx

2 = 1
2mω

2x2 mit ω = 2

√
k

m

• belibiges Potential (V (x) mit Minimum bei x0)

x

1
2mω

2(x− x0)2

V (x)

x0

Abbildung 3.2: Potential mit Taylorentwicklung bis x2

Ĥ = P̂ 2

2m + 1
2mω

2x̂2 für 1D



9.Vorlesung Quantentheorie Quantenmechanik

charakteristische Längenskala

l0 =
√

~
mω

Oszillatorlänge

nomierte Koordinaten / Impulse

ξ̂ = x̂

l0
π̂ = P̂

l0
~

[
x̂, P̂

]
= i~

⇒ Ĥ = ~ω
1
2
(
π̂2 + ξ̂2

)
symmetrisch in ξ̂, π̂[

ξ̂, π̂
]

=
[
x̂

l0
,
l0
~
P̂

]
= i Ĥ positiv

Ĥ
?= Â†Â︸ ︷︷ ︸

man kann eine solche Darstellung finden

〈ψ̂|Â†Â|ψ〉 = ||Â|ψ〉||2 ≥ 0

definiere

â = 1√
2
(
ξ̂ + iπ̂

)
â† = 1√

2
(
ξ̂ − iπ̂

)

nicht selbstadjungiert

â 6= â† ξ̂ = 1√
2
(
â+ â†

)
π̂ = 1√

2 i
(
â+ â†

)

Ĥ = ~ω
2
(
ξ̂2 + π̂2

)
= ~ω

4

((
â+ â†

)2
−
(
â− â†

)2
)

Ĥ = ~ω
2
(
â†â+ ââ†

)
Vertauschungsregeln

[
â, â†

]
= 1

2
[
ξ̂ + iπ̂

]
= 1

2(1 + 1) = 1[
â, â†

]
= 1 ⇒ ââ† = 1 + â†â
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9.Vorlesung Quantentheorie Quantenmechanik

aus Ĥ = ~ω
(
â†â+ 1

2

)

folgt E ≥ ~ω
2

da: 〈ψ|â†â̄|ψ〉 = ||â|ψ〉||2 ≥ 0)

Nun folgen die Eigenschaften von â und â†

i) Sei λ Eigenwert/Eigenvektor

â†â ist positiv, d.h â†â|λ〉 = λ|λ〉

0 ≤ ||â|λ〉|2 = 〈λ|â†â|λ〉 = λ 〈λ|λ〉︸ ︷︷ ︸
1

= λ

⇒ λ ≥ 0

ii)
falls λ Eigenwert von â†â dann ist λ + 1 ebenfalls Eigenwert mit Eigen-
zustand ∼ â†|λ〉

â†â(â†|λ〉) = â†ââ†|λ〉 = â†(â†â+ 1)|λ〉
= â†|λ〉) + â† (â†â|λ〉)︸ ︷︷ ︸

λ|λ〉

= (1 + λ)(â†|λ〉)

→ Zustand ∼ â†|λ〉 ist Eigenzustand von â†â zu λ + 1 (falls â†|λ〉 nicht
der Nullvektor ist)

iii)
falls λ ein Eigenwert von â†â daraus folgt λ− 1 ist Eigenwert mit Eigen-
zustand ∼ ( â|〉):
Beweis:

â†â(â|λ〉) = â†ââ|λ〉 = (ââ† − 1)â|λ〉
= ââ†â|λ〉)− â|λ〉

= (λ− 1)â|λ〉

→ Zustand ∼ â|λ〉 ist Eigenzustand von â†â mit λ − 1 (falls â|λ〉 nicht
der Nullvektor

→ â, â† sind Leiteroperatoren
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9.Vorlesung Quantentheorie Quantenmechanik

ââ â† â†

λ− 1 λ λ+ 1λ− 2 λ+ 2

Abbildung 3.3: Aufsteigeoperator

iv)
aus (i)-(iii)folgt:

λ = 0, 1, 2, 3, 4, .. λ = n ∈ N

Bew: Sei λ Eigenwert ≥0

â|λ〉 Eigenzustand zu λ− 1
â2|λ〉 Eigenzustand zu λ− 2 etc.

|λ− 1| = C1â|λ〉
|λ− 2| = C2â

2|λ〉
||ân+1|λ〉||2 = 〈λ|â+(n+1)â(n+1)|λ〉 = 〈λ− n|â†â︸ ︷︷ ︸

|Cn|2

|λ− n〉

= λ− n
|Cn|

≥ 0 → λ = 0, , 1, 2, .., n n ∈ N

λ = 0 λn = n

|n〉 = Cnâ
†|n− 1〉

1 = 〈n|n〉 = |Cn|2〈n− 1|â â†|n− 1〉
= |Cn|〈n− 1|â†â+ 1|n− 1〉

= |Cn|2 〈n− 1|n− 1〉︸ ︷︷ ︸
1

·n = n|Cn|2

y |cn|2 = 1
n

OBdA cn = 1√
n
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9.Vorlesung Quantentheorie Quantenmechanik

En = ~ω
(
n+ 1

2

)
n = 0, 1, 2, ...

â|n〉 =
√
n|n− 1〉

â†|n〉 =
√
n+ 1|n+ 1〉

Spektum der Energie, sowie bestimmende Gleichung der Auf- und Absteige-
operatoren

|n〉 = â†√
n
|n− 1〉

= â† · â†√
n
√
n− 1

|n− 2〉

Setzen wir dies fort, so folgt nach n schritten:

|n〉 = â†
n|0〉√
n!

3.2 Eigenfunktionen

Wir müssten eigentlich die Schrödingergleichung lösen

−~2

2m
d2

dx2φn(x) + m

2 ω
2x2φn(x) = ~ω

(
n+ 1

2

)
φn(x)

Aber: Die DGL ist im k-Raum genauso schwer: Schrödinger in Fourier-raum:
(im k-Raum)

~2k2φ̃(k)− m

2 ω
2 d2

dk2 φ̃n(k) = ~ω
(
n+ 1

2

)
φ̃n(k)

Grundzustand: (niedrigste Energie )

Einfacher: es muss ja gelten: â|0〉 = 0
1√
2
(
ξ̂ + iπ̂

)
|0〉 = 0 = 1√

2

(
x̂

l0
+ i l0

~
p̂

)
|0〉 = 0

⇒ x

l0
+ 6 yi · l0
6 ~

6 ~∂
6 yi∂x

= 0
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9.Vorlesung Quantentheorie Quantenmechanik

Ortsraum:(
x

l0
+ l0

∂

∂x

)
φ(x) = 0 Definiere neue Variablen: y := x

l0

→
(
y + d

dy

)
φ(y) = 0 ⇒ φ0(y) = −y φ0(y)

Einschub:

y′ = −x y = dy
dx∫ dy

y
= −

∫
x dx ln(y) = −x

2

2 y = e−x
2

2

Einsetzen und normieren mit: y = x

l0
und y = e−x

2
2

liefert: φ(x) = 1
4
√
πl20
· e
−x2

2l20

Oszillatorlänge= Ausdehnung des Grundzustandes

l
0
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9.Vorlesung Quantentheorie Quantenmechanik

Angeregte Zustände:

|n〉 = â†n√
n!
|0〉 â† = 1√

2

(
x2

P0
− i~P̂

l0

)

Ortsraum und y = x
l0
:

φn(y) = 1√
n!

(
1√
2

(
y − ∂

∂y

))n
φ0(y)

φn(y) = c · 1√
2n · n!

Hn(y)e−
y2
2

wobei Hn(y) definiert ist als:

Hn(y) ≡ (−1)n · ey2 · dn
dyn e

−y2

Hermite Polynome:

H0(y) = 1 H3(y) = 8y3 − 12y
H1(y) = 2y
H2(y) = 2y2 − 2
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9.Vorlesung Quantentheorie Quantenmechanik

Moden

φn(x) = 1√
2nn!
√
π l0

Hn

(
x

l0

)
e
−x2

2l20

3.3 kohärente Zustände des harmonischen Oszillators

Definition: (kohärente Zustände)

|α〉 =
∞∑
n=0

αn√
n!

e
−|α|2

2 |n〉 α ∈ C

dies ist kein Eigenzustand von H mehr und es ist normiert
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9.Vorlesung Quantentheorie Quantenmechanik

〈α|α〉 =
∞∑

n,m=0

α∗n√
n!

αm√
m!

e
−|α|2

2 e
−|α|2

2 〈n|m〉︸ ︷︷ ︸
δnm

=
∞∑
n=0

|α|2n

n!︸ ︷︷ ︸
e|α|2

e−|α|2 = 1

Leiteroperator:

â|α〉 =?

â|α〉 =
∞∑
n=0

αn√
n!

e
−|α|2

2 â|n〉︸ ︷︷ ︸
=
√
n|n−1〉

=
∞∑
n=1

αn√
(n− 1)!

e
−|α|2

2 |n− 1〉 Def: m = n− 1

= α
∞∑
m=0

αm√
m!

e
−|α|2

2 |m〉︸ ︷︷ ︸
|α〉

= α|α〉

⇒ â|α〉 = α|α〉

Rechtseigenzustand von â :

���
���

�XXXXXXX〈β|â = λ〈β| existiert nicht! Denn â ist nicht selbstadjungiert.

Eigenschaften:

i) â|α〉 = α|α〉 ⇒ 〈α|â† = α∗〈α|

ii) 〈α|α̂†â|α〉 = α∗ 〈α|α〉︸ ︷︷ ︸
=1

α = |α|2
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10. Vorlesung Quantentheorie Quantenmechanik

Das Quadrat davon ist:

〈α| n̂2 |α〉 = 〈α |â† â · â†︸ ︷︷ ︸
â† â+1

â |α〉

= 〈â† â† ââ |α〉+ 〈α |â†â |α〉

= |α|4 + |α|2

10. Vorlesung Wiederholung: kohärente Zustände
Zur Erinnerung dies sind die kohärenten Zustände:

|α〉 =
∞∑
n=0

αn

Ĺ
√
n!
e−

1
2 |α|

2|n〉

Wie wir sehen sind diese bereits normiert

〈α|α〉 =
∞∑
n,m

αxnαym√
n!m!

e−|α|
2 〈n, n〉︸ ︷︷ ︸

δnm

=
∞∑
n,m

|α|2n

n! e−|α|2 = 1

i) Wir betrachten nun einige Eigenschaften der kohärenten Zustände.Die
kohärenten Zustände sind Eigenfunktionen des Vernichtungsoperators/
Reduzierungsoperator

α̂|α〉 = α|α〉 〈α|â† = α∗〈α|

Es existieren aber nicht:

��
���

��〈β|â = β〈β| ���
���

�
â†|β〉 = ˆβ|β〉

ii)

〈α|â†â|α〉 = ||â|α〉||2 = |α|2 = 〈n̂〉 Def.= 〈â†â〉

〈n̂2〉 = 〈â†ââ†â〉 = 〈â†(â†â+ 1)â〉 = |α|4 + |α|2

〈∆n̂2〉 = |α|2 = 〈n̂〉
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10. Vorlesung Quantentheorie Quantenmechanik

Dies ist die Poissonstatistik also eine Statistik zufälliger unabhängiger Er-
eignisse.

Ende Wiederholung

iii)

〈x̂〉 = l0〈ξ̂〉 = l0√
2
〈â† + â〉

= l0√
2
[
〈α|â†|α〉+ 〈α|â|α〉

]
l0√
2

[α∗ + α]︸ ︷︷ ︸
2Re(a)

=
√

2l0 Re(α)

〈P̂ 〉 = ~
l0
〈π̂〉 = ~√

2l0i
〈â† − â〉 = ~

l0

√
2 Im(α)

iv)
Schwankungsquadrat:

⇒ 〈α|∆x̂2|α〉 = l2o〈∆ξ̂2〉 = l20
2

〈α|∆p̂2|α〉 = ~
l20
〈∆π̂2〉 = ~2

2l20

⇒ (∆x̂2)〈∆p̂2〉 = ~2

4 Also |α〉 sind Zustände minimaler Unschärfe

v) Wie sieht die Zeitentwicklung (wende Û(t, t0) an) der kohärenten Zustände aus?

|ψ(t = 0)〉 = |α〉 = e− 1
2 |α|

2
∞∑
n=0

αn√
n!
|n〉︸︷︷︸

Eigen-
zustand
von Ĥ

|ψ(t)〉 = e− 1
2 |α|

2
∞∑
n=0

αn√
n!

e−iω(n+ 1
2 )t|n〉 mit e− i

~Ent = e−iω(n+ 1
2 )t

= e− iω
2 t e− 1

2 |α|
2
∞∑
n=0

(αe−iωt)n√
n!

|n〉︸ ︷︷ ︸
Nur Phasenänderung zu vorher
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10. Vorlesung Quantentheorie Quantenmechanik

Mit |αe−iωt| = |α| folgt:

|ψ(t)〉 = e− 1
2 iωt|αe−iωt︸ ︷︷ ︸

≡α(t)

〉

Also wieder ein kohärenter Zustand: Einmal kohärenter Zustand immer kohä-
renter Zustand.

Weiterhin können wir sehen:

〈x̂(t)〉 = 〈ψ(t)|x̂|ψ(t)〉 =
√

2l0 Re
(
αe−iωt

)
〈p̂(t)〉 = 〈ψ(t)|p̂|ψ(t)〉 =

√
2~
l0

Im
(
αe−iωt

)
Spezialfall α = α∗α0 Also ist α reell

〈x̂(0)〉 =
√

2l0α0 〈x̂(t)| =
√

2l0 cos(ωt)

〈p̂(0)〉 = 0 〈p̂(t)〉 =
√

2 ~
l0

sin(ωt)

1
2

ω

D̂
(α

)

π̂

ξ̂

Abbildung 3.4: mit kohärente Zustände

Wir sehen, dass in den kohärenten Zuständen der quantenmechanische harmo-
nische Oszillator eine Kreisbewegung beschreibt, sehr analog zum klassischen
harmonischen Oszillator im Phasenraum. Zusammen mit der minimalen Un-
schärfe erkennen wir also eine große Analogie zwischen den klassischen und
quantenmechanischen Pendants.

82



10. Vorlesung Quantentheorie Quantenmechanik

vi)
kohärente Zustände sind nicht orthogonal (siehe Aufgabe)

|α|β〉 = eα∗β−
|α|2

2 −
|β|2

2

|〈α|β〉|2 = e−|α−β|2 = e(α∗β+β∗α−α∗α−β∗β)

vii)
Sind übervollständig

1
π

∫
dα2 α2|α〉〈α| = 1

π

∫
du

∫
dv |α〉〈α| = 1

u = Re(α) v = Im(α)

|α = 0〉 =? =Grundzustand , da |α〉︸︷︷︸
0

= ∑∞
n=0

0n√
n!e

|0|2
2 |n〉

⇒ 00 = 1 einziger Term, also: |α = 0〉 = 00 e0|0〉 = 1|0〉

viii)
kohärenter Verschiebungsoperator (Ü,A)

|α〉 = D̂(α)|0〉 = eα∗â−αâ†|0〉

D̂(α)−1 = D̂(α)†

D̂(α)† = eÂt = eαâ†−α∗â = e−Â

D̂(α)†︸ ︷︷ ︸
D̂−1

D̂(α) = eÂeÂ = 1

3.3.1 Baker-Hausdorff Theorem

eαeβ = eα+β wenn gilt [α, β] = 0

Wenn
[
Â, B̂

]
6= 0 aber mit

[
Â,
[
Â, B̂

]]
=
[
B̂,
[
Â, B̂

]]
= 0.

dann gilt:

eÂeB̂ = eÂ+B̂+ 1
2 [Â,B̂] = eÂ+B̂e 1

2 [Â,B̂]
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3.4 Die Sommerfeldsche Polynommethode

Wir wollen nun noch einmal die Lösung des harmonischen Oszillators finden, nun
aber direkt mit der Lösung der Schrödingergleichung. Dies bewerkstelligen wir mit-
hilfe der Sommerfeldschen Polynommethode:

i) Wir überführen zuerst die Differentialgleichung selbst in eine einheitenlose
Form, indem wir neue Parameter einführen.

ii) Wir lösen die Differentialgleichung in den Grenzfällen der Variablen, üblicher-
weise null und unendlich.

iii) Wir setzen den Produktansatz der Grenzfall-Lösungen mit einer Restfunktion
in die Differentialgleichung ein und erhalten eine weitere Differentialgleichung
für die Restfunktion.

iv) Aus den Bedingungen an das Grenzwertverhalten und Normierbarkeit lässt
sich die Form der Restfunktion bestimmen und weitere Bedingungen an deren
Aussehen stellen.

Beginnen wir also:

i) Einheitenlose Parameter:

d2

dx2 ΦE(x) + 2m
~2 (E − 1

2mω
2x2)ΦE(x) = 0

y = x

l0
ε = 2E

~ω
l0 =

√
~
mω

⇒ d2

dy2 ΦE(y) + (���
kann vernachlässigt werden
ε− y2)ΦE(y) = 0

Lösungen müssen nomierbar sein (dh. müssen im unendlichen verschwinden)
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ii) Asymptotisches Verhalten bei |y| → ∞:

Φ′′ − y2Φ = 0

Ansatz:Φ = e−
y2
2 Φ′ = −ye−

y2
2

Φ′′ = −e−
y2
2 + y2e−

y2
2

⇒ Φ′′ − y2Φ = −e−
y2
2︸ ︷︷ ︸

0

+��
��

y2e−
y2
2 −��

��
�

−y2e−
y2
1
y→∞→ 0

iii) Ansatz für die Gesamtlösung:
Wählen einen Polynomansatz für F(y). Das ist möglich, da F(y) im unendli-
chen langsamer wachsen muss, als eine Exponentialfunktion

Φ(y) = F (y)e−
y2
2

F (y) =
∞∑
n=0

cny
n

einsetzen in DGL

Φ′′ = F ′′(y)e−
y2
2 + 2F ′(y)(−y)e−

y2
2 + y2F (y)e−

y2
2 − F (y)e−

y2
2

Φ′′ + (ε− y2)Φ = F ′′(y)− 2yF ′(y) + (ε− 1)F (y)

⇒
∑
n

n(n− 1)cnyn−2 − 2
∑
n

ncny
n + (ε− 1)cnyn = 0

Vergleich der Potenz von y∑
n

[(n+ 2)(n+ 1)cn+2 − 2ncn + (ε− 1)cn︸ ︷︷ ︸
0

]yn = 0
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x

V (x) = 1
2mω

2x̂2

V

Abbildung 3.5: Potential

⇒ cn+2 = 2n+ 1− ε
(n+ 2)(n+ 1)cn

iv) Rekusionsbedingung:
a) gerade koeffizienten ⇒ symmetrische Lösung
b)ungerade koeffizienten ⇒ antisymetrische Lösung
symmetrische Lösung

c1 = c3 = c5 = ... = 0

c2 = 1− ε
2 c0 ⇒ cn+2 = 2n+ 1− ε

(n+ 2)(n+ 1)cn

Die Bedingung der Normierbarkeit erfordert, dass alle ab einem gewissen m die Reihe
abbricht, da sonst unendlich viele Terme aufsummiert werde. Nach der Rekursions-
vorschrift reicht dafür ein cm = 0 für n gerade aus, da dann alle weiteren Terme
verschwinden. Es muss also der Zähler der Rekursionsvorschrift verschwinden. Da-
für muss ε = 2n+ 1 setzt man dies in die Definition so folgt direkt die quantisierte
Energie

⇒ Em = ~ω
2 (2m+ 1) = ~ω(m+ 1

2)

antisymetrische Lösung analog

Φm(g) = Polynom e−
y2
2 ∼ Hm(y)e−

y2
2
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Also ein Polynom, welches proportional zu den hermiteschen Polynomen ist.
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4 Beziehung zwischen klassischer
und Quantenmechanik Ehrenfest
Theorem und klassischer Grenzfall

11. Vorlesung

4.1 Vergleich Klassik/ Quanten-mechanik

klassische Mechanik: Quantenmechanik:

Massenpunkt: Wellenfunktion (Zustand):
~r(t), ~P (t) ψ(~r, t)

deterministisch Wahrscheinlichkeitsdichte
|ψ(~r, t)|2 im Ortsraum
|ψ̃(~k, t)|2 im Impulsraum

klassisches statistisches Ensemble
(zb statistisch schwankende Kraft)
x̄ =

∫
dx w(x)x 〈x̂〉 =

∫
dx ψ∗(x)xψ(x) =

∫
dx |ψ(x)|2

p̄ =
∫

dp w(p)p 〈p̂〉 = ~
∫

dk ψ̃(k)kψ̃(k) = ~
∫

dk |ψ̃(k)|2

Unschärferelation
∆p = 0 p = p0 deterministisch 〈∆x2〉〈∆p2〉 ≥ ~2

4
〈∆p2〉 = 0 ⇒ 〈∆x2〉 =∞

Beispiel: z.B. ebene Welle ψk(x) ∼ eikx

siehe Abbildung 4.1a ,4.1b und 4.3a siehe Abbildung 4.2a,4.2b und 4.3b
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x̄
x

∆x
W (x)

(a) Wahrscheinlichkeitsvertei-
lung von x

p̄
p

W (p)
∆p

(b) Wahrscheinlichkeitsvertei-
lung von p

Abbildung 4.1: Wahrscheinlichkeitsverteilung

x̂ x

∆x

(a) Ortsunschärfe

∆k

k̂
(b) Impulsunschärfe

Abbildung 4.2: Unschärfe

V

xEkin = max
Epot = 0

Epot = maxEpot = max
Ekin = 0 Ekin = 0

V (x) = 1
2mω

2x2

(a) klassisches Potential

X

〈p̂〉 = 0
〈x̂〉 = xmax 〈x̂〉 = xmax

〈p̂〉 = 0

〈p̂〉 = pmax
〈x̂〉 = 0

(b) quantenmechani-
sches Potential mit
unschärfe

Abbildung 4.3: klassisches und quantenmechanisches Potential
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klassischen Mechanik: Quantenmechanik:

Hamiltonfunktion H(q, p) Schrödingergleichung

i~ ∂
∂t
|ψ(t)〉 = Ĥ|ψ(t)〉

ṗ = −∂H
∂q

= {p,H}p

q̇ = ∂H

∂p
= {q,H}p

d

dt
〈f(x̂, p̂, t)〉 = d

dt
〈ψ(t)|f(q̂, p̂, t)|ψ(t)〉

= d

dt
〈ψ(t)|f |ψ(t)〉

+ 〈ψ(t)|f( d
dt
|ψ(t)〉) + 〈∂f

∂t
〉

d

dt
f(q, p, t) = ∂f

∂t
+ {f,H}p d

dt
〈f̂〉 = 〈∂f̂

∂t
〉 − i

~
〈[f̂ , Ĥ]〉

{a, b}p =
∑
i

{
∂a

∂qi

∂b

∂pi

}
−
{
∂a

∂pi

∂b

∂qi

}
{·, ·}p → − i

~
[·, ·]

{f,H} =
{
∂f

∂q

∂H

∂p
− ∂f

∂p

∂H

∂q

}
= q̇

∂f

∂q
+ ṗ

∂f

∂p
[a, b] = ab− ba {a, b} = ab+ ba

{·, ·} := Antikommutator

4.2 Ehrenfest-Gleichungen

Ĥ = p̂2

2m + V (x̂)
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d

dt
〈x̂〉 = − i

~
〈[
x̂, Ĥ

]〉

= − i
~

〈[
x̂,

p̂2

2m

]〉
+ 〈[x̂, V (x̂)]〉

= − i
2~m

〈[
x̂, p̂2

]〉
︸ ︷︷ ︸

2i~〈p̂〉

1. Ehrenfestgleichung d
dt〈x̂〉 = 1

m
〈p̂〉

Das Ergebnis überrascht uns nicht, da ja (dx
dt

= v, p
m

= v) aus der klassischen
Mechanik bekannt ist

d

dt
〈p̂〉 = − i

~
〈[p̂, Ĥ]〉 = − i

~
〈[p̂, V (x̂)]〉

Aber was ist der Kommutator vom Impuls mit einem allgemeinen, von x abhängigen
Potential

[p̂, V (x̂)]|ψ〉 =
[
~
i
∂

∂x
, V (x)

]
ψ(x)

= ~
i
∂

∂x
V (x)ψ(x)− V (x)

(
~
i
∂

∂x

)
ψ(x)

= ~
i

(
∂V (x)
∂x

)
ψ(x)

2. Ehrenfestgleichung d

dt
〈p̂〉 = −

〈
∂V (x)
∂x

〉
= 〈F (x)〉

Aber

〈F (x)〉 6= F (〈x〉)
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klassische Näherung:

d

dt
〈p̂〉 = 〈∇V (~r)〉 6= ∇V (〈~̂r〉)

d

dt
〈~̂r〉 = 〈p̂〉

m

Wann gilt zumindest approximativ die Gleichheit?
⇒ Taylorentwicklung von

~F (~r) = −∇V (~r)
in ~̂r − 〈~̂r〉

In 1D:

F (x̂) = F (〈x̂〉) + F ′(x̂)|x=〈x〉 · (x̂− 〈x〉) + 1
2! · F

′′(x)|x=〈x〉 · (x̂− 〈x〉)2 + ...

〈F (x̂)〉 = F (〈x̂〉) + 0 + 1
2! · F

′′(x)|x=〈x〉 · 〈( x̂− 〈x̂〉︸ ︷︷ ︸
〈4x̂2〉

)2〉+ ...

Also 〈F (x̂)〉 ∼= F (〈x̂〉) falls 〈4x̂2〉 klein

Die beiden Ehrenfest-Gleichungen:

1.Ehrenfest-Gleichung: d〈x̂〉
dt = 〈p̂〉

m

2.Ehrenfest-Gleichung: d〈p̂〉
dt = F (〈x̂〉)
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5 Der Drehimpuls in der
Quantenmechanik

5.1 Elementare Eigenschaften

klassische Mechanik ~L = ~r × ~p

Quantenmechanik [x̂i, p̂j] = i ~ δi,j
Li = εijk xj pk (εijk := Levi Civita)

Wir benutzen die Einstein’sche-Summenkonvention und können auf Symmetrisieren
verzichten.

L̂i = εijk x̂j p̂k = εijk p̂k x̂j

~̂L = ~̂r × ~̂p

L̂x = ŷp̂z − ẑp̂y
L̂y = ẑp̂x − x̂p̂z
L̂z = x̂p̂y − ŷp̂x

In Ortsdarstellung gilt:

~̂L = −i~~r ×∇
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elementare Vertauschungsregeln:

[
L̂x, L̂y

]
= [ŷp̂z − ẑp̂y, ẑp̂x − x̂p̂z]
= ŷp̂x · (−i~) + i~ · x̂p̂y
= i~ · (x̂p̂y − ŷp̂x)
= i~L̂z

Analog folgen die anderen:

[L̂x, L̂y] = i~ · L̂z
[L̂y, L̂z] = i~ · L̂x
[L̂z, L̂x] = i~ · L̂y

⇒ [L̂i, L̂j] = i~ · εijkL̂k (zyklische Vertauschung)

Im folgenden benutzen wir die Einstein’sche-Summenkonvention.

~̂L = L̂x~ex + L̂y~ey + L̂z~ez

~̂L · ~̂L = L̂2 = L̂2
x + L̂2

y + L̂2
z = L̂j · L̂j

[L̂i, L̂2] = [L̂i, L̂jL̂j] = L̂j · [L̂i, L̂j] + [L̂i, L̂j] · L̂j
= i~ εijk︸︷︷︸

anti-
symmetrisch

· (L̂j · L̂k + L̂k · L̂j)︸ ︷︷ ︸
symmetrisch

≡ 0

[L̂i, L̂2] = 0

Es existiert ein gemeinsamer Satz von Eigenzuständen zwischen Lx und L2, zwi-
schen Ly und L2 etc. Dies darf aber nicht zu der Annahme verführen, dass damit
auch Lx und Ly eine Basis teilen. Die Basen von L2 und den anderen sind aufgrund
von Entartung nicht eindeutig und damit auch nicht deckungsgleich.
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11. Vorlesung Quantentheorie Quantenmechanik

allgemeine Unschärferelation:

〈M L̂2
x〉 · 〈M L̂2

y〉 ≥
~2

4 |〈L̂z〉|
2

d.h. außer für 〈L̂z〉 = 0
können L̂x und L̂y nicht gleichzeitig gemessen werden.

5.2 Spektrum des Drehimpulses

z.B.
[
L̂z, L̂

2
]

= 0
was sind Eigenwerte und Eigenzustände von L̂z und L̂2 ?

Leiteroperatoren:

L̂± ≡ L̂x ± i L̂y

L̂†+ = L̂−

[L̂z, L̂+] = [L̂z, L̂x + iL̂y]

= iL̂y − ii~ · L̂x = ~(L̂x + iL̂y) = ~L̂+

[L̂z, L̂+] = ~L̂+

analog: [L̂z, L̂−] = −~L̂+

[L̂2, L̂±] = [L̂2, L̂x ± i L̂y] = 0
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[L̂2, L̂±] = 0

Spektrum von L̂z:

L̂z |ψm〉
!= ~m |ψm〉

m =?

|ψm〉 =?

betrachten L̂+ |ψm〉

L̂z L̂+ |ψm〉 = (L̂+ L̂z + ~ L̂x) |ψm〉 = ~ (m+ 1) L̂x |ψm〉

L̂+ · |ψm〉 ∝ |ψm+1〉 Aufsteigeoperator
analog : L̂− · |ψm〉 ∝ |ψm−1〉 Absteigeoperator

12.Vorlesung 30.11.16

5.2.1 Spektrum von L̂2

[
L̂z, L̂

2
]

= 0
|ψm〉 = |ψkm〉

k sind Eigenwerte von L̂2

L̂2 kommutiert mit den Leiteroperatoren (L±) : [L2;L±] = 0
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k2 =? L̂2|ψkm〉 = ~2k2|ψkm〉
L̂2L̂±|ψkm〉 = L̂±L̂

2|ψkm〉 = ~2k2L̂±|ψkm〉

Die Eigenzustände |ψkm〉 haben denselben Eigenwert ~2k2 für alle
m(m± 1,m± 2, ...)

〈ψkm| L̂2︸︷︷︸
~2k2

|ψkm〉 = 〈L̂2
x〉︸ ︷︷ ︸
≥0

+ 〈L̂2
y〉︸ ︷︷ ︸
≥0

+ 〈L̂2
z〉︸ ︷︷ ︸
≥0

≥ ~2m2

⇒ k2 ≥ m2

k vorgegeben: |m| ≤ k
Es existiert ein maximaler Wert (≤ k) und minimalen Wert (≥ (−k)) von m
k legt also min/max von m fest.

L̂+|ψkmmax〉 = 0
L̂−|ψkmmin〉 = 0

Nun wollen wir L̂2 durch Leiteroperatoren L̂+ und L̂− und L̂z ausdrücken.

L̂+L̂− =
(
L̂x + iL̂y

) (
L̂x − iL̂y

)
= L̂2

x + L̂2
y + iL̂yL̂x − iL̂xL̂y

= L̂2
x + L̂2

y︸ ︷︷ ︸
L̂2−L̂2

z

+~L̂z = L̂2 − L̂2
z + ~L̂z

L̂2 = L̂+L̂− + L̂2
z − ~L̂z
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bzw. L̂2 = L̂±L̂∓ + L̂2
z ∓ ~L̂z

L̂2|Ψkm〉min =
(
L̂+L̂− + L̂2

z − ~L̂z
)
|Ψkm〉min

= ~2
(
m2

min −mmin
)
|Ψkm〉min

~2k2|Ψkm〉min = ~2mmin (mmin − 1) |Ψkm〉min

Nun können wir k2 ablesen.

k2 = mmin(mmin − 1)

L̂|Ψkm〉max =
(
L̂−L̂+ + L̂2

z + ~L̂z
)
|Ψkm〉max

k2 = mmax(mmax + 1) != mmin(mmin − 1)

−mmax = mmin

Vereinbarung: mmax = l ⇒ k2 = l(l + 1)

Eigenwertgleichungen von L̂2 und L̂z:

L̂2|Ψlm〉 = ~2l(l + 1)|Ψlm〉
L̂z|Ψlm〉 = ~m|Ψm〉
−l ≤m ≤ +l

Wir wissen dabei noch nicht, was die Zahlen m und l bedeuten, werden diese spä-
ter aber als Drehimpulsquantenzahl l (Form des Atomorbitals) und magnetische
Quantenzahl m (raumliche Orientierung des Drehimpulses) identifizieren.

m =? l =?
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L±|ψlm〉 = α±lm|ψlm±1〉

||L̂±〉ψlm〉|2 = 〈ψlm|L∓L±|ψlm〉

= 〈ψlm|L̂2 − L̂2
z ∓ ~L̂z|ψlm〉

= ~2l(l + 1)− ~2m2 ∓ ~2m

= ~2[l(l + 1)−m(m∓ 1)] = |α±lm|2

L̂±|ψlm〉 = ~
√
l(l + 1)−m(m∓ 1)|ψlm±1〉

mmax = l mmin = −l

l kann entweder

l = 0, 1, 2, 3 oder l = 1
2 ,

3
2 ,

5
2 , ...

In jedem Fall:

m =

−l, (l − 1), ..,−1, 0, 1, ..., (l − 1), l −l − (l − 1), ...,−1
2 ,

1
2 , ..., (l − 1), l

gerade ungerade
l

−l

2
1

−1
−2

L̂+

L̂−

l

−l

1
2

−1
2
−3

2

3
2

0

Abbildung 5.1: Drehimpuls
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diskreter Drehimpuls:
Grenzfall m ' −l + n und n << l

L̂±|ψlm〉 = ~
√
l(l + 1)− (−l + n)(−(n+ 1)|ψlm±1〉)

L̂±|ψlm〉 = ~
√
l2 + l − l2 + l − n2 − n+ 2ln|ψlm±1〉

L̂±|ψlm〉 = ~
√

2l(l + 1)− n(n+ 1)|ψlm±1〉

Dabei ist n(n+1) unter der Wurzel ≈ 0 da n«l

1
~
√

2l
L̂+︸ ︷︷ ︸

â†

|ψlm〉 =
√
n+ 1|ψlm+1〉

' â†|n〉 = Ĺ
√
n+ 1|n+ 1〉

5.3 Drehimpuls in Ortsdarstellung

r̂ → ~r ~̂p = −i~∇

Li = εjklx̂j p̂k

Lj = −i~εjklxk
d

dxl
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Polarkoordinaten:

ϑ

ϕ

~er

~eϕ
~eϑ

x

y

z

ρ
r

Abbildung 5.2: Kugelkoordinaten

x = r sin(ϑ) cos(ϕ)
y = r sin(ϑ) sin(ϕ)
z = r cos(ϑ)

Einheitsvektor in krummlinigen Koordinaten

~eξ = 1
bξ

∂~r

∂ξ
bξ

∣∣∣∣∣∂~r∂ξ
∣∣∣∣∣

~r = r
(

sin(ϑ) cos(ϕ), sin(ϑ) sin(ϕ), cos(ϑ)
)T

~er = sin(ϑ) cos(ϕ)~ex + sin(ϑ) sin(ϕ)~ey + cos(ϑ)~ez
~eϑ = cos(ϑ) cos(ϕ)~ex + cos(ϑ) sin(ϕ) ~ey − sin(ϑ)~ez
~eϕ = − sin(ϕ)~ex + cos(ϕ)~ey

~r = r · ~er

101



13.Vorlesung Quantentheorie Quantenmechanik

∇ = ~er
∂

∂r
+ ~eϑ

1
r

∂

∂ϑ
+ ~eϕ

1
r sin(ϑ)

∂

∂ϕ

~̂L = r~er ×
(
~
i∇

)
= −i~

[
~eϕ

∂

∂ϑ
− ~eϑ

1
sin(ϑ)

∂

∂ϕ

]

L̂x = ~ex ~̂L = i~
(

sin(ϕ) ∂
∂ϑ

+ cos(ϕ) cot(ϑ) ∂
∂ϕ

)

L̂y = ~ey ~̂L = i~
(
− cos(ϕ) ∂

∂ϑ
+ sin(ϕ) cot(ϑ) ∂

∂ϕ

)

L̂z = ~ez ~̂L = −i~ ∂

∂ϕ

L̂2 = ~̂L · ~̂L

Vorsicht Eigenvektoren ~er, ~eϑ, ~eϕ sind vom Ort abhängig
z.B.

∂

∂ϕ
~eϑ = cos(ϑ)~eϕ

⇒ ...⇒ Übungsaufgabe

L̂2 = −~2
[

1
sin(ϑ)

∂

∂ϑ
sin(ϑ) ∂

∂ϑ
+ 1

(sin(ϑ))2
∂2

∂ϕ2

]

Laplaceoperator in Kugelkoordinaten

∆ = 1
r2

∂

∂r
r2 ∂

∂r︸ ︷︷ ︸
Radialanteil

− L2

~2r2︸ ︷︷ ︸
Rotations-

anteil

13.Vorlesung
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5.4 Eigenfunktionen des Drehimpulses

L̂j, L̂
2 sind nur Funktionen welche von ϕ, ϑ abhängen

Wellenfunktion im R3 : L2(R3)

R3 ←→ R+ ⊗ S2

Mit R+:= Abstand r und S2:= Winkel ϑ,ϕ

Die Eigenfunktionen von L̂j, L̂2 sind sinnvollerweise im L2(S2) definiert

Skalarprodukt auf S2:

〈ψ1|ψ2〉 =
∫

dΩ ψ∗1(ϑ, ϕ)ψ2(ϑ, ϕ)

=
∫ π

0
dϑ sin(ϑ)

∫ 2π

0
dϕ ψ∗1(ϑ, ϕ)ψ2(ϑ, ϕ)

Zuerst untersuchen wir das Spektrum von Lz:

L̂zψlm(ϑ, ϕ) = −i~ ∂

∂ϕ
ψlm(ϑ, ϕ) = ~mψlm(ϑ, ϕ)

⇒ ψlm(ϑ, ϕ) = eimϕulm(ϑ)

ψlm(ϑ, ϕ+ 2π) != ψlm(ϑ, ϕ)

⇒ eim2π = 1

⇒ m ∈ Z

Für den Bahndrehimpuls kommen nur ganzzahlige Werte von l in Frage

Nun untersuchen wir das Spektrum von L2:[
L̂z, L̂

2
]

= 0

L̂2
lmψlm(ϑ, ϕ) = −��~2

[
1

sin(ϑ)
∂

∂ϑ
sin(ϑ) ∂

∂ϑ
+ 1

sin2(ϑ)
∂2

∂ϕ2

]
ψlm(ϑ, ϕ)

=��~2l(l + 1)ψlm(ϑ, ϕ)
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⇒
[

1
sin(ϑ)

∂

∂ϑ
sin(ϑ) ∂

∂ϑ
− m2

sin2(ϑ) + l(l + 1)
]
ulm(ϑ) = 0

Koordinatentransformation ξ = cos(ϑ) ⇒ dξ = − sin(ϑ)dϑ

∂

∂ξ

(
1− ξ2

) ∂

∂ξ
ulm +

(
l(l + 1)− m2

1− ξ2

)
ulm = 0

Müssen nun diese Gleichung lösen wobei −1 ≤ ξ ≤ 1

i)
Spezialfall m = 0
Dies ergibt die Legendre Differentialgleichung:

d

dξ
(1− ξ2) d

dξ
ulm + l(l + 1)ulm = 0

Das ist eine Differentialgleichung 2. Ordnung ⇒ man bekommt 2 Lösungen
wobei nur eine im L2(S2) liegt

ulm(ξ) = Pl(ξ) = Pl (cos(ϑ))

Legendre-Polynome:

Pl(ξ) ≡
1

2l l!
∂l

∂ξl

(
ξ2 − 1

)l
Beweis durch Einsetzen:
Grad von l

Pl(−ξ) = (−1)lPl(ξ) l gerade⇒ symetrisch

l ungerade⇒ antisymmetrisch

P0(ξ) = 1

P1(ξ) = ξ

P2(ξ) = 3
2ξ

2 − 1
2

P3(ξ) = 5
2ξ

3 − 3
2ξ
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Eigenschaften:

a) Orthogonalität

∫ 1

0
dξ Pl(ξ)Pl′(ξ) = 2

2l + 1δll
′

b) Symmetrie

Pl(−ξ) = (−1)l Pl(ξ)

c) Rekursionen

(l + 1)Pl+1 = (2l + 1) ξ l Pl − Pl−1(
1− ξ2

) ∂

∂ξ
Pl = −l ξ Pl + l Pl−1

d) erzeugende Funktion

1√
1 + s2 − 2s · cos(ϑ)

=
∞∑
l=0

Pl (cos(ϑ)) sl

Pl(cos(ϑ)) = ∂l

∂sl
(...)

∣∣∣
s=0

ii)
m 6= 0
Lösungen sind die zugeordneten Legendrepolynome

0 ≤ m ≤ l Pm
l (ξ) = (−1)m (1− ξ2)m2 ∂m

∂ξm
Pl(ξ)

P−ml (ξ) = (−1)m (l −m)!
(l +m)! P

m
l (ξ)

l kann maximal m sein da man maximal l mal differenzieren kann bis Null
raus kommt
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Zusammenfassung Kugelflächenfunktionen:

ψlm(ϑ, ϕ) = Ym
l (ϑ, ϕ) =

√√√√2l + 1
4π

(l −m)!
(l +m)! Plm(cos(ϑ) eimϕ

L̂zYm
l (ϑ, ϕ) = ~mYm

l (ϑ, ϕ)

L̂2Ym
l (ϑ, ϕ) = ~2l(l + 1)Ym

l (ϑ, ϕ)

Orthonormalität (auf Kugeloberfläche r=1)

∫
dΩ Ym

l
∗(ϑ, ϕ) Ym′

l′ (ϑ, ϕ) =
∫ π

0
dϑ sin(ϑ)

∫ 2π

0
dϕ Ym

l
∗(ϑ, ϕ) Ym′

l′ (ϑ, ϕ) = δll′δmm′

f(ϑ, ϕ) =
∞∑
l=0

l∑
m=−l

cmlYm
l (ϑ, ϕ)

∫
dΩ Ym′

l′
∗(ϑ, ϕ) f(ϑ, ϕ) = cm′l′

Y0
0(ϑ, ϕ) = Ĺ

√
1

4π

Y−1
1 (ϑ, ϕ) = 1

2

√
3

2π sin(ϑ) · e−iϕ

Y0
1(ϑ, ϕ) =

√
3

4π cos(ϑ)

Y1
1(ϑ, ϕ) = 1

2

√
3

2π sin(ϑ)e−iϕ

Y0
l (ϑ, ϕ) =

√
2l + 1

4π Pl(cos(ϑ))
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4 = 1
r2

∂

∂r
r2 − L̂2

~2r2

~p2

2m = − ~2

2m4

Was passiert wenn man ein Problem gelöst hat und dann das System dreht? Was
passiert mit den Eigenfunktionen?

5.5 Translation und Rotation

5.5.1 Translation im Ortsraum

Es gibt 2 Möglichkeiten zum Verschieben

x

y

~r′ = ~r + ~a

~a

~r

(a) aktive Translation

x

y

x′

y′

~r

~a

~r
′ =
~r

+
~a

(b) passive Translation

Abbildung 5.3: Translation

Frage

|ψ〉 ?→ |ψ′〉 = Û |ψ〉 Û =?

Ortsdarstellung (passive Interpretation):

ψ(~r) ψ′(~r) = ψ(~r + ~a) = Ûψ(~r)
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Taylorreihe:

ψ(~r + ~a) = ψ(~r) + ~a∇ψ(~r) + 1
2! (~a∇)2 ψ(~r) + ...

=
(

1 + ~a∇+ 1
2! (~a∇)2 + 1

3! (~a~∇)3 + ...
)
ψ(~r)

= e~a∇ ψ(~r)

= e− i
~ ~a~̂p ψ(~r)

Û(~a) = e− i
~ ~a~̂p

Û−1(~a) = Û †(~a) = e i~~a~̂p = Û(−~a)

i) Abel’sche Gruppe:

Û(~a) Û(~b) = Û(~b)Û(~a)
= Û(~a+ ~b)

ii) infinitesimale Verschiebung:

Û(δ~a) ∼= 1− i
~
δ ~a~̂p ~̂p := Generator der Translation

iii) Falls gilt Û(~a)ĤÛ−1(~a) = Ĥ dann ist das System invariant unter einer Trans-
lation von ~a
Beispiel (Potential):

~a

iv)

falls Û(~a)ĤÛ−1(~a) = Ĥ ∀~a

⇔ [Ĥ, ~̂p] = 0
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⇔ ~̂p ist eine Erhaltungsgröße d.h. 〈E| ~̂p |E〉 = const

Entspricht dem klassischen Noetertheorem

5.5.2 Rotation

x

y
~r

~r

ϑ

(a) aktive Rotation

x

y

x′

y′

ϑ
ϑ

(b) passive Rotation

Abbildung 5.4: Rotation

in 2D:

passiv:
(
x′

y′

)
=
(

cosϑ − sinϑ
sinϑ cosϑ

)
︸ ︷︷ ︸

D(ϑ)

(
x
y

)

aktiv:
(
x′

y′

)
=
(

cosϑ sinϑ
− sinϑ cosϑ

)
︸ ︷︷ ︸

D(−ϑ)=D−1(ϑ)

(
x
y

)

in 3D:
Rotation um die z-Achse

Dz(ϑ) =

cosϑ − sinϑ 0
sinϑ cosϑ 0

0 0 1


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infinitesimale Drehung |ϑ| << 2π ϑ = ε

Dz(ε) =

1 −ε 0
ε 1 0
0 0 1



Dx(ε) =

1 0 0
0 1 −ε
0 ε 1



Dy(ε) =

 1 0 ε
0 1 0
−ε 0 1



Dx(ε) Dy(ε)−Dy(ε) Dx(ε) =

 0 −ε2 0
ε2 0 0
0 0 0

 = Dz(ε2)− 1 6= 0

⇒ Rotationen sind nicht kommutativ! Frage nun:

|ψ′〉 = D̂|ψ〉 D =?

Rotation wird durch L̂ generiert.

14.Vorlesung Wiederholung (Rotation)
aktiv: (

x′

y′

)
=
(

cos(ϑ) sin(ϑ)
− sin(ϑ) cos(ϑ)

)
︸ ︷︷ ︸

=:D̂(−ϑ)

(
x
y

)

passiv: (
x′

y′

)
=
(

cos(ϑ) − sin(ϑ)
sin(ϑ) cos(ϑ)

)
︸ ︷︷ ︸

=:D̂−1(−ϑ)=D̂(ϑ)

(
x
y

)

Ende Wiederholung
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Frage:
|ψ′〉 = D̂|ψ〉
(D̂ verknüpft Zustand nach der Drehung)
passive Interpretation:

ψ′(~r) = D̂ψ(~r) = ψ(D−1(ϑ)~r)

infinitesimale Rotation: D̂ = D̂z(ε)

⇒ D̂z(ε)ψ(~r) = ψ(Dz(−ε)~r)

= ψ(x+ yε,−εx+ y, z)

Taylor= ψ(x, y, z) + ε ·
(
y

dψ
dx − x

dψ
dy
)

︸ ︷︷ ︸
=L̂z

+σ(ε2)

⇒ D̂z(ε) = 1− i
~
ε · L̂z + σ(ε2)

endliche Drehung: ϑ = nε mit:n→∞, ε→ 0
[
D̂z(ε)

]n
= D̂z(ϑ) = lim

n→∞

[
1− i

~
ϑ

n
L̂z

]n
= e− i

~ϑL̂z

(wie bei Translation)

Beliebige Richtung: ~n, |~n| = 1

D̂~n(ϑ) = e− i
~ϑ~n

~̂L (10)

Bemerkung:

i Drehungen sind eine nicht-abelsche Gruppe. D.h. dass sie nicht kommutativ
sind.

ii Wenn: D̂~n(ϑ) · Ĥ · D̂−1
~n (ϑ) = Ĥ,

⇒System ist invariant unter Drehung um ~n Achse um Winkel ϑ.

iii Gilt (ii) ∀ Winkel ϑ ∈ (0, 2π]:

⇒
[
Ĥ, ~n · ~̂L

]
= 0
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⇒ ~Ln bleibt erhalten! (Drehimpuls bleibt erhalten)

Behauptung:
(10) ist definierende Eigenschaft für Drehimpuls
y müssten Vertauschungsregeln erhalten

Vertauschungsregeln für den Drehimpuls:

D̂x(ε)︸ ︷︷ ︸
1

· D̂y(ε)︸ ︷︷ ︸
2

− D̂y(ε)︸ ︷︷ ︸
3

· D̂x(ε)︸ ︷︷ ︸
4

= D̂z(ε2)− 1

(
1− i

~
εL̂x −

1
2~2 ε

2L̂2
x

)
︸ ︷︷ ︸

1

·
(
1− i

~
εL̂y −

1
2~2 ε

2L̂2
y

)
︸ ︷︷ ︸

2

−
(

1− i
~
εL̂y −

1
2~2 ε

2L̂2
y

)
︸ ︷︷ ︸

3

·
(
1− i

~
εL̂x −

1
2~2 ε

2L̂2
x

)
︸ ︷︷ ︸

4

= �1−
i
~
ε2L̂z + σ(ε3)��−1

also: − ε2

~2 [L̂x, L̂y] + σ(ε3) = − i
~
ε2L̂z

⇒ [L̂x, L̂y] = i~L̂z

�
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6 Einteilchen-QM in drei Dimension

6.1 Das freie Teilchen

Wollen stationäre Schrödinger Gleichung lösen.

Ĥ = ~̂p2

2m = − ~2

2m∆

(A) Schrödingergleichung in kartesischen Koordinaten:

− ~2

2m

(
d2

dx2 + d2

dy2 + d2

dz2

)
· ϕE(~r) = E · ϕE (~r)

setzten: E := ~2 · k2

2m
!
> 0

setzen spezielle Lösung an ~r (Schrödingergleichung ist linear):

ϕE(~r) = X(x) · Y (y) · Z(z) (Separationsansatz)

⇒ E ·XY Z︸ ︷︷ ︸
ϕ

= − ~
2m

(
X ′′(x)Y Z +XY ′′(y)Z +XY Z ′′(z)

)
| · 1
XY Z

⇒ −k2 = X ′′

X(x) + Y ′′

Y (y) + Z ′′

Z(z)

jeder Term muss const. sein!
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also:

X ′′

X
= −kx2

Y ′′

Y
= −ky2

Z ′′

Z
= −kz2

⇒ k2 =
∑

i=x,y,z
ki

2

Lösungen also:

X(x) ∼ e±ikx·x y, z analog

⇒ ϕE(~r) = C ei~k·~r , ~k = (kx, ky, kz)

⇒ E = ~2k2

2m︸ ︷︷ ︸
E=~ω

, k = |~k| =
√
k2
x + k2

y + k2
z

gilt für alle ~k ∈ R3

Zeitabhängige Lösung:

ψE(~r, t) = C ei~k·~r− i ~k
2

2m t ω = ~k2

2m

Entartung: alle ~n mit |~n| = |~k| liefern gleiche Lösung, jede Linearkombination
ebener Wellen mit |~k|=const ist Eigenfunktion von Ĥ mit E = ~2k2

2m .

• kartesische Koordinaten vorteilhaft, falls Randwertproblem mit entsprechen-
der Symmetrie, z.B: Boxpotential:
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z

A

y

BC

x

V (~r) =


0


0 ≤ x ≤ A

0 ≤ y ≤ B

0 ≤ z ≤ C

∞, sonst

Abbildung 6.1: Beispiel Boxpotential

• unendliches Boxpotential:

ϕE = 0 für ~r = (0, y, z), ~r = (A, y, z)
~r = (x, 0, z), ~r = (x,B, z)
~r = (x, y, 0), ~r = (x, y, C)

übersetze Randbedingungen an Funktionen X(x) etc.:

X(0) = 0 , X(A) = 0 ⇒X(x) = sin
(2π
A
nx
)

n ∈ Z

analog: Y (y) = sin
(2π
B
mx

)
m ∈ Z

Z(z) = sin
(2π
C
pz
)

p ∈ Z

⇒ ϕE (x, y, z) = N sin
(
π

A
n︸︷︷︸

kx

x
)

sin
(
π

B
my

)
sin

(
π

C
p z
)

⇒ En,m,p = ~2

2m

[(
π

A

)2
n2 +

(
π

B

)2
m2 +

(
π

C

)2
p2
]

︸ ︷︷ ︸
K2

für n,m, p 6= 0→ sonst nicht normierbar.
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6.1.1 (B) Kugelkoordinaten:

• klass. Hamiltonfunktion:

H = ~p 2

2m = p2
r

2m︸︷︷︸
Radial−
impuls

+ L2

2mr2

• Für den Radialimpuls gilt:

mṙ = ~r · ~p
|~r|

= pr = ~nr · ~p als Projektion

• und:

~L = ~r × ~p

~L2 =
(
~r × ~p)(~r × ~p) = r2 p2 − (~r · ~p

)2

⇔ r2 · p2 = L2 + (~r · ~p)2

⇔ p2 = L2

r2 + (~r · ~p)2

r2 erweitern mit 1
2m liefert:

H = p2

2m = (~r · ~p)2

2mr2 + L2

2mr2 X

• Nun Quantenmechanik:

p̂r = 1
2

(1
r
~r · ~̂p+ ~p ~r

1
r

)

• Was ist mit L
r2 ?

• Ist
[
L̂2 , f(r̂)

]
= 0 ?

Beweis (Ortsdarstellung)

D~n(δϕ)f(r) = f(r)
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(
1− i

~
δϕ ~n · ~L

)
f (r) != f (r)

⇒ ~n · ~Lf (r) = 0 und[
L̂2, f (r)

]
ψ (r) = L̂2 (f (r)ψ (r))− f (r) L̂2 ψ (r) = 0

Also: Ĥ = p̂2
r

2m + L̂2

2mr2

Ortsdarstellung: Ĥ = − ~2

2m∆ = − ~2

2m

[
1
r2

∂

∂r
r2 ∂

∂r

]
− L̂2

2mr2

Radialimpuls: 1
r
· ~r · ~̂p = ~

i
1
r
~r∇ = ~

i
∂

∂r

~̂p · ~r 1
r

= −i~∇~er

~∇ wirkt auf Wellenfunktion und auf êr

p̂rψ(r) = − i~
2

(
∂

∂r
+∇~er

)
ψ(~r)

= − i~
2

∂ψ∂r + ~er∇ψ︸ ︷︷ ︸
∂
∂r
ψ

+ψ(∇êr︸︷︷︸
2
r

)


= −i~

(
∂ψ

∂r
+ ψ

r

)
= −i~ 1

r

∂

∂r
r ψ (~r) = Pr · ψ(~r)

P̂ 2
r =

[
−i~

(
1
r

∂

∂r
r

)]2

= −~2
(

1
r

∂

∂r
r

(
1
r

∂

∂r
r

))

= −~2 1
r

∂2

∂r2 r = −~2
[
∂2

∂r2 + 2
r

∂

∂r

]

= −~2 1
r2

∂

∂r
r2 ∂

∂r
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Übungsaufgabe:

[p̂, L̂2] = 0

[r, p̂r] = i~

mit r in Ortsdarstellung

6.1.2 Eigenfunktionen von Ĥ in Kugelkoordinaten:

(
1

2m P̂ 2
r + L̂2

2mr2

)
ϕE(~r) = E ϕE(~r)

Es gilt wohl: ϕE(~r) = RKL(~r) yml (ϑ, ϕ)

⇒
[
−1
r

d
dr2 r + L(L+ 1)

r2

]
RKL(r) = K2RKL(r)

Def: x = kr

sphärische Bessel-DGL:

d
dx2RKl(x) + 2

x

d
dxRKl(x) +

[
1− l(l + 1)

x2

]
RKL(x) = 0

15.Vorlesung Wiederholung [
L̂j, f(r)

]
= 0 (11)

Wir sahen, dass das Quadrat des Drehimpulses mit jeder Funktion kommutiert,die
nur vom Abstand und nicht von den Winkeln abhängig ist
freies Teichen

Ĥ = ~̂p2

2m = p̂2
r

2m + L̂2

2mr2

p̂r = 1
2

(1
r
~̂r · ~̂p+ ~̂p · ~̂r 1

r

)
= −i~ 1

r

∂

∂r
r
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[p̂, L̂2] = 0 [r̂, p̂r] = i~ (in Ortsdarstellung)

(siehe Aufgabe 26)

L̂z Y
m
l (ϑ, ϕ) = ~mY m

l (ϑ, ϕ) (12)

Eigenfunktionen auf freie Teilchen in Polarkoordinaten

1
2m

(
p̂2
r + L̂2

r2

)
ϕE(~r) = EϕE(~r) (13)

Ansatz:

φE(~r) = R(r)Y m
l (ϑ, ϕ) E = ~2k2

2m (14)[
−1
r

∂2

∂r2 r + l(l + 1)
r2

]
Rkl(r) = k2Rkl(r) (15)

nach einer Koordinatentransformation x = kr erhält man die
sphärische Bessel Differentialgleichung

d

dx2Rkl(x) + 2
x

d

dx
Rkl(x) +

[
1− l(l + 1)

x2

]
Rkl(x) = 0

Ende Wiederholung

Die Lösung lässt sich als superposition von den sphärische Besselfunktionen und
den sphärische Neumannfunktionen schreiben wobei wir sehen werden, dass die
spährischen Neumannfunktionen nicht nomierbar sind und somit nur die sphärischen
Besselfunktionen in Frage kommen.

sphärische Basselfunktionen shärische Neumannfunktion

j0(x) = sin(x)
x

n0(x) = − cos(x)
x

j1(x) = sin(x)
x2 − cos(x)

x
n1(x) = − cos(x)

x2 − sin(x)
x

j2(x) = ( 3
x2 − 1

x
) sin(x)− 3

x2 cos(x) n2(x) = −( 3
x2 − 1

x
) cos(x)− 3

x2 sin(x)
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ϕklm(r, ϑ, ϕ) = jl(k, r)Y m
l (ϑ, ϕ)

Ek = ~2k2

2m 6= E(l,m)

Wir sehen, dass die Energien hochgradig entartet ist, da E weder von l noch von m
abhängt
Spezialfall Kugelwellen:
l = m = 0

ϕk,0,0(r) = j0(kr) = sin(kr)
kr

=
(

eikr

r
− e−ikr

r

)
1

2ik (16)

unendliches Kugelpotential:

V (x) =
0 |~r| ≤ r0

∞ sonst

Siehe Aufgabe auf Übungsblatt. Die Lösungsfunktion müssen auf der Oberfläche des
Potentials verschwinden, wir erwarten ein diskretes Spektrum von Eigenfunktionen.
Weiterhin ist das Potential kugelsymmetrisch, Lösungen werden also Kugelflächen-
funktionen sein, durch die mindesten zwei Quantenzahlen enthalten sind

x

y

z

ro

Abbildung 6.2: unendliches Kugelpotential

6.2 Gebundene Zustände in einem Zentralpotential

V (|~r|) = V (|~r| = r) (17)
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Wir wechseln zu sphärischen Polarkoordinaten, da wir wissen dass die Bewegung in
Zentralpotentialen in einer Ebene verläuft.

Ĥ = p̂2
r

2m + L̂2

2mr2 + V (r) (18)

da [V (r), Lj] = 0 existiert ein gemeinsames System von Eigenzuständen L̂z, L̂2 und
Ĥ
Ansatz:

ϕE(~r) = u(r)
r
Y m
l (ϑ, ϕ)

Diesen Ansatz setzen wir in die Eigenwertgleichung (Schrödingergleichung) ein

ĤϕE(~r) = EϕE(~r) (19)

Durch einsetzen des Hamiltonoperators (18) folgt[
− ~2

2m
d2

dr2 + ~2

2m
l(l + 1)
r2 + V (r)

]
u(r) = Eu(r) (20)

Dies ist ein Eindimensionales Problem im L2([0,∞]) also auf einem Hilbertraum
von null bis unendlich

Wir erhlten ein effektives Potential, was wir als Zentrifugalpotential aus der klassi-
schen Mechanik identifizieren:

Veff(r) = V (r) + ~2

2m
l(l + 1)
r2︸ ︷︷ ︸

Zentrifugalpotential

• Sätze aus dem 1 dimensionalen Fall gelten

– Knotensatz

– U(r)(Radialfunktion) können reell gewählt werden

Wir sehen, dass Veff von l abhängig ist. Daher wird auch die Energie von l abhängig
sein: E = E(l). Wichtig ist jedoch, dass Veff nicht von m abhängt, wie sehen also
die sogenannte "natürliche Entartung"von (2l + 1).

⇒ E = El (21)
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V(r)

~2l(l+1)
2mrš

Veff

r

E

Emin

Abbildung 6.3: effektives Potential

Beispiele für Zentralpotentiale

(i) V (r) = −a
r

Coulombpotential

(ii) V (r) = −a
r
e−µr Yukawa Potential

(iii) V (r) = αe−mur Exponentialpotential

(iv) V (r) = ar2 isotroper harmonischer Oszillator

Anzahl der gebundenen Zustände:

Es gibt nicht in jedem Potential gebundene Zustände, und nicht immer unendlich
viele. Die Bargmannsche Schranke liefert für V (r) →

r→∞
0 eine Abschätzung für

die Anzahl der gebundenen Zustände:

nl ≤
1

2l + 1
2m
~2

∫ ∞
0

dr r |V (r)| θ(−V )

Hier ist θ(−V ) die Heaviside-Funktion sie beschränkt das Integral auf Bereiche mit
V ≤ 0

• falls das Integral endlich ist, dann existiert ein lmax

Für das Coulombpotential ist das Integral nicht endlich ( wie man leicht veri-
fizieren kann), das Yukawa-Potential sowie das Exponentialpotential hingegen
besitzen maximale l.
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• Es existieren keine gebundenen Zustände falls 2m
~2

∫∞
0 dr r |V (r)| θ(−V ) < 1

6.3 Coulombpotential

V (r) = −Ze2

r
Z ∈ N (22)

Dabei setzen wir in den Hamiltonoperator H = p2

2m +V (r) das effektive Potential:

Veff(r) = ~2l(l + 1)
2mr2︸ ︷︷ ︸

Zentrifugalpotential

− Ze2

r︸ ︷︷ ︸
VCoulomb

(23)

(A) gebundene Zustände und Spektrum:

[
− ~2

2m
d2

dr2 + ~2l(l + 1)
2mr2 − Ze2

r

]
u(r) = Eu(r) (24)

gebunde Zustände sind nur für E = −|E| ≤ 0 möglich
Zur Vereinfachung der Differentialgleichung führen wir skalierte Größen ein:

|E| = ~2k2

2m ρ = 2kr (25)[
d2

dρ2 −
l(l + 1)
ρ2 + 2Z

ρρ0

]
u(ρ) = 1

4u(ρ) (26)

ρ0 = 2ka0 (27)

a0 = ~2

e2m
Bohrscher Radius

Zur Lösung der Differentialgleichung betrachen wir verschiedene Grenzfälle, um
dann einen gezielten Ansatz für die Lösungsfunktion aufstellen zu können

ρ→∞ :

d2

dρ2u(ρ) = 1
4u(ρ) (28)

⇒ u(ρ) = Ae−
ρ
2 +���*

nicht normierbar
Be

ρ
2 (29)
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ρ→ 0 :

d2

dρ2u(ρ) = l(l + 1)
ρ2 u(ρ) (30)

→ u(ρ) = Cρl+1 +��
��*nicht normierbar

Dρ−l (31)

Der zielführende Ansatz ist also:

u(ρ) = F (ρ)ρl+1e−
ρ
2 (32)

Durch einsetzen dieses Ansatzen in 24 erhält man eine neue Differentialglei-
chung, dieses Mal für die bisher unbekannte Funktion F (ρ). Diese Gleichung
trägt den Namen konfluente hypergeometrische Differentialgleichung

ρ
d2F

dρ2 + (2l + 2− ρ)dF
dρ
−
(
l + 1− 2Z

ρ0

)
F = 0

Aus der Grenzwertbetrachtung für ρ sehen wir, dass die Funktion F maximal
ein Polynom sein darf, da F nicht schneller wachsen darf als eine Exponen-
tialfunktion. Wir machen also den Ansatz einer Polynomfunktion nach der
Sommerfeldschen Polynommethode und gehen danach wie folgt vor:

F (ρ) =
∞∑
j=0

Cjρ
j Sommerfeldsche Polynommethode (33)

• Einsetzen

• sortieren nach Potenzen von ρ

• Koeffizientenvergleich

Dies ergibt eine Rekursionsvorschrift

⇒ Cj+1 =
(j + l + 1)− 2Z

ρ0

(j + 1)(j + 2l + 2)Cj (34)

Die Polynomfunktion muss einen maximalen Grad besitzen, da sie als unend-
liche Potenzreihe einer Exponentialfunktion gleich ziehen können und damit
die geforderte Normierbarkeit gefährdet.
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Abbruch der Rekursion bei j = jmax

jmax + l + 1 = 2Z
ρ0

= Z

ka0
≡ n n ∈ N>0 (35)

mit n:=Hauptquantenzahl
Sodass jmax+1 = 0
Wir herhalten eine Quantisierung der Energie:

En = −|En| = −
~2k2

n

2m = − ~2

2m
Z2

a2
0n

2 = −Z
2

n2 R∗y

Hierbei ist R∗y die Rydbergkonstante:

R∗y = ~2

2ma2
0

Die Rydbergkonstante ist die charakteristische Energieskala des Coulomb-
Problems, die Dynamik wir sich also in der Größenordung der Rydbergkon-
stante abspielen

Aus Gleichung 35 folgt:

l ≤ n− 1

n=1
n=2
n=3

−Z2R

−Z2R
4

−Z2R
9

n=1

n=2

n=3

n=4

l 0 1 2 3

s p d f

Abbildung 6.4: quantisierte Energie
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Man beachte hierbei die Abhängigkeit von n2 in der Position der Energieneveaus.
Als Entartungsgrad hatten wir die natürliche Entartung von (2l+1) erwartet, statt-
dessen sehen wir, dass die Entartung mit 36 sehr viel höher ist. Wir werden sehen,
dass diese zusätzliche Entartung aufgrund der zusätzlichen Symmetrie des Coulomb-
problems entsteht (der Ruge-Lenz-Vektor).
Entartungsgrad:

n−1∑
l=0

(2l + 1) = n2 (36)

Als Lösung für die Funktinonen von F (ρ) erhalten wir schlussendlich die
Laguerre Polynome:

Lm(x) = ex
m!

dm

dxm
(xme−x)

sowie daraus die
assoziierte Laguerre Polynome:

Lqm(x) = (−1)q d
q

dxq
Lm(t)

Als Beispiel seinen hier die ersten Laguerre-Polynome angegeben:

L0(x) = 1 (37)
L1(x) = 1− x (38)

L2(x) =
(

1− 2x+ x2

2

)
(39)

16.Vorlesung Wiederholung
Das Coulomb Potential:[

− ~2

2m
d2

dr2 + ~2l(l + 1)
2mr2 + V (r)

]
ul(r) = E ul(r)

ϕE(r, ϕ, ϑ) = ul(r)
r
· Y m

l (ϑ, ϕ)

V (r) = −Ze
2

r
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r0 = ~2

l2m
Bohr’scher Radius

ul(ρ) = ρl+1 · e−
ρ
2 · F (ρ)

F (ρ] =
∞∑
j=0

Cjρ
j

⇒ Cj+1 =
(j + l + 1)− 2Z

ρ0

(j + 1)(j + 2l + 1)Cj

Cj = 0 j > j0

n = jmax + l + 1 = 2Z
ρ0

= Z

ka0

l ≤ n− 1

Die Reihe muss abbrechen!

En = − ~2Z2

2ma2
0n

2

Die Eigenfunktionen (F (ρ)) sind die Laguerrepolynome und die assozierte La-
guerrepolynome

Ende Wiederholung

Wir fragen uns also, welche nun die Eigenfunktionen des Coulombpotentials insge-
samt sind:

unl(ρ) ∼ e−
ρ
2 · ρl+1 · L2l+1

n−l+1(ρ)

ρ = 2kr = wZ

na0
r

Spezialfall Z = 0 Wasserstoffatom
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Eigenfunktionen des Wasserstoffatoms:

ψnlm(r, ϑ, ϕ) = Nnl︸︷︷︸
Normierung

· e−
r
na0︸ ︷︷ ︸

exponetieller
Abfall

· rlL2l+1
n−l+m

( 2r
na0

)
︸ ︷︷ ︸
polynominaler Term

· Y m
l (ϑ, ϕ)︸ ︷︷ ︸

Winkelanteil
durch L2

ψ100(r, ϑ, ϕ) = 1√
πa3

0

e−
r
a0

ψ200(r, ϑ, ϕ) = 1
4
√

2πa3
0

[
2− r

a0

]
e−

r
2a0

Wir beobachten folgende Eigenschaft der Lösungsfunktion: Der exponentielle Ab-
fall, benötigt für die Normierbarkeit, geschieht in Einheiten des Bohrschen Radius’,
welche die natürliche Energieskala des Wasserstoffproblems darstellt. Weiterhin kön-
nen wir erkennen, dass, wenn die Quantenzahl n in diesem Exponenten groß wird
(n=50;60,...), wir noch von Null stark verschiedene Aufenthaltswahrscheinlichkeiten
des Elektrons weit vom Kern erhalten, das Atom also an größe stark zunimmt. Dies
ist die grundlegende Eigenschaft sogenannter Rydbergatome, auf die wir hier nicht
näher eingehen.

lim
r→∞

ψnlm(r, ϑ, ϕ) = 0

∑
l=0

n− 1(2l + 1) = n2 >> 2l + 1 E1 = − ~2

2ma2
0

Grundzustand

Wie sehr häufig ist der Grundzustand nicht entartet

Eigenschaften der Laguerpolynome:

i) Orthogonalität:

Woher kann der geneigte Leser bereits wissen, dass eine Orthogonalitätsrela-
tion existieren wird? (Hinweis: Eigenfunktionen hermitescher Operatoren)∫ ∞

0
dx Ln(x)Lm(x)e−x = δnm∫ ∞

0
dx Lqn(x)Lqm(x)e−xxq = n![(n+ q)!]3δnm
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ii) expizite Darstellung:

Ln(x) =
n∑
j=0

(−1)j n!
(j!)2(n− j)!x

j

iii) erzeugende Funktion:

(1− t)−1e−
xt

1−t =
∞∑
n=0

Ln(x)tn

(B∗) dynamische Symmetrie des Coulomb-Problem:

klassische Mechanik V (r) = −α
r

Runge-Lenz Vektor:

~F = 1
m

(~p× ~L)− α~r

r
~L · ~F = 0

Quantenmechanisch

~F = 1
2m(~p× ~L− ~L× ~p)− α~r

r

In Einer Übungsaufgabe wird gezeigt, dass [ ~̂F , Ĥ] = 0 gilt
Wir sehen, dass der Runge-Lenz Vektor eine Drehimpuls ähnliche Algebra auf-
weist.Daher definieren wir zwei Operatoren J1 und J2:

Unterraum konstanter Energie E

[Li, Fj] = i~εijk L̂k ·
[
L̂i, F̂j

]
= i~εijk F̂k

[Fi, Fj] = i~εijk
(
−2E
m

)
L̂k

~̂J1 ≡
1
2

(
L̂+

(
m

−2E

) 1
2 ~̂F

)

~̂J1 ≡
1
2

(
L̂−

(
m

−2E

) 1
2 ~̂F

)

[J1i, J1j] = i~εijkĴ1k
[
Ĵ1j, Ĵ2k

]
= 0[

Ĵ2i, Ĵ2j
]

= i~εijkĴ2k algebraische bestimmung von En
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In der Tat stellt sich heraus, dass diese Operatoren Drehimpulse sind. Mit ihnen
wird die algebraische Bestimmung von En möglich sein

6.4 Das Wasserstoffatom -Teil 1

2 Teilchenproblem:

Proton: ~rp, ~pp qp = e Masse: mP

Elekron: ~re, ~pe qe = −e Masse: me

Was ist ψ(~rp, ~re) ?

V (~re, ~rp) = − e2

|~re − ~rp|[
~̂rp, ~̂re

]
=
[
~̂pp, ~̂pe

]
= 0[

~̂rp, ~̂pe
]

=
[
~̂re, ~̂pp

]
= 0

Aufgrund dieser Relation können also Protonen und Elektronen getrennt voneinan-
der behandelt werden.

Relativkoordinaten:

Wie auch in der klassischen Mechanik gehen wir in Relativ- und Schwerpunktsko-
ordinaten über, um dieses Zweikörperproblem zu lösen.

~r ≡ ~re − ~rp

Schwerpunktskoordinate:

~R = me~re +mp~rp
me +mp

klassische Hamiltonfunktion:

H = M

2
~̇R2 + µ

2 ~̇r
2 + V (~r)

Mit

M = me +mp µ = memp

me +mp

≈ me
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Der Schwerpunktsimpuls ist eine Erhaltungsgröße und kommutiert somit mit dem
Hamiltonoperator

d
dt

(
M ~̇R

)
= 0 = ∂Ĥ

∂R
= 0

[
ˆ̇~R, Ĥ

]
= 0

Ĥ = − ~2

2M∆ ~R −
~2

2µ∆~r + V (~r)

Hierbei ist der erste Summand die kinetische Energie des Schwerpunkts und der
zweite Summand die kinetische Energie der Relativbewegung[

Ĥ, P̂sp
]

= 0

ψ( ~R, ~r) = ei~k ~RφE(~r) = εφE(~r)

Für die Schwerpunktsbewegung ohne äußere Einflüsse können wir also das Modell
des freien Teilchens anwenden.

(
− ~2

2µ ∆~r + V (r)
)
· φE(r) = ε · φE(~r)

E = ε+ ~2k2

2M︸ ︷︷ ︸
Schwerpunktsenergie
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7 Geladene Teilchen im
elektrischen-Feld

7.1 Minimale Kopplung und Eichtransformation

Hier wird im Gaußschen CGS-System gerechnet das bedeutet:

F = 1
4πε0

Q1Q2

r2︸ ︷︷ ︸
SI Einheiten

→ F = Q1Q2

r2︸ ︷︷ ︸
CGS-system

~̇p = ~F = q ·
(
~E + ~v

c
× ~B

)

Maxwellgleichungen im Vakuum

∇ ~E = 4πρ ∇ ~B = 0

∇× ~E + 1
c

∂

∂t
~B = 0 ∇× ~B − 1

c

∂

∂t
~E = 4π

c
~j

Lösung durch Poteniale
da ∇ ~B = 0 gilt lässt sich ~B folgendermaßen schreiben

~B = ∇× ~A

⇒ ∇×
[
~E + 1

c

∂

∂t
~A

]
= 0

~E + 1
c

∂

∂t
~A = −∇φ
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Damit lässt sich ~E darstellen

~E = −∇φ− 1
c

∂

∂t
~A

Eichtransformation

~A→ ~A′ = ~A+∇Λ(~r)

φ→ φ′ = φ− 1
c

∂

∂t
Λ(~r)

~E = ~E′ ~B = ~B′

klassische Hamiltonfunktion

H = 1
2m

(
~p− q

c
~A(~r)

)2
+ qφ(~r) + V (~r)

Quantenmechanisch (hier kommutieren A und r im Allgemeinen nicht, also symme-
trisieren wir)

Ĥ = 1
2m

(
~̂p− q

c
~̂A(~̂r)

)(
~̂p− q

c
~̂A(~̂r)

)
+ q φ(~̂r) + V (~̂r)

Um diesen Missstand zu beheben, nutzen wir die Wahlfreiheit des komplexen Vorfak-
tors vom Betrag eins einer jeden Wellenfunktion. Dabei ergänzen wir die Eichtrans-
formation durch eine Transformation dieses Vorfaktors und gelangen zu Eichpha-
sentransformationen:

Ĥ ist hier nicht invariant unter Eichtransformation

~A→ ~A′ = ~A+∇Λ(~r, t)

φ→ φ′ = φ− 1
c

∂

∂t
Λ(~r, t)

ψ → ψ′(~r, t) = exp
{ iq
~c

Λ(~r, t)
}
ψ(~r, t)

Die Schrödingergleichung ist invariant unter Eich-Phasentransformation
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17.Vorlesung Wiederholung

Ĥ = 1
2m

(
~̂P − q

c
~A(~̂r)

)(
~̂P − q

c
~A(~̂r)

)
+ q · Φ + V

7.1.1 Vektorpotential in neues Potential:

~A −→ Â′ = ~A+∇Λ(~r, t)

Φ −→ Φ′ = Φ− 1
c
· ∂
∂t

Λ(~r, t)



~B(~r, t) = ∇× ~A(~r, t)
~E(~r, t) = −1

c
· ∂A
∂t
−∇Φ

ψ(~r, t) −→ ψ(~r, t) = ψ(~r, t) exp
{ iq
~c

Λ(~r, t)
}

Eichphasenverschiebung

können spezielle Eichung nehmen:

Ende Wiederholung

7.1.2 Coulomb-Eichung:

∇ ~A(~r, t) = 0 dann gilt: ~̂P , ~A(~r, t)] = 0

da:
[
−~

i∇,
~A(~r)

]
ψ(~r) = −~

i ∇ ·
(
~A(~r)ψ(~r)

)
+ ~

i
~A(~r)∇ψ(~r)

mit: [
−~
i
∇, ~A(~r)

]
= ~̂P ~A− ~A ~̂P

ergibt sich:

~̂P ~A− ~A ~̂Pψ(~r) = −~
i
∇ ·

(
~A(~r)ψ(~r)

)
+ ~

i
~A(~r)∇ψ(~r)

= −~
i (∇ · ~A)︸ ︷︷ ︸

=0

ψ(~r) = 0

Ĥ = 1
2m

(
~̂P − q

c
~A(~̂r)

)2
+ q · Φ + V

mit ~̂P : kanonischer Impuls und m~̂v = ~̂P − q
c
Â(~̂r) = ~̂π : kinetischer Impuls
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• kanonischer Impuls ist keine Observable, da die Eichphasentransformation Û :

Û ~̂P Û−1 = ~̂P − q

c
∇Λ(~r, t) 6= ~̂P

mit Û = exp
{ iq
~c

Λ(~r, t
}

diesen nicht invariant lässt. Damit ist der kanonische Impuls keine gute Ob-
servable.

aber:

Û
(
~̂P − q

c

)
Û−1 = ~̂P − q

c
∇Λ(~r)− q

c
~A

= ~P − q

c
~A′

Es gilt:

[x̂j, π̂k] = i~δjk

[π̂j,πk] = i~ q
c
εjklBl

mit x̂j : Ort und π̂k :Impuls

7.2 geladenes Teilchen im homogenen Magnetfeld

~B(~r, t) = B̂(~r) = const~r,t

Wir setzen:

Φ(~r) = 0 ~B = ∇× ~A ~FL = q

c
· (~v × ~B)

außerdem soll: ∇ · ~A = 0
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y

x

x

y

z

~B

~A

~A = −1
2 (~r × ~B)

7.2.1 Hamiltonoperator in Ortsdarstellung

Ĥ = − ~2

2m∆ + V (r) + q~
2mc

1
i · (~r ×

~B)∇+ q2

8mc2 (~r × ~B)2

~
i (~r × ~B) · ∇ = −~

i
~B · (~r ×∇) = − ~B · ~̂L

H = − ~2

2m∆ + V (r) + q2

8mc2 (~r × ~B)2 − sgn(q)µ ·
~B · ~̂L
~

(40)

Der Letzte Term von Ĥ stellt dabei die Kopplung von L und B dar, also die Kopp-
lung des durch die Bahnbewegung erzeugten magnetischen Moments an das äußere
Magnetfeld.

µ = |q| · ~2me

beschreibt dabei das Bohr’sche Magneton

µBahn = sgn(q) · µ
~
L̂ Das Moment des Elektrons (Ladung)
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~L ∼ ~M

7.2.2 Landau Niveaus:

Sei:

~B =
(
0, 0, B

)
= B~ez V + q2

8mc2 (r ×B)2 = 0︸ ︷︷ ︸
V=0

wählen ~A =
(
−yB, 0, 0

)
Φ = 0

(Landaueichung )

Ĥ = 1
2m

(p̂x + qŷB

c

)2

+ p̂2
y + p̂z


Lösungen der stationären Schrödingergleichung? ĤφE = EφE:
Welche Größen kommutieren mit dem Hamiltonoperator?

px und pz

[p̂z, Ĥ] = 0 = [px, H] Ĥ = 1
2m(~̂p− q

c
~A)2 + qΦ + V

Eigenzustände: eiKxx+ikzzfE(y)[
p̂2
y

2m + m

2 Ω2(y − y0)2
]
fE(y) =

(
E − ~2k2

z

2m

)
fE(y)

y0 = −c~kx
qB

:= 1D Schrödingergleichung

Ω = |q|B
mc

:= Zyklotronfrequenz
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=̂ harmonischer Oszillator mit Frequenz Ω

En = ~Ω
(
n+ 1

2

)
+ ~2k2

z

2m Landau Niveaus

Ω := harmonischer Oszillator in x, y−Ebene
~2K2

z

2m :=Kontinuum freie Bewegung in z−Richtung

7.2.3 Grundzustand des Harmonischen Oszillators

lm =
√

~
mΩ =

√
~c
|e|B

magnetische Länge

7.3 Der Aharonov-Bohm-Effekt

~B

~Baußen = 0

∆φ
a

b
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a
b

ê ϕ

ê ϕ

∆φ

~B
R

Rs

~B = 0 außen, aber:

~A = BR2
s

2R ~eϕ = Φmag

2πR · ~eϕ 6= 0

7.3.1 Hamiltonoperator für Elektronen

Hamiltonoperator für Elektronen q = −e auf Kreisbahnen (a), (b)

(a)

Ĥ = 1
2m

(
~
i

1
R

∂

∂ϕ
+ e

c

B

2
R2
s

R

)2

(b)

Ĥ = 1
2m

(
~
i

1
R

∂

∂ϕ
- e
c

B

2
R2
s

R

)2

ψout
a = ei(K+ eBRs2

2cR )πR · ψin

ψout
b = ei(K− eBRs2

2cR )πR · ψin

∆φ = πeBR2
s

c~
= e

~c
Φmag
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7.3.2 Aharonov-Bahn Phase

• ∆φ hängt nicht von der kinetischen Energie (Zeit des Durchlaufs) ab.

• ∆φ hängt nicht von R (genauer vom konkreten Weg ) ab, solange die Spule
eingeschlossen ist.

⇒ topologische Phase:

Grundlage für−→ Quanten-Hall Effekt, topologische Isolatoren

Es ist jedoch nicht so, dass durch die Aharanov-Bohm-Phase das Vektorpotenti-
al direkt messbar wird und damit eine mathematische Hilfsfunktion physikalische
Bedeutung erhält. Durch die Definition des magnetischen Flusses durch das Ringin-
tegral über das Vektorpotential verfällt die Eichfreiheit und der magnetische Fluss
ist eindeutig definiert.
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8 Der Spin

8.1 Das Stern-Gerlach Experiment

N

S

inhomogenes Magnetfeld

Ionenstrahl

Schirm

Abbildung 8.1: Stern Gerlach Versuch

Wir beobachten, dass der Strahl von Elektronen im inhomogenen Magnetfeld in
zwei Strahlen aufspalten, und keine von beiden im Vergleich zum ursprünglichen
Strahl unabgelenkt bleibt. Das legt Nahe, einen inneren Freiheitsgrad des Elektron
zu postulieren, der ein Drehimpuls ist ( weil er mit einem äußeren Magnetfeld wech-
selwirkt) und nur zwei Einstellmöglichkeiten hat → also nur +1

2 und −1
2 sein kann.

Diesen nennt man Spin. Da jedoch der bisherige Hilbertraum diesen Freiheitsgrad
nicht abdecken kann, müssen wir ihn erweitern um den Hilbertraum des Pins, den
C2.



17.Vorlesung Quantentheorie Quantenmechanik

8.1.1 Hilbertraum des Elektrons

Das Spin-behaftete Elektron muss also in folgendem Raum beschrieben werden:

L2(R)3 ⊗C2

wobei R3 externe und C2 die internen Freiheitsgrade angibt

8.1.2 Pauli-Matrizen

σ0 = 1 =
(

1 0
0 1

)
σ1 = σx =

(
0 1
1 0

)

σ2 = σy =
0 −i

i 0

 σ3 = σz =
(

1 0
0 −1

)

Eigenschaften (σx,σy,σz)

i) σj = σ+
j selbstadjungiert

ii) Tr{σj} = 0 det{σj} = −1

iii) [σi,σj] = 2iεijkσk

iv)

{σi,σj} := σiσj + σjσi = 2δij
σ2
i = 1

aus (iii) folgt:

~̂S = ~
2 (σx~ex + σy~ey + σz~ez)

[Ŝi, Ŝj] = i~εijkŜk

[Ŝ2, Ŝk] = 0

Ŝ2 = ~2

4 (1+ 1+ 1) = 3
4~

2 = ~2 1
2

(1
2 + 1

)

⇒ S = 1
2
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18.Vorlesung Wiederholung

H = L(2)( R︸︷︷︸
externe Bewegung

)⊗ C2︸︷︷︸
interne Bewegung

1 =σ0 =
(

1 0
0 1

)
σx =

(
0 1
1 0

)

σy =
(

0 −i
i 0

)
σz =

(
1 0
0 −1

)

[σi,σj] = 2iεijkσk

{σi,σj} = 2δij

σ2
i = 1

~̂S = ~
2
(
σx ~ex + σy ~ey + σz ~ez

)
[Ŝi, Ŝj] = i~εijkŜk

Ŝ2 = Ŝ2
1 + Ŝ2

2 + Ŝ2
3

= ~2

4 · 3 · 1

= ~2 · 1
2 ·
(1

2 + 1
)

[Ŝi, Ŝ2] = 0

innerer Drehimpuls mit Betrag 1
2

143



18.Vorlesung Quantentheorie Quantenmechanik

Ende Wiederholung

Eigenzustände Ŝz = ~
2

(
1 0
0 −1

)

|χ+〉 =
(

1
0

)
λ = ~

2

|χ−〉 =
(

0
1

)
λ = −~

2

Alle bisherigen Operatoren, die den Spin nicht betrafen, müssen nun erweitert wer-
den, um auf den Produktraum von L2(R3) und C2 zu wirken. Diese Erweiterung
wird durch die Einheitsmatrix 1 im C2 beziehungsweise L2(R3) erreicht, die wir von
nun an aber weglassen.

~̂p1 → ~̂p⊗ 1

~̂S1 → 1⊗ ~̂S

8.1.3 Teilchen mit n inneren Freiheitsgraden

H = L(2)(R3)⊗ Cn

n = 2s+ 1

Ŝ2 = ~2 · s(s+ 1) · 1n

Ŝz|m, s〉 = ~ |m, s〉

Spinquantenzahlen: ms = −s,−(s− 1), ..., (s− 1), s
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8.2 Spin und Rotationen; Gesamtdrehimpuls von Spin
1
2-Teilchen

Nun soll untersucht werden, ob folgende Gleichung gilt, wobei D̂ eine Drehung in
C2 beschreibt.

D̂

(
ψ1(~r)
ψ2(~r)

)
?=
(
ψ1(D−1~r)
ψ2(D−1~r)

)
(41)

kann so nicht sein!

Wir betrachten zwei Stern-Gerlach-Apparate hintereinander. Die erste Kombination
ist problemlos, da dort zweimal nach Sz geprüft wird.

Beim Zweiten jedoch sehen wir: Ist die Up- oder Downkomponente null, so würde
sie nach der Transformationsregel von oben auch für immer null bleiben. Dies kann
nicht sein, da Sx und Sz nicht kommutieren und deshalb hinter dem zweiten Apparat
wieder Up- und Down-Komponente auftreten. Folglich ist obige Transformationsre-
gel falsch.

χ
(z)
+

χ
(z)
−

ψz(~r)
0

Abbildung 8.2: Aufteilung beim Stern-Gerlach Versuch
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[Ŝx, Ŝz] 6= 0

falls (41) korrekt wäre, müsste bei diesem Experiment nun | ↓x〉 herauskommen. �

D̂

(
ψ1(~r)
ψ2(~r)

)
= D−1︸ ︷︷ ︸

Drehung in C2

(
ψ1(D−1~r)
ψ2(D−1~r)

)
︸ ︷︷ ︸
Drehung in R3

D̂~n = e−iΘ~n ~̂s~ · e−iΘ~n ~̂L
~

falls ~̂S halbzahlig liefert nur Drehung um 4πn den Anfangszustand, da [ŝi, L̂j] = 0 da
L mit der Einheitsmatrix aus C2 kommutiert und analog S mit der Einheitsmatrix
aus R3

Definiere also einen neuen Operator, der diese beiden Drehungen zusammenfasst:

D̂~n(Θ) = e−iΘ~n ~J
~

Gesamtdrehimpuls (des Elektrons):

~̂J = ~̂L+ ~̂S

= 1L2(R3) ⊗ ~̂S + ~̂L⊗ 1C2

~̂J ist Gesamtdrehimpuls, da gilt:

[Ĵi, Ĵj] = [L̂i + Ŝi, L̂j + Ŝj]

= [L̂i, L̂j] + [Ŝi, Ŝj]

= i~εijkL̂k + i~εijkŜk

[Ĵi, Ĵj] = i~εijkĴk

Ĵ2 = Ĵx
2 + Ĵy

2 + Ĵz
2 = Ŝ2 + L̂+ 2L̂Ŝ
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[Ĵi, Ĵ2] = [L̂i + Ŝi, Ŝ
2 + L̂2 + 2 L̂jŜj︸ ︷︷ ︸

L̂Ŝ

]

= 2 ·
{

[L̂i, L̂jŜj] + [Ŝi, L̂jŜj]
}

= 2 ·


3∑
j=1

[L̂i, L̂j]︸ ︷︷ ︸
iεijkL̂k

Ŝj +
3∑
j=1

[L̂j, Ŝi]︸ ︷︷ ︸
iεijkŜk

Ŝj


= 2i εijk︸︷︷︸

antisymmetrisch
in j,k

(
L̂kŜj + L̂jŜk

)
︸ ︷︷ ︸

symmetrisch
in j,k

= 0

Der letzte Term wird null, da die Einsteinsche Summenkonvention gilt und die Sum-
me über einen symmetrischen und einen antisymmetrischen Term verschwindet.

[Ĵi, Ĵ2] = 0

so gilt ferner:

[Ĵi, Ĵ2] = 0
[Ĵi, Ŝ2] = 0

 [Ĵ2, Ŝ2] = [Ĵ2, L̂2] = 0

[Ĵ2, Ŝz] 6= 0

[Ĵ2, L̂z] 6= 0

Aus diesen Relationen sehen wir, dass zwei Sätze kommutierender Operatoren exis-
tieren:
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8.2.1 Gekoppelte und ungekoppelte Basis

a) ungekoppelte Basis:

L̂2, L̂z, Ŝ
2, Ŝz |l,ml, s,ms〉

b) gekoppelte Basis:

Ĵ2, Ĵz, L̂
2, Ŝ2 |j,mj, l, s〉

Ĵ2|j,mj, l, s〉 = ~ j(j + 1) |j,mj, l, s〉

Ĵz|j,mj, l, s〉 = ~mj |j,mj, l, s〉

mj = −j, ..., j

Was sind Werte von j?

|j,mj, l, s〉 =
∑
ms,ml

Cj
mj ,ml,ms

|l,ml, s,ms〉

mit Cj
mj ,ml,ms

=:Clebsch-Gordan-Koeffizienten

Die Clebsch-Gordan-Koeffizienten helfen uns also, von einer Basis in die andere zu
transformieren.

Errechne zunächst Koeffizienten für s = 1
2

148



18.Vorlesung Quantentheorie Quantenmechanik

i)

Ĵz|j,mj, l, s〉 =
∑
ms

∑
ml

Cj
m,ml,ms

(Ŝz + L̂z)
∣∣∣∣l,ml, s,ms︸ ︷︷ ︸

=|χ±〉

〉

= ~
∑
ms,ml

Cj

m,ml− 1
2

(
ml + 1

2

) ∣∣∣∣l,ml

〉
·
∣∣∣∣χ+

〉

+ Cj

m,ml− 1
2
·
(
ml − 1

2

) ∣∣∣∣l,ml

〉
·
∣∣∣∣χ−〉


= ~m

∣∣∣∣j,m, l, s〉
in Summe nur Terme mit ml = m± 1

2

⇒Cj

m,ml− 1
2 ,

1
2
≡ α Cj

m,ml+ 1
2 ,−

1
2
≡ β

∣∣∣∣j,m, l, s〉 = s ·
∣∣∣∣l,m− 1

2

〉
·
∣∣∣∣χ+

〉
+ β ·

∣∣∣∣l,m+ 1
2

〉
·
∣∣∣∣χ−〉

ii)

Ĵ

∣∣∣∣j,m, l, s〉 = ~2 · j(j + 1)
∣∣∣∣j,m, l, s〉

Ĵ2 = L̂2 + Ŝ2 + 2 · ~̂L~̂S

= L̂2 + Ŝ2 + 2 · L̂2
zŜ

2
z + 2 ·

(
L̂2
xŜ

2
x + L̂2

yŜ
2
y

)

andererseits gilt auch:

L̂−Ŝ+ + L̂+Ŝ− =
(
L̂x − iL̂y

)
·
(
Ŝx + iŜy

)
+
(
L̂x + iL̂y

)
·
(
Ŝx + iŜy

)
= 2 · L̂xŜx + 2 · L̂yŜy

(
Ĵ2 − L̂2 − Ŝ2 −2 · L̂zŜz −L̂−Ŝ+ −L̂+Ŝ−

)
·
∣∣∣∣j,m, l, s〉 = 0
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⇔ [j(j + 1)− l(l + 1)− s(s+ 1)]

·
(
α
∣∣∣∣l,m− 1

2

〉
·
∣∣∣∣χ+

〉
+ β

∣∣∣∣l,m+ 1
2

〉
·
∣∣∣∣χ−〉)

−α · (m− 1
2) · |l,m− 1

2〉 · |χ+〉+ β · (m+ 1
2) · |l,m+ 1

2〉 · |χ−〉

−
√
l(l + 1)− (m+ 1

2)(m− 1
2)

·
(
β
∣∣∣∣l,m− 1

2

〉
·
∣∣∣∣χ+

〉
+α

∣∣∣∣l,m+ 1
2

〉
· |χ−〉

)

= 0

Da |l,m − 1
2〉 · |χ+〉 und |l,m + 1

2〉 · |χ−〉 orthogonal zueinander stehen, müssen die
Koeffizienten beider Vektoren unabhängig voneinander verschwinden:∣∣∣∣l,m− 1

2

〉
·
∣∣∣∣χ+

〉
:

α ·
[
j(j + 1)− l(l + 1)− 1

2

(1
2 + 1

)
−
(
m− 1

2

)]

− β ·
[
(l(l + 1)−

(
m+ 1

2

)(
m− 1

2

)] 1
2

= 0∣∣∣∣l,m+ 1
2

〉
·
∣∣∣∣χ−〉 :

− α ·
[
(l(l + 1)−

(
m+ 1

2

)(
m− 1

2

)] 1
2

+ β ·
[
j(j + 1)− l(l + 1)− 1

2

(1
2 + 1

)
−
(
m− 1

2

)]

= 0

Wir erhalten somit ein homogenes Gleichungssystem für α, β:

M

(
α
β

)
= 0
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(
M11 M12
M21 M22

)
·
(
α
β

)
=
(
M11α +M12β
M21α +M22β

)
=
(

0
0

)

linear abhänig von m: det(M) != 0

⇔ j = l + 1
2 j = l − 1

2

j = l +
1

2 :

mj = mmax
j = j

~S

~L

~J

mj < mmax
j = j
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z

~S

~L

~J

Wx

j = l + 1
2 :

C
l+ 1

2
m,m− 1

2 ,
1
2

=
(
l +m+ 1

2
2l + 1

) 1
2

C
l+ 1

2
m,m+ 1

2 ,
1
2

=
(
l +m− 1

2
2l + 1

) 1
2

j = l − 1

2 :

C
l− 1

2
m,m− 1

2 ,
1
2

= −
(
l +m− 1

2
2l + 1

) 1
2

C
l− 1

2
m,m+ 1

2 ,
1
2

=
(
l +m+ 1

2
2l + 1

) 1
2

Eine andere Methode zum Errechnen der Koeffizienten ist die Addition von Drehim-
pulsen in der Quantenmechanik II

Bemerkung:

~̂J1 + ~̂J2 = ~̂J

j = |j1 − j2|, ..., j1 + j2
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19.Vorlesung [
~̂Ji, ~̂Jj

]
= i~εijkĴk[

Ĵ2, L̂2
]

= 0[
Ĵ2, Ŝ2

]
= 0

i) L̂2, L̂z, Ŝ
2, Ŝz ungekoppelte Basis

ii) Ĵ2, Ĵz, L̂
2, Ŝ2 gekoppelte Basis

8.2.2 Clebsch-Gordan-Koeffizienten

∣∣∣∣j,m, l, s〉 =
∑
ml

∑
ms

Cj
m,ml,ms

∣∣∣∣l, s,ml,ms

〉

s = 1
2 , j = l + 1

2 C
l+ 1

2
m,m− 1

2 ,
1
2

=
(
l +m+ 1

2
2l + 1

) 1
2

C
l+ 1

2
m,m+ 1

2 ,−
1
2

=
(
l −m+ 1

2
2l + 1

) 1
2

j = l − 1
2 mit l > 0 C

l− 1
2

m,m− 1
2 ,

1
2

= −
(
l −m+ 1

2
2l + 1

) 1
2

C
l− 1

2
m,m+ 1

2 ,−
1
2

= −
(
l +m+ 1

2
2l + 1

) 1
2

Bemerkung:

Wir fassen nun den Gesamtdrehimpuls der einzelnen Teilchen in dem Gesamtdre-
himpuls des Systems zusammen: ~̂J = ~̂J1 + ~̂J2 Die möglichen Werte dieses neuen
Operators sind damit (Stichwort Addition von Drehimpulsen):

j = jmin, ..., jmax jmin = |j1 − j2| jmax = j1 + j2
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8.3 Superauswahlregel für den Gesamtdrehimpuls:

Wir stellen uns nun die Frage, ob Bedingungen an den Drehimpuls von Zuständen
existieren.
Dazu betrachten wir zuerst eine Drehung im Raum um 2π:

D̂~n(2π)|jmls〉 = (−1)2j |jmls〉

Mit der Bedingung der Invarianz unter Rotation um 2π ist das nur möglich, falls:

|φ〉 ist Superposition aus zwei Zuständen mit: j = 0, 1, 2, ...

oder |φ〉 ist Superposition aus zwei Zuständen mit: j = 1
2 ,

3
2 ,

5
2 , ...

Beweis:

Diese Bedingung ist einleuchtend:Kombinationen aus halbzahligen und ganzzahligen
Drehimpulsen führen in beiden Fällen zu ganzzahligem j.

|φ+〉 sei Zustand mit: j = 0, 1, 2, ...

|φ−〉 sei Zustand mit: j = 1
2 ,

3
2 ,

5
2

|φ̃+〉 = D̂~n(2π) |φ+〉 = |φ+〉

|φ̃−〉 = D̂~n(2π) |φ−〉 = −|φ−〉

〈φ̃+ | Â|φ̃+〉 = 〈φ+ | Â|φ+〉X

〈φ̃− | Â|φ̃−〉 = 〈φ− | Â|φ−〉X

aber:

|φ〉 = α · |φ+〉 + β · |φ−〉 α, β 6= 0
|φ̃〉 = α · |φ+〉 − β · |φ−〉

〈φ̃ | Â | φ̃〉 = |α|2 · 〈φ+ | Â |φ+〉 + |β|2 · 〈φ− | Â |φ−〉 − α∗β · 〈φ+ | Â |φ−〉 − αβ∗ · 〈φ− | Â |φ+〉

6= 〈φ | Â |φ〉 �
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⇒ Bei jedem dynamischen Prozess kann sich der Gesamtdrehimpuls nur um
ganzzahlige Schritte ändern.

8.4 Spin 1
2-Teilchen im äußeren Magnetfeld

Wir hatten gesehen, dass der Bahndrehimpuls eines geladenen Teilchens ein magne-
tisches Moment mit sich bringt. Wir wollen nun der Frage nachgehen, ob dies auch
für den Spin gilt.
Wellenfunktion eines Spin 1/2-Teilchens lautet (aufgrund des Produktraums aus
Hilbertraum der Bewegungs- und Hilbertraum der Spinfreiheitsgrade):

ψ(~r, t) −→
(
ψ1(~r, t)
ψ2(~r, t)

)
ms = 1

2
ms = −1

2

aus relativistischer Quantenmechanik (Dirac-Theorie, Quantenmechanik II )

Ĥ = 1
2m

[(
~̂p− q

c
~A(~̂r)

)
· ~σ
]2

+ qΦ12x2

Dabei benutzen wir den Vektor der Pauli-Matrizen: ~σ = σx~ex + σy~ey + σz~ez
Mit dem kinetischen Impuls π̂k = p̂k − q

c
~Ak erhalten wir:

Ĥ = 1
2m

3∑
K,l=1

π̂kσkπ̂lσl + qΦ

mit σkσl = 1
2[σk,σl] + 1

2{σk,σl} = δkl + iεkljσj

Die Pauli-Matrizen lauten : σx =
(

0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)

⇒ Ĥ = 1
2m

3∑
k,l=1

π̂kπ̂l(δkl + i εkljσj) + qΦ

Ĥ = 1
2m

(
~̂p− q

c
~A
)2
− q~

2mc

~B · ~σ + qΦ

Ĥ = 1
2m

(
~̂p− q

c
~A
)2
− sgn(q)2 · µ

~
~B · ~S + qΦ
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Der Faktor 2 im Kopplungsterm mit B und S ist dabei als das anomale magneti-
sche Moment des Elektrons bekannt. Im Spezialfall eines konstanten Magnetfeldes
erhalten wir damit insgesamt, also mit dem Term aus dem Bahndrehimpuls:

Ĥ = − ~2

2m∆ + q · Φ + q2

8mc2 (~r × ~B)2 − sgn(q)µ
~
~B · (~̂L+ 2~̂S)

In diesem Ausdruck steht Φ für das elektrische Potential, der Term danach bildet
das Zentrifugalpotential und der letzte Term gibt die nun vollständige Kopplung
von Bahndrehimpuls und Spin mit dem äußeren Magnetfeld wieder.
Aus dem anomalen magnetischen Moment folgt: Elektron ist keine geladene Kugel
mit Eigendrehimpuls ~s

~S

Spinpräzession: Wir betrachten nun nur die internen Freiheitsgrade.

sgn(q) = −1 ~B = (0, 0, B)

Ĥ = 2µ
~
BŜz

Die Eigenzustände erhalten wir sofort aus der einfachen Matrixdarstellung von ~Sz,
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die Eigenwerte sind dann offensichtlich:

|χ+〉 =
(

1
0

)
E+ = µB

|χ−〉 =
(

0
1

)
E− = −µB

Zeitentwicklung einer Superposition:

|χ(t = 0)〉 = α · |χ+〉+ β · |χ−〉

|χ(t)〉 = α · e
iµB
~ t|χ+〉+ β · e

−iµB
~ t|χ−〉

Speziell:

α = β = 1√
2

|χ(t = 0)〉 Eigenzustand von σx mit mx = +1

⇒ 〈σx(t)〉 = 1
2(e−iω0t, eiω0t)

(
0 1
1 0

)
·
(

eiω0t

e−iω0t

)

= 1
2 cos(2ω0t)〈σy(t)〉

= 1
2 sin(2ω0t) ω0 = µB

~

~Bz

~Sz ~S

ω0 x

y

Eine solch oszillierende Schwankung der beiden Werte ist uns nicht unbekannt: Wir
identifizieren dies als eine Präzessionsbewegung, in diesem Fall präzediert also der
Spin um die ~Sz-Achse, in der auch das B-Feld verläuft.
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8.5 Spin-Bahn Kopplung

Feinstruktur bei H-artigen Atomen (Wasserstoffartigen):

~̂S −→ magnetisches Moment −→ Magnetfeld
Wechsel-
wirkung←→ Bahn-magnetisches Moment

Ĥ = − ~2

2m∆− Z e2

r
+ f(r)︸ ︷︷ ︸

aus rel.
O.M

~̂L · ~̂S = H0 + ĤSB

ĤSB = f(r)~̂L · ~̂S Spin-Bahn-Komponente

Nebenrechnung:

~̂J = ~̂L+ ~̂S

~̂J2 = L̂2 + Ŝ2 + 2~̂L · ~̂S

L2, S2 kommutiert mit allen Komponenten von ~L und ~S !
Ĵ2, Ĵz, L̂

2, Ŝ2 kommutieren mit ~̂L · ~̂S:

ĤSB = f(r)
2 (Ĵ2 − L̂2 − Ŝ2)

⇒Wir betrachten die Spin-Bahn-Kopplung natürlich in der gekoppelten Basis |j,m, l, s〉
Eigenzustände von Ĥ0 :

φE(~r) = Unjl(r)
r

φjmls = 1
2
↗ j = l + 1

2

↘ j = l − 1
2

Was sind Eigenzustände von Ĥ0 + ~HSB ?{
− ~2

2m
d2

dr2 + ~2

2m
l(l + 1)
r2 − Z e2

r
+ ~2

2

[
j(j + 1)− l(l + 1)− 3

4

]
· f(r)

}
· Unjl(r)

= E Unjl(r)
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j = l + 1
2 :

Abkürzung: U+
nl(r) [

− ~2

2m ·
d2

dr2 + ~2

2m ·
l(l + 1)
r2 − Ze2

r
+ ~

2 lf(r)︸ ︷︷ ︸
Spin-Bahn-
Kopplung

]
· U+

nl(r) = E U+
nl

j = l − 1
2 [

− ~2

2m ·
d2

dr2 + ~2

2m ·
l(l + 1)
r2 − Ze2

r
− ~

2(l + 1)f(r)
]
· Unl(r) = E Unl

Näherung:

f(r) −→ 〈f(r)〉nl = 〈Unl(r)|f(r)|Unl(r)〉 = C = const
〈Unl(r)| ist ohne SB-Kopplung

Enlj = En + ~2

2 〈f(r)〉︸ ︷︷ ︸
=0

+l , j = l + 1
2

−(l + 1) , j = l − 1
2

Aufspaltung der Energieniveaus (Feinstruktur)

1

2

j = l + 1
2

j = l − 1
2

En

Bemerkung:

Auch der Kern hat einen Spin und damit ein magnet. Moment. Dieser Kernspin
wird als ~̂I bezeichnet. Es entsteht eine Kopplung von ~̂I an ~̂J . Dies ist Ursache der
Hyperfeinstrukturaufspaltung.
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9 Schrödinger-,Heisenberg- und
Wechselwirkungsbild

9.1 Schrödingerbild

20. Vorlesung Physik: Zustand im Hilbertraum; Observable; Zeitentwicklung ist
eine unitäre Evolution

i~ d
dt

∣∣∣∣ϕ(t)
〉

= Ĥ
∣∣∣∣ϕ(t)

〉

Formale Lösung durch einen unitären Operator

Û(t, t0) = Û(t− t0)

Dies gilt jedoch nur wenn der Hamiltonoperator (Ĥ) nicht Zeitabhängig ist

ψ(t) = Û(t, t0) |ψ(t0)〉

Es gilt Û † = Û−1 damit das Skalarprodukt erhalten bleibt

〈ψ(t) |φ(t)〉 = 〈Ûψ(to) | Ûφ(t0)〉 = 〈ψ(t0) | Û †Û︸ ︷︷ ︸
1

|φ(t0)〉

= 〈ψ(t0) |φ(t0)〉

Û(t0, t0) = 1

Wie sieht Û explizit aus?

i~ d

dt
Û(t, t0) = Ĥ Û(t, t0)
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Û(t, t0) = exp
{
− i
~
Ĥ(t, t0)

}

Generator der Zeitentwicklung:

t = t0 + δ t Û(t, t0) = 1− i
~
Ĥ δ t

Die Auswertung von e− i
~ Ĥt ist nicht trivial doch falls Ĥ|En〉 = En|En〉 bekannt ist

dann wird es sehr einfach

Û(t, t0) =
∑
n

e− i
~En(t−t0) |En〉〈En|

Û(t, t0)|φ〉 =
∑
n

ee− i
~En(t−t0) |En〉 〈En|φ〉︸ ︷︷ ︸

Basisdarstellung

Wie sieht die Zeitentwicklung von Observablen aus?

〈Â〉t =? = 〈ψ(t) | Â |ψ(t)〉

= 〈Ûψ(t0) | Â | Ûψ(t0)〉

= 〈ψ(t0) | Û †ÂÛ |ψ(t0)〉

= 〈ψ(t0) | Û−1(t, t0)ÂÛ(t, t0) |ψ(t0)〉

Dies entspricht einem Erwartungswert im Zustand zum Zeitpunkt t0

Âk(t) = Û−1(t, t0)ÂÛ(t, t0) Unitär transformierter Operator

Wie wir sehen, gib es eine andere Betrachungsweise der Dynamik in der Quantenme-
chanik, nämlich eine, in der die Operatoren selbst die Zeitentwicklung beinhalten.
Dies führt zum:

9.2 Heisenbergbild

Operatoren lassen sich wie folgt im Heisenbergbild schreiben

ÂH(t) ≡ Û−1(t, t0)ÂÛ(t, t0)

Erwartungswerte werden im Zustand |ψ(t0)〉 = constt ausgewertet (Aus Schrödin-
gergleichung, konjugiert transponiert). Was ist die Bewegungsgleichung für die Ope-
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ratoren?

d

dt
ÂH(t) =

(
d

dt
Û−1(t, t0)

)
Â Û(t, to) + Û−1(t, t0) Â

(
d

dt
Û(t, t0)

)

= i
~
[
Û−1ĤÂÛ − Û−1ÂĤÛ

]
= i

~
[
Û−1ĤÛÛ−1ÂÛ − Û−1ÂÛ Û−1ĤÛ

]
= i

~
[
ĤÂH(t)− ÂH(t)Ĥ

]
= i

~
[
Ĥ, ÂH(t)

]
Solange A nicht explizit zeitabhängig ist.

⇒ d

dt
ÂH(t) = i

~
[
Ĥ, ÂH(t)

]

Dies ist die Allgemeine Bewegungsgleichung im Heisenbergbild. Für die fundamen-
talen Operatoren r̂, p̂ gilt:

d

dt
r̂H = i

~
[Ĥ, r̂H ] d

dt
p̂H = i

~
[
Ĥ, p̂H

]
Dies ist sehr analog zur kassischen Mechanik nur das aus dem Kommutator eine
Poisson-Klammer wird

d
dt~r = i

~
{H, ~r} d

dt ~p = i
~
{H, ~p}

Also folgt für die Analogie:

klassische Mechanik ⇔ Quantenmachanik
{·, ·} ⇔ 1

i~ · [·, ·]
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9.3 Wechselwirkungsbild

Aufteilung der Dynamik auf Zustände und Operatoren
oft hat man

Ĥ = Ĥ0 + Ĥ1

mit Ĥ0 := „freier“ Hamiltonoperator
Ĥ1 := Wechselwirkungsoperator

Ĥ0 hat z.B. bekanntes Spektrum

dann kann

Û0(t, t0) = e− i
~ Ĥ0(t−t0)

explizit angewendet werden

es gilt:

|ψ(t)〉 = Û(t, t0)|ψ(t0)〉

U(t, t0) ist dabei der Zeitentwicklungsoperator des gesamten Hamiltonoperators, U0
ist nur der, der H0 enthält, mit:

Û(t, t0) = e− i
~ Ĥ(t−t0)

Nun definieren wir den Zeitentwicklungsoperator im Wechselwirkungsbild:

ÛI(t, t0) ≡ Û−1
0 (t, t0)Û(t, t0)

sowie:

|ψ(t)〉 = ÛI(t, t0)|ψ(t0)〉 ← Zeitentwicklung gemäß Ĥ1 (42)
ÂI(t) = Û−1(t, t0) · ÂÛ(t, t0) ← Zeitentwicklung gemäß Ĥ0 (43)
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es gilt offensichtlich die Aquivalenz der Bilder

〈Â〉t =

Schrödingerbild︷ ︸︸ ︷
〈ψ(t) | Â |ψ(t)〉 =

Heisenbergbild︷ ︸︸ ︷
〈ψ(t0) | Û−1 Â Û︸ ︷︷ ︸

ÂI(t)

|ψ(t0)〉

= 〈ÛIψ(t0) | ÂI(t) | ÛIψ(t0)〉

Wechselwirkungsbild

= 〈ψ(t0) | Û−1
I Û−1

0︸ ︷︷ ︸
Û−1

Â Û0 ÛI︸ ︷︷ ︸
Û

|ψ(t0)〉

Differentialgleichung für |ψI(t)〉 bzw. ÂI(t)

d
dtÂI(t) =

(
d
dtÛ

−1
0

)
Â Û0 + Û−1

0 Â

(
d
dtÛ0

)
= i

~
[
Ĥ0, ÂI(t)

]

⇔ d
dtÂI(t) = i

~
[
Ĥ0, ÂI(t)

]

d
dt |ψ(t)〉 = d

dtÛI(t, t0) |ψ(t0)〉 =?

d
dtÛI = d

dt
{

e i
~ Ĥ0(t−t0) · e− i

~ Ĥ(t−t0)
}

= i
~

[(
Ĥ0 Û

−1
0 Û︸ ︷︷ ︸
ÛI

)
−
(
Û−1

0 Ĥ 1︸︷︷︸
Û0Û−1

Û
)]

= i
~
[(
Ĥ0 ÛI

)
−
(
Û−1

0 Ĥ Û0ÛI
)]

nun ist

Û−1
0 Ĥ Û0 =

(
Û−1

0 Ĥ0 Û0
)

+
(
Û−1

0 Ĥ1︸︷︷︸
mit (43)

Û0

)

= Ĥ0 + Ĥ1(t)

d
dtÛ1 = − i

~
Ĥ1(t)Û1
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Nebenrechnung:

d
dt = −i f(t) y

1
y

d
dty = −i f(t)

d
dt ln(y) = −i f(t)

ln(t)− ln(t0) = −i
∫ t

t0
dτ f(τ)

y(t) = y(t0) exp
{
−i
∫ t

t0
dτ f(τ)

}

naiv würde man sagen:

((((
((((

(((
((((

((

ÛI(t, t0) = ÛI(t, t0) e−
i
~

∫ t
t0

dτĤ1I(τ)
falsch!

(44)

e
∑
i

âi ?=
∏
i

eâi (45)

da i.A.
[
Ĥ1(t), Ĥ1(t′)

]
6= 0

U1(t+ δt, t) = 1− i
~
Ĥ1(t) δt

U1(t+ 2δt, t) = Û1(t+ 2δt, t+ δt) · U1(t+ δt, t)

= 1− i
~
(
Ĥ1(t+ δt) + Ĥ1(t)

)
δt+

(
− i
~

)2
Ĥ1(t+ δt) Ĥ1(t) δt2

Zeitgeordnet!
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9.3.1 Dyson´sche Reihe

Û1(t, t0) = 1 +
(
− i
~

) ∫ t

t0
d τ Ĥ1(τ)

+
(
− i
~

)2 ∫ t

t0
dτ

∫ τ

t0
dτ ′ Ĥ1(τ) Ĥ1I(τ ′)

+
(
− i
~

)3 ∫ τ

t0
dτ

∫ τ ′

t0
dτ ′

∫ t

t0
dτ ′′ Ĥ1(t) Ĥ1(τ ′) Ĥ1(τ ′′)

+ ...

mit τ ≥ τ ′ ≥ τ ′′

es tauchen nur Zeitgeordnete Operatorprodukte auf!

9.3.2 Dyson´scher Zeitordnungsoperator

Definition:

TÂ(t1) B̂(t2) ≡
Â(t1) B̂(t2) t1 > t2

B̂(t2) Â(t1) t1 < t2

TÂ(t2) B̂(t2) ≡
B̂(t2) Â(t1) t1 > t2

Â(t1) B̂(t2) t1 < t2

damit

ÛI(t, t0) = T exp
{
− i
~

∫ t

t0
dτ Ĥ1I(τ)

}

Û−1
I (t, t0) = T exp

{
+ i
~

∫ t

t0
dτ Ĥ1I(τ)

}
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10 Näherungsverfahren

21.Vorlesung Für den Hamilton des harmonischen Oszillators ist uns die exakte
Lösung wohlbekannt. Wird nun eine kleine Störung hinzugefügt (was "klein"heißt
sehen wir noch), so würden wir erwarten, dass sich die Eigenenergien des Systems
nicht allzu viel ändern, wir das Problem also nicht komplett von vorne angehen
müssen sondern lediglich die vorherigen Lösungen leicht abändern können. Mit dem
Ermitteln dieser Abänderungen beschäftigt sich die Störungstheorie.

Ĥ = p̂2

2m + m

2 ω
2x̂2

En = ~ω
(
n+ 1

2

)
jetzt:

Ĥ = p̂2

2m + m

2 ω
2x̂2 + 0, 001x̂4

10.1 Zeitunabhängige Störungstheorie von nicht
entarteten Zuständen

Problem:
Wir betrachten also einen Hamiltonoperator, der aus zwei Teilen besteht: der Stör-
hamilton H1 ist dabei neu.

Ĥλ = Ĥ0 + λĤ1

• im gewissen Sinne sei Ĥ1 klein −→ formaler Parameter λ (später λ = 1 )

• Eigenzustand und Eigenwert von Ĥ0 seien bekannt: λ −→ 0 :Problem gelöst.
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jetzt: Näherungsverfahren als Reihenentwicklung nach λ bekannt:

Ĥ0 |φ(0)
n 〉 = E(0)

n |φ0
n〉

Zuerst nehmen wir an, die Lösung der Hamilton weise keine Entartung auf.

|φ(0)
n 〉 6= |φ(0)

m 〉 ⇒ E(0)
n 6= E(0)

m

Da die Störung klein sein soll, können wir einen Reihenansatz für die neuen Eigen-
zustände wählen.

|φ̃n〉 = |φ(0)
n 〉+ λ|φ(1)

n 〉+ λ2|φ(2)
n 〉+ ...

nicht normiert:

|φn〉 = |φ̃n〉
‖|φ̃n〉‖

En = E(0)
n + λE(1)

n + λ2E(2)
n + ...

Einsetzen von |φ̃〉 und En in zeitunabhängige Schrödingergleichung:(
Ĥ0 + λĤ1

)(
|φ(0)
n 〉+ λ|φ(1)

n 〉+ λ2|φ(2)
n 〉...

)
=
(
E(0)
n + λE(1)

n + λ2E(2)
n + ...

)(
|φ(0)
n 〉+ λ|φ(1)

n 〉+ ...
)

wobei gilt das Ĥ0 und Ĥ1 auf |φ(n)
n wirken wie folgt:

Ĥ0 auf |φ(1)
n 〉, ..., Ĥ0 auf λ2, ..., Ĥ1 auf |φ(0)

n 〉, ..., Ĥ1 auf |φ(1)
n 〉

und:
E(0)
n auf |φ(1)

n 〉, ..., λ auf |φ(1)
n 〉, ..., λ2 auf |φ(0)

n 〉

Wir sortieren nun nach Potenzen von λ:

λ0 : (Ĥ0 − E(0)
n ) |φ(0)

n 〉 = 0X → gelöst, ungestörtes Problem (46)

λ1 : (Ĥ0 − Ê(0)
n ) |φ(1)

n 〉 = −(Ĥ1 − Ê(1)
n ) |φ(0)

n 〉 (47)

λ2 : (Ĥ0 − E(0)
n ) |φ(2)

n 〉 = −(Ĥ1 − E(1)
n ) |φ(1)

n 〉+ ∆E(2)
n |φ(0)

n 〉 (48)

168



21.Vorlesung Quantentheorie Quantenmechanik

10.1.1 1. Ordnung Störungstheorie

• multipliziere Gleichung 47 mit 〈φ(0)
n | :

〈φ(0)
n | (Ĥ0 − Ê(0)

n ) |φ(1)
n 〉︸ ︷︷ ︸

=0

= −〈φ(0)
n | (Ĥ1 − E(1)

n ) |φ(0)
n 〉

= −〈φ(0)
n | Ĥ1 |φ(0)

n 〉+ E(1)
n

daraus folgt schließlich:

E(1)
n = 〈φ(0)

n | Ĥ1 |φ(0)
n 〉 (49)

die erste Energiekorrektur ist also der Erwartungswert des Störoperators Ĥ1 im
Eigenzustand des ungestörten Hamiltonoperators Ĥ0.

• multipliziere nun Gleichung (47) mit 〈φ(0)
m | wobei m 6= n gilt

〈φ(0)
m | (Ĥ0 − E(0)

n ) |φ(1)
n 〉 = −〈φ(0)

m | (Ĥ1 − E(1)
n ) |φ(0)

n 〉

(E(0)
m − E(0)

n )︸ ︷︷ ︸
6=0

da keine Entartung

〈φ(0)
m |φ(1)

n 〉 = −〈φ(0)
m | Ĥ1 |φ(0)

n 〉

Es gilt dabei 〈φ(0)
m |φ(0)

n 〉 = 0, somit gilt insgesamt:

〈φ(0)
m |φ(1)

n 〉 = 〈φ
(0)
m | Ĥ1 |φ(0)

n 〉
E

(0)
n − E(0)

m

∀m 6= n (50)

Mit diesen Koeffizienten bietet sich natürlich eine Entwicklung in dieser Basis an,
mit der wir die erste Korrektur zum Eigenzustand darstellen können:

⇒ |φ(1)
n 〉 =

∑
m

|φ(0)
m 〉 〈φ(0)

m︸ ︷︷ ︸
=1

|φ(1)
n 〉 (51)

hier ist die Voraussetzung, dass gilt: m 6= n ausreichend, d.h. es gilt oBdA
〈φ(1)

n |φ(0)
n 〉 = 0, da |φ̃n〉 bereits |φ(0)

n 〉 enthält.

|φ(1)
n 〉 =

∑
m 6=n

〈φ(0)
m | Ĥ1|φ(0)

n 〉
E

(0)
n − E(0)

m

|φ(0)
m 〉 (52)

• Da diese Summe über m 6= n geht sehen wir, dass die erste Korrektur zum
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Eigenzustand proportional zu den nicht diagonalen Matrixelementen des Ha-
miltons ist.

• Korrektur wird groß, falls gilt: E(0)
n ≈ E(0)

m

10.1.2 2. Ordnung Störungstheorie

• Multiplikation von Gleichung (48) mit 〈φ(0)
n |

〈φ(0)
n | (Ĥ0 − E(0)

n ) |φ(2)
n︸ ︷︷ ︸

=0

〉 = −〈φ(0)
n | (Ĥ1 − E(1)

n ) |φ(1)
n 〉+ E(2)

n

Durch Umstellen und Einsetzen der Relation für die erste Korrektur des Zu-
standes 52 erhält man:

mit:

E(2)
n =

∑
m 6=n

〈φ(0)
n | Ĥ1 |φ(0)

n 〉 〈φ(0)
m | Ĥ1|φ(0)

n 〉
E

(0)
n − E(0)

m

=
∑
m 6=n

| 〈φ(0)
m | Ĥ1 |φ(0)

n 〉 |2

E(0)
n − E(0)

m︸ ︷︷ ︸
Falls En kleinste Energie

Nenner negativ <0

Da der Zähler nur positiv oder Null sein kann sehen wir, dass der Grundzustand
durch eine kleine Störung in jedem Fall abgesenkt wird: Da En(0) dann die nied-
rigstmögliche Energie ist, wird jeder Korrekturterm negativ.
Beispiel: (1D anharmonischer Oszillator)

Ĥ = P̂ 2

2m + m

2 ω
2
0x̂

2︸ ︷︷ ︸
Ĥ0

+α · m
2ω2

0
~

x̂4

Ĥ0 = ~ω
(
â+ Â+ 1

2

)
â |n〉 =

√
n |n− 1〉

x̂ =
√

~
2mω0

(
â+ â†

)
â† |n〉 =

√
n+ 1 |n+ 1〉

Ĥ1 = α · ~ω0

4
(
â+ â†

)4

= α · ~ω4
(
â4 + â†

4 + â2â†
2 + 4â†ââ†â+ 4â†â+ 2â†â3 + ...+ 1

)
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Wir wollen nun 〈n | Ĥ1 |n〉 auswerten, dabei bleiben nur Beiträge von Termen mit
gleicher Anzahl von â und â† existent.

⇒ E(1)
n = α · 3

4 ~ω0 (2n(n+ 1) + 1) (53)

Wann war die Störungstheorie nun gut?
Sie war gut, wenn gilt: E(1)

n < |E(0)
n −E

(0)
n+1|, also wenn die Energie höherer Ordnung

zur Energie nur kleine Differenzen aufweist.
⇒ im Allgemeinen gilt dies (leider) nicht:
So zu Beispiel beim harmonischen Ostilator: Die Eigenzustände sind äquidistand,
die Differenz im Nenner der Korrekturen bleiben also gleich groß und der Bruch
konvergiert nie gegen Null. Im Zweifel muss in Betracht gesogen werden, dass die
Annahme kleiner Abweichung nicht mehr gerechtfertigt und daher die Reihenent-
wicklung nach λ ungenügend ist.

x2

y
x4

x

x2

x4

x

ln(y)

10.2 Zeitunabhängige Störungstheorie entarteter
Zustände

〈φ(0)
m |φ(1)

n 〉 = 〈φ
(0)
m | Ĥ1 |φ(0)

n 〉
E0
n − E0

m︸ ︷︷ ︸
wann nicht 0?

−→∞ �

Bestimme Entartungsgrad:

{|φ0
n,α〉} mit: α = 1, 2, ..., q (54)

seien alle Eigenzustände von Ĥ0 zum Eigenwert E(0)
n , wie beheben wir nun das

Problem, dass E(0)
n − E(0)

m = 0 ist?
⇒ Es gibt kein Problem, falls gleichzeitig auch: 〈φ(0)

m | Ĥ1 |φ(0)
n 〉 = 0 ist.

Wir suchen also nun nach einer Basis:

|ψ(0)
n,α〉 ←→ |φ(0)

n,α〉
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so dass:

〈ψ(0)
n,α | Ĥ1 |ψ(0)

n,β〉 ∼ δα,β (Diagonalisierungsproblem)

d.h: {|ψ(0)
n,α〉} diagonalisiert Ĥ1 im Unterraum zur Energie E(0)

n (Dass diese Diagona-
lisierung möglich ist liegt daran, dass H = H0 + H1 und H=0 selbstadjungiert sind
und damit H1 ebenfalls)
Man finde eine Basis:

〈ψ(0)
n,α|Ĥ1 |ψ(0)

n,β〉 = δα,β〈ψ(0)
n,α | Ĥ1|ψ(0)

n,α〉

Ansatz:

|ψ̃n,α〉 = |ψ(0)
n,α〉+ λ|ψ(1)

n,α〉+ ...

En,α = E(0)
n + λE(1)

n,α

Einsetzen in stationäre Schrödingergleichung liefert:

λ0 : (Ĥ0 − E(0)
n ) |ψ(0)

n,α〉 = 0X gelöst (55)

λ1 : (Ĥ0 − E(0)
n ) |ψ(1)

n,α〉 = −(Ĥ1 − E(1)
m,α) |ψ(0)

n,α〉 (56)

mit 〈ψ(0)
n,β|· Gleichung (56) und da |ψ(0)

n,β〉 eine ONB folgt daraus:

0 = −〈ψ(0)
n,β | Ĥ1 |ψ(0)

n,α〉 − δα,βE(1)
n,α

⇒ E(1)
n,α = 〈ψ(0)

n,α | Ĥ1 |ψ(0)
n,α〉 (57)

• Korrekturen geben in der Regel q verschiedene Werte α = 1, 2, ..., q. Daraus
folgt eine (teilweise) Aufhebung der Entartung.

22.Vorlesung Wiederholung: (Zeitunabhängige Störungstheorie entarte-
ter Zustände)

geg: Ĥ = Ĥ0 + λĤ1 mit λ formaler Parameter, klein. Wir wissen die Lösung des
ungestörten Problems:

Ĥ0 |φ(0)
m,α〉 = E(0)

m E(0)
m 6= E

(0)
m′ mit m 6= m′
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Wir müssen dabei beachten, dass für α (Index für die verschiedenen Zustände) α =
1, .., q gilt. Im nicht entarteten Fall, gilt also: q = 1. Ein Reihenansatz liefert:

Em = E(0)
m + λE(1)

m + λ2E(2)
m ...

|φm〉 = |φ(0)
m 〉+ λ|φ(1)

m 〉+ λ2|φ(2)
m + ... nicht normierter Zstd.

OBdA ist anzunehmen, dass gilt:

〈φ(0)
m |φ(1)

m 〉 = 0

⇒ |φ(1)
m 〉 =

∑
n 6=m

c(m)
n |φ(0)

n 〉 c(m)
n = 〈φ

(0)
n | Ĥ1 |φ(0)

m 〉
E

(0)
n − E(0)

m

E(1)
n = 〈φ(0)

n |Ĥ1 |φ(0)
n 〉

E(2)
n =

∑
n6=m

〈φ(0)
n | Ĥ1 |φ(0)

m 〉 〈φ(0)
m | Ĥ1|φ(0)

n 〉
E

(0)
n − E(0)

m

...

Mit Entartung: d.h. q > 1, hier ist:

〈φ(0)
n,α | Ĥ1 |φ(0)

n,β〉
E

(0)
n − E(0)

n

=∞ Problem!

Obwohl |φ(0)
n,β〉 6= |φ(0)

n,α〉, das heißt hier gibt es ein Problem!

Ende Wiederholung

Lösung: alle Zustände {|φ(0)
m,α〉} mit α = 1, ..., q bilden q − dim Unterraum von

Eigenzuständen zum selben Eigenwert von Ĥ0 : E(0)
m

• Jede Linearkombination aus den {|φ(0)
m,α〉} ist wiederum ein Eigenzustand von

Ĥ0 zum Eigenwert E(0)
m d.h. wir dürfen:

|ψ(0)
m,α〉 = Uα,β |φ(0)

m,β〉

setzen. mit U uitäre q × q Matrix
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Jetzt wählen wir Uα,β bzw. Û so, dass:

〈ψ(0)
m,α | Ĥ1|ψ(0)

m,β〉
!= δα,β 〈ψ(0)

m,α | Ĥ1|ψ(0)
m,α〉︸ ︷︷ ︸

Eigenwerte von Ĥ1

in {|φ(0)
m,α〉}

Das heißt, H wird durch U diagonalisiert.

Jetzt:

cm,βn,α =


〈ψ(0)
n,α | Ĥ1 |ψ(0)

m,β
〉

E
(0)
n −E

(0)
m

für n 6= m

0 für n = m und α 6= β

0 für n = m und α = β

En,α = E(0)
n + 〈ψ(0)

n,α | Ĥ1 |ψ(0)
n,α〉 (58)

wobei E0
n q-Fach entartet ist und Ĥ1 im Allgemeinen von α abhängt, d.h. das die

Entartung (teilweise) aufgehoben wird.

∆En,α = En,α − E(0)
n = 〈ψ(0)

m,α | Ĥ1 |ψ(0)
n,α〉︸ ︷︷ ︸

Eigenwerte der
q×q Matrix

(Korrekturen)

det
[
〈φ(0)

n,α | Ĥ1 |φ(0)
m,β 〉 − λδα,β

]
= 0 Sekulargleichung (59)

Zum Finden der Eigenwerte errechnen wir folgende Determinante:

λ ≡ Eigenwerte

det


H11

1 − λ H12
1 H13

1 · · · H1q
1

H21
1 H22

1 − λ H23
1 · · · H2q

1
... . . . ...

Hq1
1 · · · · · · Hqq

1 − λ

 = 0

Diese Gleichung ist eine algebraische Gleichung q-ter Ordnung mit q Lösungen:
λ1...λq
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E(0)
n

E(0)
n + λ1

E(0)
n + λ2

E(0)
n + λ3

E(0)
n + λq

im Allgemeinen Aufhebung der Entartung, falls wir Glück haben sind alle λq ver-
schieden ⇒ Entartung vollständig aufgehoben, höhere Ordnung wie im ungestörten
Fall.

Beispiel: (linearer Stark-Effekt im H-Atom für n=2)

Der Stark-Effekt ist das elektrische Analogon zum Zeeman-Effekt und bewirkt eben-
falls eine Aufspaltung der Energieniveaus bei äußerem elektrischen Feld.
ohne Schwerpunkt:

Ĥ = Ĥ0 − e · ~E · ~̂r︸ ︷︷ ︸
=Ĥ1

~E = E · ~ez

Dipolmoment: − e · ~̂r = ~̂d

Ohne Spin:

Ĥ0 |n, l,m〉 = En |n, l,m〉 Es gibt Entartung!

Mit n=Hauptquantenzahl, l=Gesamtdrehimpuls (da ohne Spin), m= Drehimpuls in
z-Richtung

En = − e2

2a0
· 1
n2

Ortsdarstellung in Kugelkoordinaten:

Ĥ = Ĥ0 − eE r cos(ϑ)

Bei n = 1→ Trivial, da l = n− 1 = 0⇒ keine Entartung!
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n = 2 gilt:

ψ2,0,0 = 1√
2a3

0

(
1− r

2a0

)
e−

r
2a0 Y 0

0 (ϑ, ϕ)

ψ2,1,m = 1√
24a3

0

r

a0
e−

r
2a0 Y m

1 (ϑ, ϕ)

Notation:

|1〉 := |2, 0, 0〉 |2〉 := |2, 1, 0〉 |3〉 := |2, 1, 1〉 |4〉 = |2, 1,−1〉

Matrixelemente von Ĥ1 in {|1〉, ..., |4〉}

〈i |H1 | i〉 ∼
∫ π

0
dϑ sin(ϑ)︸ ︷︷ ︸

Integral

cos(ϑ)︸ ︷︷ ︸
H1

|Y m
l |2 = 0

außerdem:

〈n, l,m|Ĥ1|n, l′,m′〉 ∼
∫ 2π

0
dϕ ym

∗

l ym
′

l′

∼
∫ 2π

0
dϕ e−i(m−m′)ϕ ∼ δmm′

Einzig verbleibende Matrixelemente sind:

〈1 | Ĥ1 | 2〉 = 〈2 | Ĥ1 | 1〉 = −3e · E · a0

Sekulargleichung:

det


−λ −3eEa0 0 0

−3eEa0 −λ 0 0
0 0 −λ 0
0 0 0 −λ

 = λ2
(
λ2 − (3eEa0)2

) != 0 (60)

Eigenwerte: λ1,2 = 0λ± = ±3eEa0
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n=2

3eEa0

−3eEa0

Abschließend wollen wir uns noch einmal die Frage stellen, in welchen Fällen die
Störungstheorie brauchbare Ergebnisse erzielen wird.
Energiekorrekturen müssen mit steigender Ordnung kleiner werden, die Reihe der
Korrekturterme muss konvergieren. Zudem müssen die Energiekorrekturen kleiner
als die Differenz zweier ungestörter Eigenernergien sein.
Ein weiteres Verfahren wäre:

10.3 Ritzsches Variationsverfahren

Die Störungstheorie setzt die Kenntnis der Lösung des ungestörten Problems voraus.
Was ist wenn wir keine Kenntnis über die Lösung des ungestörten Problems haben?
Wähle eine diskrete ONB {|n〉} mit n = 0, 1, 2, · · ·

Satz: Falls Ĥ von unten beschränkt

〈ψ | Ĥ |ψ〉
〈ψ |ψ〉

≥ E0 (61)

Wobei E0 kleinster Eigenwert von Ĥ1 ist.

|ψ〉 ist beliebiger unnormierter Zustand 6= |0〉
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Beweis:

|ψ〉 =
∑
n

〈n |ψ〉 |n〉

〈ψ | Ĥ |ψ〉 =
∑
n,m

〈n | Ĥ |m〉︸ ︷︷ ︸
En δnm

〈m |ψ〉〈ψ |n〉

sei nun |n〉 eine unbekannte Eigenbasis von Ĥ

=
∑
n

En | 〈n |ψ〉 |2 ≥ E0
∑
| 〈n |ψ〉 |2︸ ︷︷ ︸
〈ψ |ψ〉

Daraus folgt das:

〈ψ | Ĥ|ψ〉
〈ψ |ψ〉

≥ E0

�
Ansatz für Näherungslösung:

|ψ〉 = |ψ̃(α, β, γ, ...)〉 α, β, γ, ... ∈ C endlich (überschaubar viele) ,

Ĥ(α, β, γ, ...) := 〈ψ̃ | Ĥ | ψ̃〉
〈ψ̃ | ψ̃〉

Minimum von Ĥ bei Variation der Parameter α, β, γ, ... liefert mehr oder weniger
gute obere Schranke für E0

∂H̄

∂α
= ∂H̄

∂β
= ...

!= 0 α = α0

β = β0

γ = γ0

Bemerkung: α, β, γ, ... komplexe Zahlen das heißt wir müssen sowohl Realteil
Re(α) also auch Imaginärteil Im(α) betrachten:

⇒ ∂H̄

∂Re(α) = ∂H̄

∂Im(α) = 0 etc.

Daraus folgt für uns:
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|ψ̃(α0, β0, γ0, ...)〉
‖ |ψ̃〉 ‖

≈ |E0〉 (62)

E0 ≈ H̄(α0, β0, γ0, ...) (63)

streng genommen gilt: E0 ≤ H̄(α0, β, γ, ...)

Beispiel (1-D-Box):

V (x) =
0 |x| < a

∞ |x| ≥ a

0 a-a

• exakte Lösung:

ψ0(x) = 1√
a

cos
(
πx

2a

)

E0 = ~2

2m ·
π2

a2

• Variationsansatz:

ψλ(x) = aλ − |x|λ |x| ≤ a

diese erfüllen die Randbedingungen ψΩ(±a) = 0
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Ĥ = p̂2

2m

H̄(λ) = ~2

2m

∫ a
−a

(
aλ − |x|λ

)
dx d2

dx2

(
aλ − |x|λ

)
∫ a
−a (aλ − |x|λ)2 dx

= ... = (λ+ 1) · (2λ+ 1)
2λ− 1 · ~2

4ma2

Nun setzen wir die Ableitung von H̄ = 0 um das Minimum zu erhalten:

∂H̄(λ)
∂λ

= 0⇒ ...⇒ λ0 = 1 +
√

6
2 ≈ 1, 72

H̄(λ = λ0) = ... =
(

5 + 2
√

6
π2

)
E0 ≈ 1, 00298E0

Damit ist das Ergebnis recht gut mit einer Abweichung von gerade mal 0, 2h. Das
Ergebnis sollte größer 1 sein, da man nicht unterhalb der Schranke (E0, Grundzu-
stand) eine sinnvolles Ergebnis erhalten kann.

10.3.1 endlicher Superpositionsansatz

|ψ〉 =
N∑
n=1

αn |φn〉 {|φn〉} „geeignete Basis“

⇒ H̄ = 〈ψ(α1, ..., αN) | Ĥ |ψ(α1, ..., αn)〉

∂H̄

∂αn
= 0 ∂H̄

∂α∗n
= 0 äquivalent zu Re(αn), Im(αn)

H̄ =
∑
n,m α

∗
nαmHnm∑

n,m α∗nαm〈φn|φm〉

∣∣∣∣∣∣
min

≈ E0
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Wenn nun aber ∂H̄
∂α∗n

= 0⇒ wann gibt es dann eine Lösung?

∑
m

(
H̄nm − E0〈φn |φm〉

)
αm = 0

⇒ lineares Gleichungssystem in αm ist homogen

det

H̄nm − E0 〈φn|φm〉︸ ︷︷ ︸
δnm

 = 0

Der kleinste Eigenwert ist die beste Schranke für die Grundzustandsenergie.

23. Vorlesung

10.4 Adiabatische Näherung,Berry Phase

Bisher hatten wir immer einen zeitunabhängigen Hamiltonoperator betrachtet. Jetzt
werden wir zu einem zeitabhängigen Hamiltonoperator übergehen wobei hier nur
eine „langsame“Abhängigkeit bestehen soll.
Wir betrachten:

Ĥ(R), R = R(t) : Parameter des Hamiltonoperator

Instantane Eigenzustände/Eigenwerte:

Ĥ(R(t))|n(R(t))〉 = En(R(t))|n(R(t))〉 (64)

Adiabatisches Theorem:

Falls R(t) hinreichend langsam von der Zeit t abhängig ist, wird ein anfänglich
in einem instantanen Eigenzustand präpariertes System in diesem Zustand
verbleiben.

Es gilt:

|ψ(t)〉 =
∑
n

cn(t) eiαn(t)
∣∣∣∣n(R(t))

〉
(65)

mit

αn(t) = −1
~

∫ t

0
dτ En(R(τ)) dynamische Phase (66)
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Einsetzen von 65 in Schrödingergleichung 64 liefert:

Ĥ(R(t))|n(R(t))〉 = i~ d
dt

∣∣∣∣n(R(t))
〉

=

���
���

���
���

���
���

���
��:= 0∑

n

ċn(t) eiαn(t)
∣∣∣n(R(t))

〉
+cn(t) eiαn(t)

∣∣∣ṅ(t)
〉

+ i α̇n(t)︸ ︷︷ ︸
−En(t)

~

cn(t) eiαn(t)
∣∣∣n(t)

〉

=
���

���
���

���:
= 0

− i
~
∑
n

cne
αnt Ĥ

∣∣∣∣n(t)
〉

︸ ︷︷ ︸
En(t)|n(t)〉

Multipliziere von links mit 〈m(t)|· (beachte, dass 〈m|n〉 = δnm):

ċm(t) eiαm(t) +
∑
n

cn(t) eiαn(t)〈m, ṅ〉 = 0 |n〉 = |n(t)〉

Was ist hier 〈m|ṅ〉?

d

dt
Ĥ(t)

∣∣∣∣n(t)
〉

︸ ︷︷ ︸
En(t)|n(t)〉

=
(
d

dt
Ĥ(t)

) ∣∣∣∣n(t)
〉

+ Ĥ(t)
∣∣∣∣ṅ(t)

〉

durch multiplizieren 〈m| von links folgt:〈
m
∣∣∣∣ ddtEn(t)

∣∣∣∣n(t)
〉

=
〈
m
∣∣∣∣ ddtĤ(t)

∣∣∣∣n(t)
〉

+ Em(t)
〈
m
∣∣∣∣ṅ〉

(m 6= n)

Ėn(t) 〈m|n〉︸ ︷︷ ︸
0

+En(t) 〈m|ṅ〉 =
〈
m

∣∣∣∣ ddtĤ(t)|n
〉

+ Em(t) 〈m|ṅ〉

⇒ 〈m|ṅ〉 =
〈m| d

dt
Ĥ|n〉

En(t)− Em(t)

ċm(t) = −
∑
n 6=m

cn(t)ei(αn(t)−αm(t)) 〈m|
d
dt
Ĥ|n〉

En(t)− Em(t)

Annahme: Zum Zeitpunkt t = 0 sei das System im instantanen Eigenzustand

cn(0) = 1 cm6=n(0) = 0
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∀m 6= m

ċm|t=0 = ei(αn(t)−αm(t)) 〈m|
d
dt
Ĥ|n〉

En(t)− Em(t)

Annahme: En(t), Ĥ(t) ist nur langsam von der Zeit abhängig

ei(αn(t)−αm(t)) ≈ eiEn−Em~ t

(m 6= n)

cm(δt) ≈ −
i~〈m| d

dt
Ĥ|n〉

(En − Em)2 (e−i (Em−En)
~ δt − 1)

• falls |m〉 6= |n〉 existieren mit En(t) = Em(t)

|cm(t+ δt)| → ∞ �

•

|cm(t+ δt)| ≈ 0 ⇔

∣∣∣∣∣∣~〈m|
d
dt
Ĥ|n〉

(Em − En)2

∣∣∣∣∣∣� 1

„hinreichend langsam“bzw. adiabatisch Evolution liegt vor falls für
alle Eigenzustände |m〉 6= |n〉 gilt:

∣∣∣∣∣∣
〈
m
∣∣∣∣ ddtĤ

∣∣∣∣n
〉 ∣∣∣∣∣∣� (Em − En)2

~

⇒ i.A. gibt es kein adiabatisches Verhalten bei entarteten Zuständen, es
sei denn alle relevanten Matrixelemente (〈m| d

dt
Ĥ|n〉 = 0) sind Null.
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∆E = ~∆ω = ~ 1
T

t

En

t

Em

Abbildung 10.1: Adiabatische Phase ist in der linken Abbildung möglich, in der rech-
ten nicht, da dort ein Kontinuum der Eigenenergien auftritt.

Adiabatische Zeitentwicklung führt neber der dynamischen Phase zu ei-
ner geometrischen- oder Berry-Phase:

im adiabatischen Limes gilt:

m 6= n

|cm(t)| = 0 und cn′(0) = 1

⇒ |cn(t)| != 1

aber was passiert mit der Phase?

cn(t) = | cn(t)︸ ︷︷ ︸
1

|eiγn(t) ċn(t) = iγ̇n(t)cn(t)

außerdem haben wir (von vorhin):∑
n

ṅeiαn(t)|n〉+ cneiαn(t)|ṅ〉

durch multiplizieren mit 〈n| von links folgt:

ċn = −cn〈n|ṅ〉 da cm(t) ≡ 0 m 6= n

daraus folgt nun

γ̇n(t) = i
〈
n(t)

∣∣∣∣ ddt
∣∣∣∣n(t)

〉
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und damit die Berry-Phase:

γn(t) = i
∫ t

0
dτ

〈
n(τ)

∣∣∣∣ ddτ
∣∣∣∣n(τ)

〉

Die Berry-Phase ist nicht von der Geschwindigkeit oder der Dynamik des
Durchlaufs abhängig, im Gegensatz zur:
Dynamischen Phase:

αn(t) = 1
~

∫ t

0
dτ En(τ), |n(t)〉 = e−

i
~

∫ t
0 dτ En(τ)ei

∫ t
0 dτ 〈n(τ)| d

dt
|n(τ)〉|n(0)〉

Ĥ ~R(t)
∣∣∣∣n(t)

〉
=
∣∣∣∣n( ~R(t))

〉
γ̇n(t) = i

〈
n( ~R)

∣∣∣∣∇ ~R

∣∣∣∣n( ~R)
〉
· ~̇R(t)

Was ist die Änderung der Phase?

∆γn ≡ γn(T )− γn(0) =
∫ T

0
dτ γ̇n(t) = i

∫
dτ ~R

〈
n( ~R)

∣∣∣∣∇~R

∣∣∣∣n(R)
〉

Betrachte periodisches System:

~R(T ) = ~R(0)

⇒ ∆γn = i
∮

d~R ~R
∣∣∣∣n( ~R)

〉

∆γn hängt nur noch vom (geschlossenen) Pfad im Phasenraum ab, nicht mehr
von der Geschwindigkeit des Durchlaufens des Weges! (geometrische Phase)

Frage: Wann ist ∆γn 6= 0?
Satz von Stokes:

∆γn = i
∮
C

d ~R ~R 〈n|∇R|n〉 = i
x

s(c)

d ~S∇R × (〈n| ~R ~R|n〉)

∆γn 6= 0 falls endlicher Fluss durch Fläche
Definiere:

~Vn(~R) = ∇R × (〈n| ~RR|n〉)

daraus folgt:
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~Vn(R) = Im
∑
m6=n

〈n|∇ ~RĤ|m〉 × 〈m|∇ ~RĤ|n〉
(Em − En)2

Die Form dieser Gleichung erinnert an die des magnetischen Feldes; daher wird
es üblicherweise als „Berry Magnetfeld“oder „Berry-Curvature“bezeichnet.
Treten Entartungspunkte auf, so:
Em = En ⇒ Monopole des effektiven Berry-Magnetfeldes.
Zusammenfassend lässt sich also sagen: Wenn sich Zustände im adiabatischen
Limes befinden, so verbleiben diese dort und alle anderen Zustände konvergie-
ren gegen null. Die Zustände sammeln zwei verschiedene Phasen auf, davon
neu ist die Berry-Phase, die eine geometrische Phase ist.
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11 Quantenmechanik von Systemen
unterscheidbarer Teilchen

11.1 Tensorprodukt von Hilberträumen

System 1 : |ψ〉 ∈ H1 ⇒ Zustand des Gesamtsystem
System 2 : |φ〉 ∈ H2 |ψ〉 ⊗ |φ〉 = |ψ〉|φ〉 ∈ H = H1 ⊗H2

H: Raum aller Linearkombinationen ∑n cnm|ψn|cn〉

i)
H ist ein linearer Raum

ii)
Es gibt ein inneres Produkt 〈χ1|χ2〉 = 〈ψ1|ψ2〉〈φ1|φ2〉

Sind {|fn〉)} und {|gn〉} ONB in H1 und in H2 dann ist:

{|fn|gn〉} ONB in H dim(H1) = N1 dim(H2) = N2 dim(H) = N1N2

Also wächst die Dimension den Hilbertraums aus M Teilchen exponentiell mit
M an

iii) Operatoren in H:

Â⊗ B̂ Â in H1 B̂ in H2

〈Â× B̂|χ〉 = Â|ψ〉 ⊗ B̂|φ〉
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Jeder Vektor|χ〉 ∈ H = H1 ⊗H2 mit dim(H1) = N1 und dim(H2) = N2

Lässt sich schreiben als:

|χ〉 =
min(N1,N2)∑

i=1
λ1|fi〉|gi〉 |fi〉 ∈ H1 und |gi〉 ∈ H2

Beweis: OBdA gelte N1 ≤ N2

{|k〉1} ONB in H1 {|l〉2} ONB in H2

⇒ {|k〉1|l〉2} ist ONB in H = H1 ⊗H2

Es gilt stets:

|χ〉 =
N1∑
k=1

N2∑
l=1

ckl |k〉1 |l〉2 =
N1∑
k=1
|k〉1

N2∑
l=1

ckl |l〉2︸ ︷︷ ︸
Superposition in H2,
abh. von k,:=λk|k〉2

=
N1∑
k=1

λk |k1〉 |l〉2

24.Vorlesung

11.2 Separable und verschränkte Zustände

Gedankenexperiment von Einstein, Podolsky und Rosen (EPR) (1935)

Definition:

Ein quantenmechanischer Zustand |ψ〉 von zwei Teilsystemen A und B mit HA und
HB heißt separabel, falls es eine Darstellung der Form |ψ〉 = |φA〉|φB〉 (Schmidtzahl
n = 1) gibt. Andernfalls nennen wir |ψ〉 verschränkt (Schmidtzahl n > 1).

Beispiel: (2 Spin-1
2-Teilchen)

σz | ↓〉 = −| ↓〉 σz | ↑〉 = | ↑〉
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|ψ〉 = | ↑〉A | ↓〉B seperabel

|ψ〉 = 1√
2

(
| ↑〉A | ↑〉B + | ↓〉A | ↓〉B

)
verschränkt

|ψ〉 = 1√
4

(
| ↑〉A| ↑〉B + | ↑〉A| ↓〉B + | ↓〉A| ↑〉B + | ↓〉A| ↓〉B

)

=
 1√

2

(
| ↑〉A + | ↓〉A

) ·
 1√

2

(
| ↑〉B + | ↓〉B

) separabel

Wir sehen bereits, dass verschränkt bedeutet, dass Information über System A auch
in System B steckt.
⇒ Korrelation

Wir betrachen hier die Bell’sche Variante:
System aus 2 Spin-1

2 -Teilchen:
|EPR〉 = 1√

2

(
| ↑〉A| ↓〉B − | ↓〉A| ↑〉B

)
Behauptung:

|EPR〉 ist Eigenzustand von σx,σy,σz

Ŝx = ŜAx + ŜBx Ŝy = ŜAy + ŜBy Ŝz = ŜAz + ŜBz

mit Eigenwert = 0

Ŝx = ~
2 σz etc.

σx = | ↓〉 σx = | ↑〉

Sx |EPR〉 = (SAx + SBx ) |EPR〉

= ~
2

(
σAx + σB

)
|EPR〉

= ~
2
√

2

(
| ↓〉A| ↓〉B − | ↑〉A| ↑〉B + | ↑〉A| ↑〉B − | ↓〉A| ↓〉B

)
= 0

analog Sy, Sz.
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d.h:

|EPR〉 = 1√
2

(
|mz = 1

2〉A |mz = −1
2〉B − (|mz = −1

2〉A |mz = 1
2〉B

)

= 1√
2

(
|mx = 1

2〉A |mx = −1
2〉B − (|mx = −1

2〉A |mx = 1
2〉B

)

= 1√
2

(
|my = 1

2〉A |my = −1
2〉B − (|my = −1

2〉A |my = 1
2〉B

)

Also egal ob Sx, Sy oder Sz!

Die Tatsache, dass Messung von Sz bei A instantan den Wert von Sz bei B festlegt
wird häufig als Problem der Quantenmechanik beschrieben. Dem ist jedoch nicht so,
da die dem zugrundeliegende Korrelation auch im klassischen existiert. Das Problem
entsteht, weil |EPR〉 Eigenzustand von Sx, Sy und Sz ist und diese drei Operatoren
nicht kommutiertieren.

Erde Alpha Centauri
Alice Bob

| ↑〉A | ↓〉B − | ↓〉A | ↑〉B ⇒ Messung von σAz liefert +1
−1

⇒ Messung von σBz liefert −1
+1

Problem:

Messung von σx,σy oder σz bei A legt instantan den Wert von σx,σy bzw.
σz bei B fest!

Folgende Konsequenzen wären im Stande, diesen Problem zu lösen:

(i) Die Quantenmechanik ist nicht lokal. („Fernwirkung“?)

(ii) Die Quantenmechanik ist unvollständig, dh. es existieren verborgene Parameter
die jede Messung festlegt, aber unbekannt sind.

Wir werden sehen, dass (ii) falsch ist (zumindest im Sinne von verborgenen Para-
meter, die lokal sind).
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11.3 Bellsche Ungleichungen

Können wir im Prinzip feststellen ob eine Theorie mit verborgenen Parameter richtig
oder falsch ist?

Antwort:

• Im allgemeinen: Nein!

• Falls die verborgenen Parameter lokal sind Ja!

J.Bell (1964)

Betrachte die Spin-Korrelation und seinen ~a,~b Einheitsvektoren

P (~a,~b) = 〈~a · σA · ~b · σB〉 PEPR(~a,~b) = −~a · ~b

Annahme: ∃ lokale verborgene Parameter λmitWahrscheinlichkeitsverteilung p(λ)

P (~a,~b) =
∫
dλ p(λ)A(~a, λ)B(~b, λ)

A ist hier der Wert des Spins bei A bei einer Messung in Richtung ~a

∣∣∣P (~a,~b)− P (~a,~b)
∣∣∣ =

∣∣∣∣∣∣
∫
dλ p(λ) ·

[A(~a)B(~b)− A(~a)B(~b)
]

±
[
A(~a)B(~b)A(~a′)B(~b′)− A(~a)B(~b)A(~a′)B(~b′)

]
︸ ︷︷ ︸

0


∣∣∣∣∣∣

=
∣∣∣∣∣∣
∫
dλ p(λ) · A(~a)B(~b)

[
1± A(~a′)B(~b′)

]

−
∫
dλ p(λ) · A(~a)B(~b′)

[
1± A(~a′)B(~b)

] ∣∣∣∣∣∣
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Da |A| ≤ 1 und |B| ≤ 1 folgt:

≤
∫
dλ p(λ) ·

∣∣∣A(~a)B(~b)
∣∣∣ · ∣∣∣[1± A(~a′)B(~b′)

]∣∣∣
+
∫
dλ p(λ) ·

∣∣∣A(~a)B(~b′)
∣∣∣ · ∣∣∣[1± A(~a′)B(~b)

]∣∣∣
≤ 2±

[
P (~a′, ~b′) + P (~a′,~b)

]

S ≡ |P (~a,~b)− P (~a, ~b′)|+ P (~a′, ~b′) + P (~a′,~b) ≤ 2

Bellsche Ungleichung für klassische Theorie mit verborgenen Parameter

wähle speziell: ~b ≡ ~a′

~a · ~b = cos(θ) != ~a′ · ~b′

|P (θ)− P (2θ)|+ P (θ) + P (0) ≤ 2

aber: PEPR(θ) = − cos(θ)

∣∣∣PEPR(θ)− PEPR(2θ)
∣∣∣+ ∣∣∣PEPR(θ) + PEPR(0)

∣∣∣ = |− cos(θ) + cos(2θ)|+ |− cos(θ)− 1|

= 2 (2 cos(θ)− cos(2θ))

Für θ = π
3 folgt:

= 2(1− (−0, 5)) ≤ 2 �

EPR Zustand verletzt die Bellsche Ungleichung!

experimenteller Nachweis: Clauser, Aspect,...

⇒ Bellsche Ungleichung ist verletzt!

⇒ Quantenmechanik ist im stengen Sinne nicht lokal!

Verschränkung erlaubt kein Informationstransport mit v > c
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Weiterhin kann man zeigen, dass die Bellschen Ungleichungen nur dann verletzt
sind, wenn der Zustand verschränkt ist. Eine Verallgemeinerung der Ungleichungen
ist damit ein Kriterium zur Überprüfung der Verschränktheit von Zuständen.

11.4 Quantenteleportation von Spin-1
2-Zuständen

No-Cloning-Theorem

Es existiert kein unitärer Operator der beliebige und unbekannte nichtortho-
gonale Zustäde dupliziert.

∀ |ψ〉 ∈ H1 und |0〉 ∈ H2 mit dim(H1) = dim(H2)

Û |ψ〉 |0〉 = |ψ〉 |ψ〉

Beweis:

Seien |a〉, |b〉 2 orthogonale Zustände und Û existiert

Û |a〉 |0〉 = |a〉 |a〉 Û |b〉 |0〉 = |b〉 |b〉

Û
1√
2

(|a〉+ |b〉) |0〉 = 1√
2
(
(Û |a〉|0〉+ Û |b〉 |0〉

)
= 1

2 (|a〉 |a〉+ |b〉 |b〉)

6= 1
2 (|a〉+ |b〉) · (|a〉+ |b〉)

Folgerung:

Ein unbekannter Quantenzustand kann durch eine Messung nicht vollständig be-
stimmt werden. Ansonsten wäre es möglich, die gesamte Information, die für eine
Reproduktion des Zustandes nötig wäre, zu extrahieren und den Zustand daraus zu
rekonstruieren.

25.Vorlesung Problem:

|φ〉 = α | ↑〉+ β | ↓〉

|α|2 + |β|2 = 1 α, β beliebig.
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und System von A nach B schicken:

11.4.1 (B) Teleportation:

A B

|EPR〉

Annahme: A und B besitzen Bell-Zustand (im Folgenden keine Normierung )

|EPR〉 = | ↑〉A | ↓〉B − | ↓〉A | ↑〉B

• habe A zusätzlich |φ〉 :

|φ〉 |EPR〉 =
(
α | ↑〉 + β | ↓〉

)
·
(
| ↑〉A ↓〉B − | ↓〉A | ↑〉B

)
=
{(
| ↑〉A | ↑〉A + | ↓〉A | ↓〉A

)
·
(
α | ↓〉B − β | ↑〉B

)
+
(
| ↑〉A | ↑〉A − | ↓〉A | ↓〉A

)
·
(
α | ↓〉B + β | ↑〉B

)
−
(
| ↑〉A | ↓〉A + | ↓〉A | ↑〉A

)
·
(
α | ↑〉B − β | ↓〉B

)
−
(
| ↑〉A | ↓〉A − | ↓〉A | ↑〉A

)
·
(
α | ↑〉B + β | ↓〉B

)}
Nach der Messung: Projektion auf einen der 4 Zustände, darin sind keine Informa-
tionen enthalten. Alle 4 Zustände haben eine gleich verteilte Wahrscheinlichkeit von
1
4 und Spins von 1

2 ,
1
2 .

• Orthogonale Zustände sind immer durch eine Messung eindeutig unterscheid-
bar.

• Bei der Messung kollabiert das System auf einen von vier Bell-Zuständen.
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12 Quantenmechanik von Systemen
identischer Teilchen

12.1 Ununterscheidbarkeit identischer Teilchen

• – klassisch: Stoß zweier Teilchen (im Prinzip)

m m

– bel. gut auflösbar → Unterscheidbar (durch “draufsehen“)

• Quantenmechanisch:

m m
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Durch Unschärferelation existiert eine prinzipielle Grenze der Auflösung. Da-
durch ist die Historie der Teilchen bei einem Stoß prinzipiell nicht nachvoll-
ziehbar.

⇒ identische Teilchen sind ununterscheidbar

2x

klassisch quantenmechanisch

12.1.1 Transpositionsoperator

P̂ij i < j

Der Transpositionsoperator wirke auf den Produktraum von mehreren Teilchen und
vertausche genau zwei Einteilchenzustände. Formal gilt also:

• im H-Raum von n−identischen Teilchen:

Hn = H1 ⊗ ...⊗Hn

mit
H1 = H2 = ... = Hn identisch

196



25.Vorlesung Quantentheorie Quantenmechanik

Gilt:

|ψ〉 = |φ1〉 |φ2〉...|φn〉 P̂ij |φ1〉... |φi〉... |φj〉... |φn〉
= |φ1〉... |φj〉... |φi〉... |φn〉

• Eigenschaften:

P̂ †ij = P̂ij , P̂ijP̂ij = 1

Eigenwerte: λ = ±1

Die erste Konsequenz der Ununterscheidbarkeit findet sich in den erlaubten Ope-
ratoren auf Räumen ununterscheidbarer Teilchen: Wenn wir die einzelnen Teilchen
nicht unterscheiden können, dann darf es keinen Unterschied machen, welches wir
nun messen. Hinge die Messung vom Teilchen ab, so wären sie unterscheidbar. Es
muss also gelten:

〈ψ | Â |ψ〉 = 〈P̂ijψ | Â | P̂ijψ〉 ∀i, j

Diese Bedingung formulieren wir im ersten von zwei Symmetriepostulaten:

12.1.2 Schwaches Symmetriepostulat

Alle zugelassenen Observablen eines Systems identischer Teilchen sind selbstad-
jungierte Operatoren Â, die symmetrisch unter Transposition sind:[

Â, P̂ij
]

= 0 also ÂP̂ij = P̂ijÂ ⇒ P̂ijAP̂ij = Â

〈ψ | Â |ψ〉 = 〈P̂ijψ | Â | P̂ijψ〉

Für alle Observablen, da:

〈ψ | Â |ψ〉 = 〈ψ | P̂ijAP̂ij |ψ〉 = 〈ψ | P̂ †ijAP̂ij |ψ〉

Erwartungswerte von physikalischen Größen sind invariant unter Transposition iden-
tischer Teilchen.
Beispiel:

• Schwerpunkt:
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~̂R = 1
2(~r1 + ~r2) X

• Relativkoordinate:
~̂r = ~̂r1 − ~̂r2 ×
~̂r = |~̂r1 − ~̂r2| X

Für identische Teilchen: Operatoren der Form Ĥ(~̂r1 − ~̂r2) sind unmöglich!
Nur Ĥ(|~̂r1 − ~̂r2|), also:

Ĥ = ~̂p2
1

2m +
~̂P 2

2
2m + V1(~̂r1) + V1(~̂r2)︸ ︷︷ ︸

identisch!

+V
(
|~̂r1 − ~̂r2|

)

12.2 Der Hilbertraum identischer Teilchen

Bosonen und Fermionen

• Die Menge aller Transpositionen (P̂ij fürN Teilchen) bilden eine nicht-abelsche
Gruppe bzgl. Hintereinanderausführung (Permutationsgruppe SN) (mit Ele-
menten τ) .

• Sei 1, 2, 3, ..., N die natürliche Anordnung, dann ist das Signum einer Permu-
tation τ ∈ SN gleich (−1)n, wobei N die Anzahl der Transpositionen ist, die
man benötigt, um von der natürlichen Anordnung zur Gegebenen zu kommen.

Beispiel:

123 natürlich
213 → sign = −1
231 → sign = +1

12.2.1 Raum der total (anti-) symmetrischen Zustände

HS =
{
|ψ〉 ∈ H : P̂ij |ψ〉 = +|ψ〉 ∀P̂ij

}
und der Raum der total antisymmetrischen Zustände:

HAS =
{
|ψ〉 ∈ H : P̂ij |ψ〉 = −|ψ〉 ∀P̂ij

}
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Haben gesehen: erlaubte Variablen bilden ab:

Â : HS → HS oder Â : HAS → HAS(
damit 〈ψ|Â|ψ〉 = 〈P̂ij ψ|Â | P̂ij ψ〉 gilt

)

Das zweite Symmetriepostulat betrifft nun die erlaubten Zustände. Sei |φN〉 ein sol-
cher Zustand und |φN〉〈φN | dann ein Operator, der das schwache Symmetriepostulat
erfüllt. Es folgt:

|φN〉 〈φN | = P̂ij |φN〉 〈φN |P̂ij = |P̂ijφn〉 〈P̂ijφN |

Wir sehen, dass sowohl |φN〉 als auch P̂ij |φN〉 den gleichen Raum aufspannen. Das
ist nur möglich, wenn dir beiden parallel stehen, also gilt: P̂ij |φN〉 = λ |φN〉, also
wenn der Zustand ein Eigenzustand des Permutationsoperators ist [siehe: Nolting 5.2
8.Auflage S.255 [Nolting, 2015]. Wir erhalten also zwei Möglichkeiten für Zustände,
die im folgenden Postulat formuliert sind:

12.2.2 starkes Symmetriepostulat

Die erlaubten Zustände von Systemen identischer Teilchen sind entweder total
symmetrisch (Bosonen) oder total antisymmetrisch (Fermionen).

Also z.B:

|φ〉A |ψ〉B − |ψ〉A |φ〉B
|φ〉A |ψ〉B + |ψ〉A |φ〉B

also H(2) = H(2)
s ⊕H

(2)
As

Es gibt keine Mischräume/Zwischensituationen! (Also nicht: P̂12 symm. und P̂23
antisymm.)
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26.Vorlesung Wiederholung: Der Hilbertraum identischer Teilchen: Bo-
sonen und Fermionen

symmetrische Zustände := HS =
{
|ψ〉 ∈ H : P̂i,j |ψ〉 = +|ψ〉 ∀ P̂i,j

}
antisymmetrische Zustände := HAS =

{
|ψ〉 ∈ H : P̂i,j |ψ〉 = −|ψ〉 ∀ P̂i,j

}
HS und HAS bilden Hilberträume

starkes Symmetriepostulat:

Die erlaubten Zustände von Systemen identischer Teilchen sind entweder total
symmetrisch (d.h. ∈ HS) oder total antisymmetrisch (d.h. ∈ HAS) unter Per-
mutation zweier Teilchen.

Es gibt somit keine Observable, die HS und HAS verknüpft.

für 2 Teilchen:
HN=2 = HAS

N=2
⊕HS

N=2

Ende Wiederholung

aber für n Teilchen:
dim(HS

N=n), dim(HAS
N=n)� 1

2 dim(H)

Folgerung: (Superauswahlregel)

Die Unterraume HS und HAS können durch keine erlaubte unitäre Transformation
verknüpft werden.

Bemerkung: (Zeitevolution)

antisym. bleibt antisym., sym. bleibt sym. ⇔ kann Boson und Fermion nicht mit-
einander verknüpfen, solange Teilchenzahl erhalten bleibt.

Fermi-Dirac Statistik:

H(N)
AS =

AS⊗N

H

H(N)
AS ist Abschließung des Raumes aller Linearkombinationen.
|ψ〉 = ∑

τ∈SN sgn(τ) · |ψ〉τ(1) · |ψ〉τ(2) · ... · |ψ〉τ(N),
wobei |ψ〉i ∈ H (1-Teilchenraum)
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Bemerkung:

|ψ〉 6= 0 nur falls alle |ψ〉j linear unabhänig sind. Insbesondere: Falls 2 gleich oder
auch nur linear abhängig sind, so ist der N-Teilchenzustand |ψ〉 = 0, da dann zu be-
liebigen Permutationen diese linear abhängigen zusätzlich permutiert werden können
und so jeder Term mit beiden Vorzeichen auftritt und die Summe über die Zustände
verschwindet.

Pauli-Prinzip:

Jeder linear unabhänige 1-Teilchenzustand in einem fermionischen System kann
nur von einem Teilchen angenommen werden.

Bose-Einstein-Statistik:

H(N)
S =

S⊗N

H

H(N)
S ist Abschließung des Raums aller Linearkombinationen.
|ψ〉 = ∑

τ∈SN |ψ〉τ(1) · |ψ〉τ(2) · ... · |ψ〉τ(N),
wobei |ψ〉j ∈ H

Bemerkung:

jeder 1-Teilchenzustand kann mit beliebig vielen Teilchen besetzt sein.

Spin-Statistik-Theorem: (Beweis Quantenfeldtheorie)

identische Teilchen mit ganzzahligem Spin werden durch Zustände im H(N)
S

beschrieben (Bosonen), identische Teilchen mit halbzahligem Spin werden
durch Zustände im H(N)

AS beschrieben (Fermionen).

Unterscheidbarkeit identischer Teilchen:

Wann sehen wir eine Konsequenz der (Anti-)Symmetrisierung? In anderen Worten,
muss Ich für mein lokales System von Teilchen auch die Bosonen/Fermionen auf
dem Mond beachten?
dazu: Seien 1-Teilchenzustände {|f〉, |g〉, ...}
Träger von 〈x|f〉 sei in Raumbereich B1 Träger von 〈x|g〉 sei in Raumbereich B2
B1 ∩B2 = 0
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f(x) g(x)
B1 B2

Bemerkung:
Man kann zeigen, dass das nur approximativ richtig ist (kann nicht kompakt sein).

P̂j Projektor auf Bj

P̂1 |f〉 = |f〉 P̂1 |g〉 = 0
P̂2 |f〉 = |0〉 P̂2 |g〉 = |g〉

lokale 1-Teilchenobservable

P̂2ÂP̂1 = P̂1ÂP̂2 = 0

Matrixelemente zwischen beiden ergeben null!

|ψ〉± = 1√
2

(
|f〉1|g〉2 ± |g〉1|f〉2

)

Â = Â1︸︷︷︸
nur in B1

+ Â2︸︷︷︸
nur in B2

±〈|ψ|〉± = 1
2

{
1〈f |Â1|f〉1 + 2〈g|Â2|g〉2 + 1〈g|Â1|g〉1 + 2〈f |Â2|f〉2 ±

(
1〈g|Â1|f〉1︸ ︷︷ ︸

=0

+...
)}

Â ist lokale 1-Teilchenobservable mit P̂2 Â P̂1 = P̂1 Â P̂2
⇔ Für lokale Observablen nur lokale Anti-/Symmetrisierung relevant!
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12.3 Zwei Elektronen im Coulombpotential (Helium)

Der gesamte Hilbertraum der zwei Elektronen ist:

H = (L2(R3)⊗ C2)
AS
⊗ (L2(R3)⊗ C2)

räumiche Spin
Freiheitsgrade

Da die Räume beider Elektronen antisymmetrisiert zusammengeführt werden müs-
sen.
Daraus folgt der Hamiltonoperator des Systems:

Ĥ =
2∑
j=1

(
− ~2

2m∆− Ze2

|~rj|

)
+ Ke2

|~r1 − ~r2|

Er besteht aus den einzelnen Hamiltonoperatoren der beiden Elektronen zusammen
mit deren Coulombwechselwirkung.

Erhaltungsgrößen:

~S = ~S1 + ~S2 ~L = ~L1 + ~L2 (da rotationssymmetrisch)

Es ist zu beachten, dass nicht nach einzelnen Teilcheneigenschaften wie ~S1 gefragt
werden kann, da dieser Operator nicht dem schwachen Symmetriepostulat genügt.

[
Ŝµ, Ĥ] = [L̂µ, Ĥ

]
= 0 µ = x, y, z

Folgende Operatoren kommutieren also mit dem Hamiltonoperator: L̂2, L̂z, Ŝ
2, Ŝz, P̂

Aus der Gruppentheorie erkennen wir folgende Zerlegung (erkennbar aus der Sym-
metrie: Sollen die Räume antisymmetrisch zusammengeführt werden, so kann er
aufgeteilt werden in einen symmetrischen und einen antisymmetrischen Teil):

H = H(0) ⊕H(1)

H(0) =
(
L2(R3)

S
⊗ L2(R3)

)
︸ ︷︷ ︸
sym. Ortsraumwellenfkt.

⊗
(
C2 AS⊗ C2

)
︸ ︷︷ ︸

antisym. Spinwellenfkt.
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H(1) =
(
L2(R3)

AS
⊗ L2(R3)

)
︸ ︷︷ ︸

antisym.

⊗
(
C2 S
⊗ C2

)
︸ ︷︷ ︸

sym.

12.3.1 Basissätze für symmetrische bzw. antisymmetrische
Spinraumwellenfunktion von N-Teilchen

Der Raum der Spinfunktionen zweier Elektronen ist vierdimensional, da alle mögli-
chen Zustände Linearkombination der folgenden Basiszustände sind:

| ↑〉| ↑〉, | ↓〉| ↓〉, | ↑〉| ↓〉, | ↓〉| ↑〉

Daraus konstruieren wir nun anti- bzw. symmetrischen Linearkombinationen, die
Basen der entsprechenden Spinräume bilden werden.

(
C2 AS⊗ C2

)
eindimensional

Die Eigenschaften des Zustandes lauten:

Spin-Singulett:

|χ00〉 = 1√
2

(
| ↑〉| ↓〉 − | ↓〉| ↑〉

)
S = 0 , MS = 0

Ŝz|χ00〉 = (Ŝ(1)
z + Ŝ(2)

z ) 1√
2(| ↑〉| ↓〉 − | ↑〉| ↓〉)

wirkt nur auf

Ŝ(1)
z | ↑〉| ↓〉 = +1

Ŝ(1)
z | ↓〉| ↑〉 = −1
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Ŝz |χ00〉 ∼
1√
2

(
| ↑〉| ↓〉+ | ↓〉| ↑〉

)
+ 1√

2

(
− | ↑〉| ↓〉 − | ↓〉| ↑〉

)

= 0

Ŝ2 |χ00〉 =
(
~̂S1 + ~̂S2

)2
|χ00〉

=
(
Ŝ2

1 + Ŝ2
2 + 2 · ~̂S1 ~̂S2

)
|χ00〉

=
[
Ŝ2

1 + Ŝ2
2 + 2

(
Ŝ1
z · Ŝ2

z + Ŝ1
x · Ŝ2

x + Ŝ1
y · Ŝ2

y︸ ︷︷ ︸
Ŝ1

+Ŝ
2
−+Ŝ1

−Ŝ
2
+

)]
|χ00〉

= ... = 0

d.h. |χ00〉 ist Eigenzustand zu Ŝ2 =
(
~̂S1 + ~̂S2

)2
und Ŝz = Ŝ1

z + Ŝ2
z mit Eigenwerten

S=0,MS=0

(
C2 S
⊗ C2

)
3-dimensional

Triplett-Zustände:

|χ1,1〉 = | ↑〉| ↑〉 S = 1,MS = 1

|χ1,0〉 = 1√
2

(
| ↑〉| ↓〉+ | ↓〉| ↑〉

)
S = 1,MS = 0

|χ1,−1〉 = | ↓〉| ↓〉 S = 1,MS = −1

Eine solche Aufteilung der Zustände in anti- bzw. symmetrisch ist mathematisch
anschaulich: Die Zustände

| ↑〉| ↑〉, | ↓〉| ↓〉

sind offensichtlich symmetrisch unter Vertauschung. Beim ersten Zustand sehen wir
die Eigenwerte als S = 1MS = 1, beim zweiten Zustand gilt MS = −1. Aus den
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Drehimpulseigenschaften wissen wir damit natürlich, dass ein Zustand existieren
muss, der S = 1MS = 0 erfüllt. Die Konstruktion dieses Zustandes erfolgt über
Leiteroperatoren Ŝ± = Ŝx ± iŜy Damit sind die drei Basiszustände des symmetri-
schen Raumes klar. Der vierte Zustand muss dann eine Basis des antisymmetrischen
Raumes bilden, da dieser nicht leer sein kann. Die Form dieses Zustandes ergibt sich
leicht aus Antisymmetrieüberlegungen.

12.3.2 Basissätze für symmetrische bzw. antisymmetrische
Ortsraumwellenfunktion von N-Teilchen

Sei {Φn(~r)}n∈N vollständige ONB von 1-Teilchenfunktionen. Eine simple aber auch
umständliche Darstellungsmöglichkeit von antisymmetrischen Systemen ist offen-
sichtlich:

Antisymmetrische Wellenfunktionen:

ΦAS
l1,l2,...,lN

= 1√
N !

∑
τ∈SN

sgn(τ) · Φ(τ,1)(~r1) · Φ(τ,2)(~r2) · ... · Φ(τ,N)(~rN)

mit SN :=Permutationsgruppe der N Teilchen
l1, ..., ln sind Sets von Quantenzahlen
τ ∈ 1,...,n

Eine andere Möglichkeit ist die folgende Darstellung. Die Forderungen des Pauli-
Prinzips und der Antisymmetrie folgen direkt aus den allgemeinen Eigenschaften
der Determinante.

Φl1,l2,...,lN (~r1, ..., ~rN) = 1√
N !
·

∣∣∣∣∣∣∣∣∣∣
Φl1(~r1) Φl2(~r1) ... ΦlN (~r1)
Φl1(~r2) Φl2(~r2) ... ΦlN (~r2)

...
Φl1(~rN) Φl2(~rN) ... ΦlN (~rN)

∣∣∣∣∣∣∣∣∣∣
wobei wir die Determinante als Slater-Determinante bezeichnen!
Symmetrische Wellenfunktion von N-Teilchen:
n1:=Anzahl der Teilchen in Φ1(~r)
n2:=Anzahl der Teilchen in Φ2(~r)
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n1 + n2 + ...+ nr = N

D.h. es gibt r ≤ N verschiedener Zustände.

ΦS
n1,n2,...,nr(~r1, ..., ~rN) =

√
n1! · n2! · ... · nr!

N !
∑
τ∈SN

Φ(τ,1)(~r1) · Φ(τ,2)(~r2) · ... · Φ(τ,N)(~rN)

Wie wir sehen, gestaltet sich die Buchhaltung der möglichen Zustände von unun-
terscheidbaren Teilchen mit zunehmender Teilchenzahl außerordentlich kompliziert.
Die Konstruktion, die wir nun definieren, wird dem Abhilfe schaffen.

27.Vorlesung

12.4 Fockraum, Erzeugungs- und
Vernichtungsoperatoren

Betrachte die Anzahl der Teilchen im 1-Teilchenzustand

Definition:

Sei H der Hilbertraum eines Teichens und sei H(n) das n-fache symmetrische (Bo-
sonen) oder antisymmetrische (Fermionen) Tensorprodukt von H, dann heißt

FS,AS(H) := H(0) ⊕H(1) ⊕H(2) ⊕ ... =
∞⊕
n=0
H(n)

Fockraum; hierbei ist H(0) der Hilbertraum von null Teilchen=: C :=Vakuum.
Der Fockraum ist somit die Zusammenführung der Hilberträume für 0-Teilchen, 1-
Teilchen, 2-Teilchen,...
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Definition:(Zustandsvektoren im Fockraum)

Zustände und Operationen mit diesen sind im Fockraum wie folgt definiert:

|F 〉 =
(
|f (0)〉, |f (1)〉, |f (2)〉, ...

)

|F 〉+ |G〉 =
(
|f (0)〉+ |g(0)〉, |f (1)〉+ |g(1)〉, ...

)

〈F |G〉 =
∞∑
n=0
〈f (n) | g(n)〉

Annahme:〈F |F 〉 <∞

12.4.1 (A) Teilchenerzeuger und Vernichter: Bosonen

Definition: (Symmetrisierungsoperator)

Ŝn : H⊗H⊗ ...⊗H︸ ︷︷ ︸
n

→ H(n)
sym

Beispiel:

Ŝn · |Φ1〉 · |Φ2〉 · ... · |Φn〉 = 1√
n!

∑
τ∈SN

|Φτ(1)〉 · |Φτ(2)〉 · ... · |Φτ(n)〉

Dabei seien OBdA alle |Φi〉 verschieden.

Ŝn ist Projektor Ŝn Ŝn = Ŝn

Ŝn ist selbstadjungiert Ŝ†n = Ŝn

Definition:

Sei |f〉 ∈ H, dann heißen die Operatoren â(f) und â†(f) ∈ FS(H) Vernichtungsope-
ratoren bzw. Erzeugungsoperatoren im Zustand |f〉.

i)

â(f) : H(0) → 0

â(f) : H(n)
S → H

(n−1)
S bildet von sym. auf sym. ab!
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ii)

â(f) · Ŝn |Φ1〉 · Φ2〉 · ... · |Φn〉

= 1√
n

n∑
l=1
〈f |Φl〉 · Ŝn−1 |Φ1〉 · ... · |Φl−1〉 · |Φl+1〉 · ... · |Φn〉

Bemerkung:

â entfernt einen Ein-Teilchenzustand (sein ehemaliger Zustand skalarmultipli-
ziert mit f).

iii)

â†(f) : H(n)
S → H

(n+1)
S

â†(f) · |0〉 = |f〉 |0〉 := Vakuum-Zustand (kein Teilchen)

iv)

â†(f) · Ŝn |Φ1〉 · |Φ2〉 · ... · |Φn〉

=
√
n+ 1 · Ŝn+1|f〉 · |Φ1〉 · |Φ2〉 · ... · |Φn〉

Bemerkung:

Das hinzugefügte Teilchen ist genau im Zustand |f〉

Satz:

â(f), â†(f) sind hermitesch adjungiert in FS(H).

Satz:

Seien |f〉 und |g〉 Zustände ∈ H, dann gilt:[
â(f), â(g)

]
=
[
â†(f), â†(g)

]
= 0[

â(f), â†(g)
]

=
〈
f |g

〉
Bemerkung:

â(f), â†(g) vertauscht nicht:
im Vakuum vernichten, dann erzeugen gibt 1 Teilchen.
im Vakuum erzeugen, dann vernichten gibt 0 Teilchen.
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Beweis:

zz.:
[
â(f), â†(g)

]
= 〈f | g〉

•

â(f) · â†(g) · Ŝn |Φ1〉 · ... · |Φn〉

= â(f) ·
√
n+ 1 · Ŝn+1 |g〉 · |Φ1〉 · ... · |Φn〉

= 〈f |g〉 · Ŝn |Φ1〉 · ... · |Φn〉

+∑n
l=1 〈f |Φl〉 · Ŝn |g〉 · |Φ1〉 · ... · |Φl−1〉 · |Φl+1 · ... · |Φn〉

•

â†(f) · â(g) · Ŝn |Φ1〉 · ... · Φn〉

= â†(g) · 1√
n
·
n∑
l=1
〈f |Φl〉 · Ŝn−1 |Φ1〉 · ... · |Φl−1〉 · |Φl+1〉 · ... · |Φn〉

= ∑n
l=1 〈f | g〉 · Ŝn |Φ1〉 · ... · |Φl−1〉 · |Φl+1〉 · ... · |Φn〉

â(f) · â† − â† · â(f) = 〈f |g〉

�

speziell: betrachten |f〉, |g〉,... als Element einer VONB

{|Φl〉} ∈ H l = 1, 2, ..., dim(H)

〈Φl|Φk〉 = δl,k

⇒ â(t)⇒ âl

[âl, âk] =
[
â†l , â

†
k

]
= 0[

âl, â
†
k

]
= δl,k

Analog zu mehreren harmonischen Oszillatoren!
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Bemerkung:

Bei einem Teilchen ist der symmetrische- und der antisymmetrische-Hilbertraum
gleich.

Mit Hilfe der Erzeugungsoperatoren lässt sich jeder symmetrische n-Teilchenzustand
aus dem Vakuum erzeugen.

Beispiel:

n-Teilchenzustand mit (n1, n2,..., nr), wobei n1 ein Zustand in |Φ1〉 bzw. nr ein
Zustand in |Φr〉 ist.

|ΨS〉 =
∏
l

(â†l )nl√
nl!
|0〉

mit: n1 + n2 + ...+ nr = n

(â†)0 = 1

0! = 1

Definition: (Teilchenzahloperator im Zustand |Φl〉)

n̂l ≡ â†l âl

Die Eigenwerte des Teilchenzahloperators sind die natürlichen Zahlen.

12.4.2 (B) Teilchenerzeuger und Vernichter: Fermionen

Definition: (Antisymmetrisierungsoperator)

Ân : H⊗H⊗ ...⊗H︸ ︷︷ ︸
n

→ H(n)
AS

Beispiel:

Ân · |Φ1〉 · |Φ2〉 · ... · |Φn〉 = 1√
n!

∑
τ∈SN

sgn(τ) |Φτ(1)〉 · |Φτ(2)〉 · ... · |Φτ(n)〉

Wiederum seien alle Einteilchenzustände verschieden

Ân ist Projektor Ân Ân = Ân

Ân ist selbstadjungiert Â†n = Ân
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Definition:

Sei |f〉 ∈ H, dann heißen die Operatoren ĉ(f) und ĉ†(f) ∈ FAS(H) Vernichtungs-
operatoren bzw. Erzeugungsoperatoren im Zustand |f〉.

i)

ĉ(f) : H(0) → 0

ĉ(f) : H(n)
AS → H

(n−1)
AS bildet von antisym. auf antisym. ab!

ii)

ĉ(f) · Ân|Φ1〉 · Φ2〉 · ... · |Φn〉

= 1√
n

n∑
j=1

(−1)j+1 〈f |Φj〉 · Ân−1|Φ1〉 · ... · |Φj−1〉 · |Φj+1〉 · ... · |Φn〉

iii)

ĉ†(f) : H(n)
AS → H

(n+1)
AS

ĉ†(f) |0〉 = |f〉

mit: Hn+1
AS := Antisymmetrischer Hilbertraum mit n+1 Teilchen

iv)

ĉ†(f) · Ân |Φ1〉 · |Φ2〉 · ... · |Φn〉

=
√
n+ 1 · Ân+1|f〉 · |Φ1〉 · |Φ2〉 · ... · |Φn〉

Bemerkung:

Das hinzugefügte Teilchen ist genau im Zustand |f〉

Satz:

ĉ(f), ĉ†(f) sind hermitesch adjungiert in FAS(H).

Definition: (Antikommutator)

{Â, B̂} = ÂB̂ + B̂Â
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Satz:
Seien |f〉 und |g〉 Zustände ∈ H, dann gilt:

{ĉ(f), ĉ(g)} =
{
ĉ†(f), ĉ†(g)

}
= 0{

ĉ(f), ĉ†(g)
}

= 〈f | g〉

Beweis:

zz.:
{
ĉ(f), ĉ†(g)

}
〈f | g〉

ĉ†(f) · ĉ†(g) · Ân|Φ1〉 · ... · Φn〉

= ĉ†(f) ·
√
n+ 1 Ân+1 |g〉 · |Φ1〉 · ... · |Φn〉

=
√

(n+ 1) · (n+ 2) Ân+2 |f〉 · |g〉 · |Φ1〉 · ... · |Φn〉

aber:

ĉ†(g) · ĉ†(f) · Ân|Φ1〉 · ... · Φn〉

= ĉ†(g) ·
√
n+ 1 Ân |f〉 · |Φ1〉 · ... · |Φn〉

=
√

(n+ 1) · (n+ 2) Ân+2 |g〉 · |f〉 · |Φ1〉 · ... · |Φn〉

⇒ ĉ†(f) · ĉ† + ĉ†(f) · ĉ† = 0

�

Pauli-Prinzip: {
ĉ†(f), ĉ†

}
= 0

2 ·
(
ĉ†(f)

)2
= 0

⇒
(
ĉ†(f)

)2
= 0

Fazit:

Es ist unmöglich zwei Teilchen im selben Zustand zu erzeugen; ebenso zu vernichten,
da es keine zwei Teilchen im selben Zustand geben kann. In der Antikommutativität
der Erzeuger- und Vernichteroperatoren für Fermionen spiegelt sich also direkt das
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Pauli-Prinzip wieder.

Teilchenzahloperator:

Anzahl der Telchen im Zustand |l〉:
n̂l := ĉ†l · ĉl
Die möglichen Eigenwerte sind nach Pauli offensichtlich 0 und 1.
Nach Pauli in jedem Zustand max 1 Teilchen wähle speziell |f〉, |g〉 aus VONB
{|Φl〉}

ĉ(f)⇒ ĉi

{ĉl, ĉk} =
{
ĉ†l , ĉ

†
k

}
= 0

{
ĉl, ĉ

†
k

}
= δl,k

n-Teilchenzustand mit (n1, n2, ...,nr), wobei hier ni ∈ {0, 1} (Pauli-Prinzip)

|ΦAS〉 = (ĉ†1)n1 · (ĉ†2)n2 · ... · (ĉ†r)nr |0〉

|0〉
sym. , antisymm.
{|f〉}
sym. , antisymm.
|f〉|g〉 − |g〉|f〉|f〉|g〉+ |g〉|f〉
antisym.

H(0)

H(1)

H(2)
S H(2)

AS

â, ĉ â†, ĉ†

ĉ†â†

â† ĉ†
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12.4.3 (C) Darstellung von Operatoren im Fockraum

• Einteilchen-Observable:

Â : H → H

{|Φl〉} ONB in H

Â|Φl〉 =
∑
k

〈Φk|Â|Φl〉 · |Φk〉 =
∑
l

Akl|Φk〉

Bemerkung:

"∼= "Vernichtung eines Teilchens in |Φl〉 und Erzeugung eines Teilchens in |Φk〉
mit Vorfaktor Akl (=: Amplitude).

Â =
∑
kl

Akl â
†
k âl =

∑
kl

â†k Akl âl

• Zweiteilchenoperatoren:

v̂ = H(2)
S,AS → H

(2)
S,AS

v̂ =
∑

k,l,m,n

â†k â
†
l vk,lm,n âm ân

v̂ |Φm〉 |Φn〉 =
∑
k,l

〈Φn|〈Φl|v̂|Φm〉|Φn〉︸ ︷︷ ︸
=vk,lm,n

|Φk〉 |Φl〉

Feldoperatoren:

A) Bosonen:

Φ̂(~r) =
∞∑
l=1

Φl(~r) · âl
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B) Fermionen:

Ψ̂(~r) =
∞∑
l=1

Φl(~r) · ĉl

mit: Φl(~r)-1-Teilchenwellenfunktion∫
d3r Φ∗l (~r)Φm(~r) = δl,m

⇒
[
Φ̂(~r), Φ̂(~r′)

]
=
[
Φ̂†(~r), Φ̂†(~r′)

]
= 0

[
Φ̂(~r), Φ̂†(~r′)

]
= δ

(
~r − ~r′

)

⇒
[
Ψ̂(~r), Ψ̂(~r′)

]
=
[
Ψ̂†(~r), Ψ̂†(~r′)

]
= 0

[
Ψ̂(~r), Ψ̂†(~r′)

]
= δ

(
~r − ~r′

)
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13 Zusammenfassungen der ersten
Kapitel

13.1 Schrödinger

13.1.1 Schrödingergleichung

• zentrale Bewegungsgleichung der Quantenmechanik:

stationäre Schrödinger-Gleichung im Ortsraum:(
− ~2

2m∆ + V (~r)
)
ψ(~r) = E ψ(~r) (67)

• entspricht Eigenwertgleichung des Hamilton-Operators

Ĥ ψ(~r) = E ψ(~r) ; Ĥ = − ~2

2m ∆~r + V (~r) (68)

zeitabhängige Schrödinger-Gleichung:

Ĥ ψ(~r, t) = i~
d
dtψ(~r, t) (69)

• partielle DGL, linear, 1. Ordnung

• Superpositionsprinzip: Interferenzen möglich
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13.1.2 Materiewellen (De-Broglie)

~p = ~~k |~p| = mv |~k| = 2π
λ

λ = h

p

• Elektronen sind beides: Welle und Teilchen
(Hat Eigenschaften von beidem, ist etwas neues! )

13.1.3 Die Wellenfunktion ψ(~r, t)

• Kann einem Teilchen eine solche Wellenfunktion zuordnen

• keine messbare Größe wie ~E oder ~B

• |ψ(~r, t)|2 ist die Wahrscheinlichkeitsdichte, das Teilchen am Ort ~r zu finden.

ρ(~r, t) = |ψ(~r, t)|2 (70)

• irgendwo muss das Teilchen am Ende sein:

⇒ Normierung der Wellenfunktion
∫
V∞

d3~r|ψ(~r, t)|2 != 1 (71)

13.1.4 Wahrscheinlichkeitsstromdichte

Beispiel:

• Ein guter Bogenschütze trifft mit einem Teilchen (Pfeil) die Zielscheibe mit
p = 1 (= 100%).

• Nach einem Glas Wein ist p = 0, 8 (= 80%), das heißt es gab einen Wahr-
scheinlichkeitsstrom zu „Scheibe nicht getroffen“.

• Diese Wahrscheinlichkeit muss 20% betragen, da die Wahrscheinlichkeit, dass
der Pfeil „irgendwo“ landet nach wie vor 1 (100%) ist.
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~j(~r, t) = ~
2mi

(
ψ∗(~r,t)∇ψ(~r,t) − ψ(~r,t)∇ψ∗(~r,t)

)
(72)

Kontinuitätsgleichung:

d
dtρ(~r,t) +∇~j(~r,t) = 0 (73)

• Die zeitliche Änderung der Aufenthaltswahrscheinlichkeit in einem bestimmten
Volumen ist gleich demWahrscheinlichkeitsstrom durch dessen Oberfläche (wie
in E-Dyn).

Postulat 1:

Der Zustand eines physikalischen Systems wird bis auf einen komplexen Vor-
faktor vom Betrag 1 durch einen normierten Vektor |ψ〉 in einem Hilbertraum
beschrieben.

• |ψ〉 hat keine reale Bedeutung im Sinne von Messbarkeit: zusammen mit Ope-
ratoren beschreibt er experimentelle Abläufe.

• |ψ〉 Übergang−→ α · |ψ〉 mit α ∈ C beeinflusst Messergebnis nicht
−→ |ψ〉 und α · |ψ〉 repräsentieren denselben Zustand.

13.1.5 linearer Operator

Â heißt linearer Operator in H , falls

Â (α |f〉 + β |g〉) = α · Â |f〉+ β · Â |g〉 ∀α, β ∈ C ; |f〉, |g〉 ∈ H (74)

Norm von Â :

‖ Â ‖ = sup
|f〉6=|0〉

‖ Â |f〉 ‖
‖ |f〉 ‖

(75)

falls ‖Â‖ <∞ heißt Â beschränkt
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13.1.6 zu Â konjugierter (Hermitesch konjugierter) Operator Â†

〈f |Âg〉 = 〈Â†f |g〉 Â : DA → WA

Â† : DA† → WA†

Hermitesch: Â heißt hermitesch, falls Â† = Â auf DA ∩DA†

selbstadjungiert: Â heißt selbstadjungiert, falls:

Â† = Â DA = DA† = H (76)

13.1.7 Eigenschaften selbstadjungierter Operatoren

Â sei selbstadjungiert ⇒

i) 〈f |Â f〉 ist reell.

ii) Die Eigenwerte von Â sind reell.

iii) Eigenvektoren zu verschiedenen EW sind orthogonal.

iv) Aus den Eigenvektoren von Â kann ein vollständiger Satz von normierten,
orthogonalen Basisvektoren konstruiert werden.

13.2 Spektralzerlegung von f (Â)

f(Â) ist zu behandeln wie eine Funktion f(x). Statt xn −→ Ân = Â · ... · Â︸ ︷︷ ︸
n

.

Man kann selbstadjungierte Operatoren durch die Eigenwerte an darstellen:

f(Â) =
∑
n

f(an) P̂n (77)

P̂n ist orthogonaler Projektor auf den Eigenvektor |an〉
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13.2.1 Projektionsoperator P̂n

P̂n = |αn〉 〈αn| (78)

Anschaulich projiziert P̂n einen beliebigen Zustandsvektor |ψ〉 auf die Richtung von
|αn〉.

P̂n|ψ 〉 = 〈an|ψ 〉︸ ︷︷ ︸
Skalar

|an〉︸︷︷︸
Richtung

(79)

13.3 Unitärer Operator Û

experimentell überprüfbar in der Quantenmechanik sind:

Eigenwerte ai : Â |ai〉 = ai |ai〉 (80)

Skalarprodukte : 〈φ |ψ 〉 (81)

Erwartungswerte : 〈ψ | Â |ψ〉 (82)

Auf die Zustandsvektoren |ψ〉 kommt es eigentlich gar nicht an.
−→ können diese fast beliebig verändern (transformieren), solange obige Größen
unverändert bleiben:

Û unitär ⇐⇒ Û †Û = Û Û † = 1 ⇐⇒ Û † = Û−1 (83)

13.3.1 Unitäre Transformation

|ψ̃〉: Transformierter Zustand

für Zustände : |ψ̃〉 = Û |ψ〉 (84)

für Operatoren : ˜̂
A = Û Â Û † (85)

Eine unitäre Transformation ändert die Physik (also Eigenwerte, Skalarprodukte,
Erwartungswerte) nicht!
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13.4 Kommutator

"Maß dafür, wie gut zwei Operatoren vertauschen"

• [Â, B̂] = ÂB̂ − B̂Â

• ÂB̂ kommutieren falls [Â, B̂] = 0

• Der Kommutator ist als Kombination von Operatoren ebenfalls ein Operator

• Man kann zwei Observablen a und b genau dann gleichzeitig beliebig scharf
messen, wenn die zugehörigen Observablen Â und B̂ vertauschen.

13.5 Korrespondenzprinzip

"Die QM sieht ein bisschen aus wie die klassische Mechanik"
−→ Der Hamiltonoperator Ĥ setzt sich aus x̂, p̂ zusammen, genau wie sich die
Hamiltonfunktion aus q und p zusammensetzt.

13.5.1 Ortsdarstellung von ψ (diskret)

x̂
↑

Ortsoperator

|x〉 =
EW, also Messwert

↓
x |x〉 〈xn|xm〉 = δnm (86)

Ort sei diskret: xn ; |xn〉, Dann gilt:

|ψ〉 =
∑
n

〈xn|ψ〉︸ ︷︷ ︸
ψn

|xn〉 (87)

Die Zahl ψn heißt Ortsdarstellung von |ψ〉
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13.5.2 Ortsdarstellung von ψ (kontinuierlich)

|ψ〉 =
∫
dx 〈x |ψ〉 |x〉 〈x | y〉 = δ(x− y)

ψ(x) = 〈x |ψ〉

Die komplexwerte Funktion (Funktionswerte ∈ C ) der Variable x heißt Ortsdar-
stellung von |ψ〉

13.5.3 Äquivalenz

(physikalischer Sachverhalt ändert sich nicht durch Betrachtung im anderen Raum)

Ortsdarstellung Impulsdarstellung

x̂|x〉 = x |x〉 p̂ |p〉 = p |p〉 = ~k |p〉
H ↔ L2(R3) H ↔ L2(R3)
|ψ〉 ↔ ψ(x) |ψ〉 ↔ ψ̃(k)
〈φ|ψ〉 ↔

∫
dx φ∗(x)ψ(x) 〈φ|ψ〉 ↔

∫
dk φ̃∗(k) ψ̃(k)

p̂|ψ〉 ↔ ~
i
∂
∂x
ψ(x) p̂|ψ〉 ↔ pψ̃(k) = ~k ψ̃(k)

x̂ |ψ〉 ↔ xψ(x) x̂|ψ〉 ↔ i ∂
∂k
ψ(k)

„Ortsoperator anwenden “ bedeutet im Ortsraum lediglich die Multiplikation
mit X.
Analog bedeutet "Impulsoperator anwenden“ Im Impulsraum die Multiplikation
mit p = ~k.
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13.6 Messung in der Quantenmechanik

Die möglichen Messwerte einer quantenmechanischen Messung sind die Eigenwerte
des jeweiligen hermiteschen Operators A.

Eigenwertgleichung: Â|ψ〉 = λ|ψ〉 (88)

Das Spektrum eines Operators beschreibt, welche Eigenwerte er hat:

i) Diskretes Spektrum:
λn ; n = 1, 2, 3 ; λn diskret

ii) kontinuierliches Spektrum:
λ ∈ R oder Intervall; λ kontinuierlich.

13.6.1 Entartung

Entartung bedeutet, dass esmehrere Eigenzustände zu einem Eigenwert gibt.

Â|ψ1〉 = λ|ψ1〉
Â|ψ2〉 = λ|ψ2〉

...
Â|ψn〉 = λ|ψn〉


n-fache Entartung (89)

13.6.2 Postulat 3a

Die Messung einer Observablen Â mit nicht-entartetem, diskretem Spektrum in
einem Zustand |ψ〉 liefert als Messergebnis einen Eigenwert an mit der Wahrschein-
lichkeit

P (an) = |〈an |ψ〉|2 (90)

wobei |an〉 der Eigenvektor zum Eigenwert an ist. Der Zustand |ψ〉 geht über in den
Eigenzustand |an〉
Postulat 3a besagt, dass durch Messung der Zustand des Systems verändert wird!

|ψ〉 Â−→
↓
an

|an〉 P (an) = |〈an|ψ〉|2 (91)

Beispiel:
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bei der Messung der Observablen A (z.B. Ortsmessung), welcher der Operator Â
zugeordnet ist, kommt mit einer Wahrscheinlichkeit von:
P (5) der Messwert an = 5 (Meter) heraus

13.6.3 Erwartungswert

Der Erwartungswert 〈Â〉 der Messung einer Observablen Â an einem Zustand |ψ〉
ist der Durchschnittswert, den man erhalten würde, wenn man die Messung sehr oft
am gleichen Zustand durchführen würde.
Das heißt an vielen Quantenobjekten im gleichen Zustand, denn wie wir bereits
wissen beeinflusst eine Messung den Zustand, ich kann also nicht die Messung einfach
am selben Quantenobjekt wiederholen.

Definition

〈Â〉 = 〈ψ | Â |ψ〉 (92)

Aus Schule bekannt: Der Erwartungswert ist die Summe der Einzelwerte, gewichtet
mit der jeweiligen Wahrscheinlichkeit:

〈Â〉 =
∑
n

P (an) an (93)

13.7 Schwankungsquadrat

〈∆Â2〉 = 〈 (Â− 〈Â〉 )2〉 = 〈Â2〉 − 〈Â〉2 (94)

13.8 Varianz

∆Â =
√
〈∆Â2〉 (95)

Diese Größen geben an, wie stark Messwerte um den Erwartungswert schwanken.
Bei sehr kleiner Schwankung muss man nur wenige male messen und hat schon ein
recht gutes Ergebnis.
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13.9 Messung zweier Observablen Â, B̂

Anmerkung: Diese Überschrift liest sich so, als wären Â, B̂ Observablen. Sie sind
jedoch die Operatoren, die den entsprechenden Observablen a und b zugeordnet
sind.

• Observable: beobachtbare physikalische Größe

• Operator: beschreibt die Messung der Observablen

Messwahrscheinlichkeiten und Zustände nach der Messung hängen von der Reihen-
folge der Messung ab!

Definition

P (bm, an) ist die Wahrscheinlichkeit erst an , dann bm zu messen.

Â |an〉 = an |an〉
B̂ |bm = bm |bm〉

Es gibt 2 Möglichkeiten für die Reihenfolge der Messung:

i)

|ψ〉 Â−→
↓
an

|an〉
B̂−→
↓
bm

|bm〉

P1 = | 〈an |ψ〉 |2 P2 = | 〈bm | an |2

ii)

|ψ〉 B̂−→
↓
bm

|bm〉
Â−→
↓
an

|an〉

P3 = | 〈bm |ψ〉|2 P4 = | 〈an | bm |2
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13.10 Dynamik in der Quantenmechanik

13.10.1 Zeitentwicklung der Zustände

Zur Zeit t = t0 sei der Zustand |ψ(t0)〉 bekannt. Wir wollen nun wissen, wie sich der
Zustand ψ später (also t > t0 ) verhält.

Ansatz:

|ψ(t)〉
↑

Zustand
zur Zeit t

= Û(t, t0) |ψ(t0)〉
↑

Zustand
zur Zeit t0

(96)

Û(t, t0) ist der Zeitentwicklungsoperator

13.10.2 Eigenschaften von Û

i) Norm muss wegen der Wahrscheinlichkeitsinterpretation von ψ erhalten blei-
ben:

〈ψ(t) |ψ(t)〉 != 〈ψ(t0) |ψ(t0)〉

⇒ Û unitär ⇐⇒ Û †(t, t0) = Û−1(t, t0)

ii) Û(t0, t0) = 1

(Das ist klar, da sich nichts ändert wird, wenn „die Zeit stillsteht“.)

iii) Û(t, t0) = Û−1(t0, t)

All das wird erfüllt von: Û(t, t0) = e− i
~ Ĥ(t−t0)

bzw. Û(t, t0) = e−ik(t−t0) mit k̂ = 1
~
Ĥ

13.11 Zeitabhängige Schrödingergleichung

Mit dem Ansatz |ψ(t)〉 = Û(t, t0) |ψ(t0)〉 können wir diese herleiten:
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d
dt |ψ(t)〉 = d

dtÛ(t, t0) |ψ(t0)〉

= d
dte

− i
~ Ĥ(t−t0)

= − i
~
Ĥ · e− i

~ Ĥ(t−t0) |ψ(t0)〉︸ ︷︷ ︸
|ψ(t)〉

zeitabhängige Schrödinger Gleichung:

i~ d
dt |ψ(t)〉 = Ĥ|ψ(t)〉

13.12 Stationäre Schrödingergleichung

Stationär bedeutet hier, dass physikalische Größen zeitunabhängig sind, d.h:

〈Â〉t = 〈ψ(t) | Â |ψ(t)〉 != 〈Â〉t0

Der Erwartungswert soll konstant bleiben.

stationäre Schrödinger Gleichung

Ĥ |φn〉 = En |φn〉 (97)

Die Kenntnis aller Eigenvektoren |φn〉 und Eigenwerte En erlaubt eine allgemeine
Lösung der Schrödingergleichung. Man kann aus der Lösung der stationären Schrö-
dinger Gleichung dynamische Probleme lösen:

Die Eigenvektoren bilden eine vollständiges Orthonormalsystem (bzw. können mit
dem Gram-Schmidt-Verfahren dazu gemacht werden ): {|φn〉} CNS.

Es gilt: |ψn(t)〉 = e− i
~En(t−t0) |φn〉 (98)

Dies entspricht genau dem Ansatz für dynamische Probleme, den wir bei der Ein-
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führung des Zeitentwicklungsoperators Û gemacht hatten:

|ψ(t)〉 = Û(t, t0) |ψ(t0)〉

Wegen der Vollständigkeit gilt das für jeden Zustand:

|ψ(t)〉 =
∑
n

αne− i
~En(t−t0) |φn〉 (99)

mit αn = 〈φn|ψ0〉, also ist αn die Projektion des Eigenvektors 〈φn| auf den Anfangs-
zustand |ψ0〉.

13.13 Erhaltungsgrößen in der Quantenmechanik

Â ist eine Erhaltungsgröße, wenn sie mit dem Hamiltonoperator Ĥ kommutiert:

〈Â〉 = 〈ψ(t) | Â |ψ(t)〉 = constt ⇔
[
Ĥ, Â

]
= 0

Das gilt auch für Funktionen des Operators Â :
[
Ĥ, Â

]
= 0 ⇒ d

dt〈Â〉 = 0

und d
dt〈f(Â)〉 = 0

Beispielsweise ist bei einem freien Teilchen der Impuls konstant:

[
~p, Ĥ

]
=
~p, ~̂p 2

2m

 = 0 (100)

13.14 Einteilchenmechanik in einer räumlichen
Dimension

klassische Hamilton-Funktion: H = ~p2

2m + V (~r) (101)
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13.14.1 Schrödingergleichung

Ortsraum:

|ψ〉 −→ ψ(~r, t) = 〈~r |ψ〉 , ~̂r → ~r; ~̂p→ ~
i∇~r (102)

Impulsraum:

|ψ〉 −→ ψ̃(~k, t) = 〈~k |ψ〉 ~̂p→ ~~k; ~̂r → i∇~k (103)

i~ d
dtψ̃(~k, t) = ~2k2

2m (̃ψ)(~k, t) + V (i∇~k
↑

Gradient im k-Raum

)ψ̃(~k, t) (104)

Orts- und Impulsdarstellung sind über die Fouriertransformation miteinander ver-
knüpft.

Fouriertransformation:

ψ̃(x, t) =
∫ ∞
−∞

dx e−ikxψ(x, t) (105)

ψ(x, t) = 1
2π

∫ ∞
−∞

dk eikxψ̃(k, t) (106)

Der Faktor 1
2π kann verschieden verteilt werden.

13.15 Propagatoren; G

Propagatoren sind spezielle Greensche Funktionen (also Lösungen einer DGL.). Dazu
gehören auch bestimmte Zeitentwicklungsoperatoren:

SG im Impulsraum: i~ d
dt ψ̃(k, t) = ~2k2

2m ψ̃(k, t)

Lösung: ψ̃(k, t) = ψ̃(k, t0) e−
i~k2(t−t0)

2m
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Im Ortsraum (Rücktransformation):

ψ(x, t) = 1
2π

∫ ∞
−∞

dk ψ̃(k, t0) eikx e−
i~k2(t−t0)

2m

= 1
2π

∫ ∞
−∞

dk
∫ ∞
−∞

dy ψ(x, t0) e−iky eikx e−
i~k2(t−t0)

2m (107)

Ziel ist es, den Zustand für alle Zeiten bei gegebenen Anfangsbedingungen zu ermit-
teln:

ψ(x, t) =
∫ ∞
−∞

dy G(x, y, t, t0)︸ ︷︷ ︸
Propagator

ψ(y, t0)︸ ︷︷ ︸
Anfangsbed.

Eine Gleichung dieser Form liegt mit (107) bereits vor. wir erhalten somit den Pro-
pagator eines freien Teilchens:

G(x, y, t, t0) = 1
2π

∫ ∞
−∞

dk eik(x−y) e−
i~k2(t−t0)

2m (108)

13.16 Zerfließen von Wellenpaketen

Es gilt:

∆x2(t) = ∆x2(0) + ~2t2

4m2∆x2(0) (109)

Die Breite eines Wellenpaketes im Ortsraum (Genauigkeit der Position) wird mit
t2 größer. Das Teilchen ist dabei nicht selbst „unscharf“ oder gar „ausgeschmiert“
,sondern die Kenntnis über seinen möglichen Ort!

x

σx t = 0
σx t 6= 0

Abbildung 13.1: Auseinanderlaufen des Wellenpakets
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13.17 das unendlich hohe Kastenpotential

unendlicher Potentialtopf:

0 LI II III

V (x) =
0 0 < x ≤ L

∞ sonst
(110)

Schrödingergleichung:

− ~2

2m
d2

dx2 φE(x) + V (x)φE(x) = E φE(x) (111)

Wir betrachten die Bereiche unterschiedlichen Potentials: I, III und II getrennt:

Bereich I, III:

V (x) =∞ (112)
φI,III := 0 (113)

Das Teilchen kann in die Potentialbarriere nicht eindringen. Das Betragsquadrat
von φ ist dort 0 (Wahrscheinlichkeitsdichte) und damit auch φ.
Bereich II:

Die Schrödingergleichung umstellen liefert:

φťť
II(x) = −2mE

~2 φII(x) (114)

E < 0: Die allgemeine Lösung ist:

φII(x) = A e
√

2m|E|
~2 +B e

√
2m|E|

~2 x (115)

Es stellt sich heraus, dass diese Lösung nicht mit den Randbedingungen verträglich
ist:

RB: φII(0) = φII(L) = 0
0 = φII(0) = A+B ⇒ A = −B
0 = φII(L) = A e

√
∼L − A e−

√
∼L 6= 0 Widerspruch!

Somit existiert keine Lösung der SG mit E < (Minimum von V (x))
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E > 0 :
Damit beim zweifachen Ableiten ein „−“ dazukommt, erhält die e−Fkt ein „i “

φII(x) ∝ exp
±i

√
2mE
~2 x


Allgemeine Lösung:

φII(x) = A cos
√2mE

~2 x

+B sin
√2mE

~2 x

 (116)

Randbedingungen:

0 = φII(0) ⇒ A = 0 → der erste Term muss weg, da er bei x = 0 nicht 0 wird

0 = φII(L) = B sin
√2mE

~2 L



⇒
√

2mE
~2 L = nπ n = 1, 2, 3, ... (117)

Der sin-Term wird alle ganzzahlige π zu 0. Die Randbedingungen führen somit zu
einer Quantisierung der mögliche Energien!

En = n2π2~2

2mL2 Energieeigenwerte (118)

(Einfach Gleichung (117) nach E umstellen )

φn(x) = B sin
(
nπx

L

)
Eigenfunktionen (119)
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L

n = 1

n = 2

n = 3

0

Abbildung 13.2: Zustände im Potentialtopf

Die Konstante B kann über die bisher noch nicht verwendete Normierungsbedingung
bestimmt werden:

∫ L

0
dx |φn(x)|2 = 1 ⇒ · · · ⇒ B =

√
2
L

(120)

Erinnerung: Die Normierung bedeutet, dass die Wahrscheinlichkeit, dass Teilchen
irgendwo im Topf anzutreffen 1 sein muss.

13.18 Inversion (Paritätsoperator)

Die beim Teilchen im unendlich hohen Kastenpotential gefundenen Wellenfunktio-
nen waren bei steigendem n abwechselnd symmetrisch und antisymmetrisch:

n = 2m+ 1 : symmetrisch: φn(−x) = φn(x) (Siehe Abb. 13.2 n = 1 ;n = 3)

n = 2m : anti-symmetrisch: φn(−x) = −φn(x) (Siehe Abb. 13.2 n=2 )

Symmetrische Funktionen lassen sich an der y−Achse spiegeln. Der zugehörige Ope-
rator, der diese „inverse “ Funktion liefert, heißt Paritätsoperator Π̂

Π̂φ(x) := φ(−x) (121)
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Eigenschaften:

Π̂2 = 1

Π̂† = Π̂ = Π̂−1[
Π̂,

p̂2

2m

]
= 0[

Π̂, V (x)
]

= 0 falls V (−x) != V (x)

Die Eigenwerte von Π̂ sind λ± = ±1.
Der Paritätsoperator bewirkt auf symmetrische und antisymmetrische Fkt. folgen-
des:

φ+(−x) = x̂ φ+(x) = +φ+(x) symmetrische Wellenfunktion (122)

φ−(−x) = π̂φ−(x) = −φ−(x) antisymmetrische Wellenfunktion (123)

13.19 Allg. Eigenschaften gebundener Zustände in
1D

i) diskrete Eigenfunktionen von Ĥ (Hamiltonoperator) können reell gewählt wer-
den.
Damit sind die φn(x) in Ĥφn(x) = Enφn(x) gemeint. Dass diese reell sind, ist
auch im Beweis der folgenden Eigenschaften ii) nötig, da φn(x) > 0 vorkommt
und C ja kein geordneter Körper ist.

ii) Es gilt der Knotensatz
Es sei Em > En, dann hat φm(x) mindestens eine Nullstelle zwischen zwei
Nullstellen (Knoten) von φn(x).

„Beweis durch Beispiel“: Hier soll uns ein „Beweis durch Beispiel“ genügen:
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C
φm(x)

φn(x)

Knoten AKnoten B

Abbildung 13.3: Beispiel

Offensichtlich hat φm(x) den Knoten C zwischen den Knoten A und B von φn(x),
Anschaulich ist auch Em > En nachvollziehbar da bei φm die Frequenz höher ist.

13.20 Der endliche Potentialtopf

V (x)
−V0 ; −L

2 < x < L
2

0; sonst
(124)

I II III

−L
2

L
2

V (x)

x

E2

E1

−V0

Abbildung 13.4: endliches Kastenpotential

Auch beim endlichen Kastenpotential haben wir 3 Bedingungen:

i) Schrödingergleichung:

− ~2

2mφ′′E(x) + V (x)φE(x) = EφE(x)
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ii) Normierung: ∫ ∞
−∞
|ψ(x)|2dx = 1

iii) Stetigkeit:

ψ stetig ;ψ′ stetig (insbesondere an den Kanten − L
2 und L

2 )

13.20.1 gebundene Zustände im endlichen Potentialtopf

Wir betrachten die Gebiete gesondert:
Sei E < 0. (klar, sonst hüpft das „Teilchen“ aus dem Topf)

DGL: I, III

− ~2

2mφ′′I,III(x) = EφI,III(x) mit κ2 := −2m
~2 E > 0 : ψ′′ = κ2ψ

DGL: II

− ~2

2mφ′′II(x)− V0φII(x) = EφII(x) mit κ2 := 2m
~2 (E + V0) : ψ′′ = −κ2ψ

⇒ − ~2

2mφ′′II(x) = (E + V0)φII(x) Hinweis: ψ = φ (reine Notation )

Wir wissen: E < 0 ; aber kann E < −V0 sein ?
Dann wäre nach obiger Definition k2 = 0. An Stellen mit ψ(x) > 0 wäre nach
ψ
′′ = −k2ψ die zweite Ableitung positiv |ψ′′(x) > 0) , d.h. ψ wäre nach links

gekrümmt.

Ist die Funktion also einmal positiv, steigt sie immer stärker und ist nicht mehr
normierbar !
⇒ gebundene Zustände gibt es nur für −V0 < E < 0 .

237



Erwähnungen Quantentheorie Quantenmechanik

Namentliche Erwähungen:
LATEX und Zusammenfassungen von:

Jan Herbst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Markus Exner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Christopher Weiß . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Simon Ohler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Matthias Rüb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Weiterhin haben bei der Korrektur einiger der geTEXten Vorlesungen
geholfen:

Thomas Utz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Stefan Rath . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fakultät Physik
TU Kaiserslautern

20. Juni 2017

238



Literaturverzeichnis

[Münster, 2010] Münster, G. (2010). Quantentheorie. De Gryter, 2 edition.

[Nolting, 2015] Nolting, W. (2015). Grundkurs Theoretische Physik 5/2. Springer
Verlag, 8 edition.


	  Vorwort
	Einleitung
	Analogie zu Elektrodynamik
	Wahrscheinlichkeitsinterpretation

	Formulierung der Quantenmechanik Teil 1
	Quantenmechanischer Zustand und Hilbertraum
	Observablen in der Quantenmechanik
	Fundamentale Operatoren in der Quantenmechanik
	Messungen in der Quantenmechanik
	Dynamik in der Quantenmechanik

	Einteilchen-QM in einer räumlichen Dimension
	Kontinuitätsgleichung für Wahrscheinlichkeitsdichte (3D)
	freies Teilchen in einer Dimension
	Gebundene Zustände: unendlich hohes Kastenpotential
	Gebundene Zustände und Streuzustände des endlichen Kastenpotenials
	endliche Kastenbarrieren und Tunneleffekt
	attraktives  - Potential

	Der Harmonische Oszillator
	Hamiltonoperator und dessen Spektrum
	Eigenfunktionen
	kohärente Zustände des harmonischen Oszillators
	Die Sommerfeldsche Polynommethode

	Beziehung zwischen klassischer und Quantenmechanik Ehrenfest Theorem und klassischer Grenzfall
	Vergleich Klassik/ Quanten-mechanik
	Ehrenfest-Gleichungen

	Der Drehimpuls in der Quantenmechanik
	Elementare Eigenschaften
	Spektrum des Drehimpulses
	Drehimpuls in Ortsdarstellung
	Eigenfunktionen des Drehimpulses
	Translation und Rotation

	Einteilchen-QM in drei Dimension
	Das freie Teilchen
	Gebundene Zustände in einem Zentralpotential
	Coulombpotential
	Das Wasserstoffatom -Teil 1

	Geladene Teilchen im elektrischen-Feld
	Minimale Kopplung und Eichtransformation
	geladenes Teilchen im homogenen Magnetfeld
	Der Aharonov-Bohm-Effekt

	Der Spin
	Das Stern-Gerlach Experiment
	Spin und Rotationen; Gesamtdrehimpuls von Spin 12-Teilchen
	Superauswahlregel für den Gesamtdrehimpuls:
	Spin 12-Teilchen im äußeren Magnetfeld
	Spin-Bahn Kopplung

	Schrödinger-,Heisenberg- und Wechselwirkungsbild
	Schrödingerbild
	Heisenbergbild
	Wechselwirkungsbild

	Näherungsverfahren
	Zeitunabhängige Störungstheorie von nicht entarteten Zuständen
	Zeitunabhängige Störungstheorie entarteter Zustände
	Ritzsches Variationsverfahren
	Adiabatische Näherung,Berry Phase

	Quantenmechanik von Systemen unterscheidbarer Teilchen
	Tensorprodukt von Hilberträumen
	Separable und verschränkte Zustände
	Bellsche Ungleichungen
	Quantenteleportation von Spin-12-Zuständen

	Quantenmechanik von Systemen identischer Teilchen
	Ununterscheidbarkeit identischer Teilchen
	Der Hilbertraum identischer Teilchen
	Zwei Elektronen im Coulombpotential (Helium)
	Fockraum, Erzeugungs- und Vernichtungsoperatoren

	Zusammenfassungen der ersten Kapitel
	Schrödinger
	Spektralzerlegung von f()
	Unitärer Operator 
	Kommutator
	Korrespondenzprinzip
	Messung in der Quantenmechanik
	Schwankungsquadrat
	Varianz
	Messung zweier Observablen ,  
	Dynamik in der Quantenmechanik
	Zeitabhängige Schrödingergleichung
	Stationäre Schrödingergleichung
	Erhaltungsgrößen in der Quantenmechanik
	Einteilchenmechanik in einer räumlichen Dimension
	Propagatoren; G
	Zerfließen von Wellenpaketen
	das unendlich hohe Kastenpotential
	Inversion (Paritätsoperator)
	Allg. Eigenschaften gebundener Zustände in 1D
	Der endliche Potentialtopf


