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Vorlesung Quantenmechanik Theorie



VVorwort

Als Horer der Vorlesung Quantentheorie bei Herrn Prof. Dr. Fleischhauer haben
wir dieses Skript verfasst. In erster Linie dient es dazu, das in der Vorlesung ver-
mittelte Wissen zu archivieren. Dariiber hinaus soll eine strukturierte, geordnete
Zusammenschrift beim Lernen der Inhalte helfen. Es soll weiterhin zum Diskutieren
von Inhalten, zum Verbessern von Sachverhalten und zum allgemeinen Verstédndnis
beitragen. Es bietet die Moglichkeit, Kommentare und Verbesserungen ohne grofien
Aufwand den mathematischen Sachverhalten beizufiigen und/ oder mathematische
Sachverhalte gegebenenfalls einfacher und/oder tbersichtlicher darzustellen.

Da der Einstieg in die Quantentheorie sehr abstrakt ist, befindet sich ab Seite
eine besonders ausfithrliche Ausfithrung der ersten paar Kapitel.



1. Vorlesung Quantentheorie Quantenmechanik

1. Vorlesung

Geschichtlicher Hintergrund

Die Physik zu Beginn des 20. Jahrhunderts bestand hauptséchlich aus den Gebieten
der Mechanik, der Thermodynamik sowie der Elektrodynamik. Allméhlich hauften
sich aber die experimentellen Resultate, die nicht mit klassischer Physik erkléarbar
waren. Die meisten dieser Resultate betrafen das Verhalten von Atomen, deren Ver-
stdandnis noch in den Kinderschuhen steckte.

Durch die Versuche von Thomson (1897), sowie durch den berithmten Milikan-
Versuch (1909/10), war die Existenz des Elektrons als Triger einer quantisierten
Ladung bewiesen. Auf dieser Tatsache stellte Thomson ein erstes Atommodell auf,
das ,,Rosinenkuchenmodell®.

Dieses Modell wurde von Rutherford (1911) widerlegt, indem a-Teilchen auf eine
Goldfolie geschossen wurden. Aus den streutheoretischen Resultaten konnte man
schliefen, dass der Hauptteil der Masse des Atoms in einem sehr kleinen Kern kon-
zentriert war, wahrend eine leichte Hiille von Elektronen den Kern umgibt. Die
klassische Theorie ging nun von einer Kreisbewegung der Elektronen analog zum
Sonnensystem aus, jedoch war diese Annahme nicht ohne Probleme:

Eine kreisende Ladung wirkt wie eine Antenne. Die Kreisbewegung ist eine harmo-
nische Oszillation in zwei Dimensionen, analog zu einem Herz’schen Dipol:

Das Elektron miisste aus der kinetischen Bewegung Energie abstrahlen, weswegen
es in nach kirzester Zeit in den Atomkern stiirzen wiirde.

Damit stellen sich nun einige Fragen:

o Warum sind Atome tiberhaupt stabil?

o Warum gibt es Spektrallinien bzw. warum fehlen im Sonnenspektrum einige
Linien?

o Welche Mechanismen erzeugen die chemische Bindung?

o Woher stammen die Eigenschaften von Festkorpern (Isolator, Leiter, ...)7




0 Einleitung

« Planck (1900) formuliert eine Quantenhypothese mit der er die Schwarzkor-
perstrahlung quantitativ korrekt erklaren konnte:

E=hw

o Davisson & Germer 1925: Beugung von Elektronen am Doppelspalt
— Elektronen haben Welleneigenschaften (1928)

o de Broglie 1924: Hypothese der Materiewellen, Schrodinger 1926:

—=— mit A = Wellenlidnge, v=Geschwindigkeit (1)

— Elektronen sind auch Wellen (Mikroskopische Teilchen haben Wellen-
charakter)

4_271

pP=hk pl=m-v [kl ==

Beispiel: (Staubkorn) Warum sehen wir den Effekt der Materiewellen nicht im
taglichen Leben?

m~ 10" kg v=1012

nach gilt:

2t - h
muv

A= =6,67-102m

Dies ist zu klein um nachweisbar zu sein.

Beispiel: (Elektron) In welchen Gréenordnungen liegen die Materiewellenldngen
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von mikroskopischen Teilchen?

p2

m~9,1-103%kg
2m,

—e-U

mit U = 100V errechnet sich A mit
A=~ 1,2-1071%m. Solch eine Wellenlénge fillt in den Bereich der Rontgenstrahlung
und ist absolut nachweisbar.

0.1 Analogie zu Elektrodynamik

Wir betrachten die Wellengleichung fiir das Vektorpotential aus der Elektrodyna-
mik:

1 0%\ -,
(A - 028t2> A1) =0 2)
mit A(7,t) = /d?’E AE . pl(k-7—wt)
Wir erhalten eine Losung, wenn:
12 (JJ2 -
— <—|k| + 02> A =0

wQ

— k= k> = Dispersionsrelation

c2

mitE:h-wundﬁ:h-l;folgt:

(19~ %) Az =0 )

c2

Aus einem Vergleich mit der Gleichung [3| und [2] folgt:

0
5 — —ihV E — ih—
p== ot

freies massives Teilchen gilt:
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Daraus ergibt sich die Schrodingergleichung:

0 R, 2o
lhadj(’rat) - _%V ¢(T,t> - —%AQXJ(T,t)

Dies ist eine lineare partiale Differentialgleichung erster Ordnung.

Aus der Linearitat folgt das = Superpositionsprinzip ( Wenn wir Losungen ha-
ben, ist die Summe dieser Losungen auch wieder eine Losung der Differentialglei-
chung)

falls ¥4 (¥,t) und ¢p(7,t) Losungen = (7, t) = a-Ya(7,t) + S - p(7,t)

Wellencharakter

Experimentell: Beugung von Teilchen am Doppelspalt
Was ist die Bedeutung von (7, t) ?

(7, t) ist selber keine messbare GroBe wie das elektrische - oder magnetische Feld.

Beispiel: (Elektronen am Doppelspalt)

I bl t) = ;5 (161 €72 + gy 672)

> 0@ OF = 3 il + 5 2P
Y-

1 I
+5 Yy T 4 C.C
Wenn gilt: 9] =11 = Y™ =1y = 9y
Dann: |¢(z,t)]* = 3 (1 + cos (E (71 — F2)>> >0

|¢)(7,t)|? ist die Wahrscheinlichkeitsdichte das Teilchen am Ort 7 zu finden.

10



1. Vorlesung Quantentheorie Quantenmechanik

0.2 Wahrscheinlichkeitsinterpretation

Die Wahrscheinlichkeit, das Teilchen in einem bestimmten Intervall (Volumen) I zu
finden, ldsst sich mit folgender Formel berechnen:

Py = [@r ()P
I
Es folgt die Normierungsbedingung;:

d'r ()P =1

Voo

Die Wahrscheinlichkeit das Teilchen im gesamten Raum zu finden muss gleich eins
sein.

Kontinuititsgleichung:

Analog zur Elektrodynamik lasst sich eine Koninuitatsgleichung herleiten. Dazu wer-
tet man die zeitliche Ableitung der Wahrscheinlichkeitsdichte (p = [1(7,t)|? ) aus

d . - .
SO = -4y -
Nun setzten wir die zeitabhangige Schrodingergleichung ein

R_, .0

= =5V
2m
2m
d = 2__& 2 % ﬁ * 2
= G EDP =~ (V37) g+ gV

ih * *
— —mv(ww _y w)
definiere

S

(v v - vy

2mi

11
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Es folgt die Kontinuitédtsgleichung

0 2
ap—f—V'J—O

= Wahrscheinlichkeitsdichte
= Wahrscheinlichkeitsstromdichte

p:
J:

Weiterhin gilt nach Satz von Gauf}

a g — —
e / d37’ p(’r‘,t) _- — / dg’r VJ = — dQ .7
ot Jv 1% ov
\—/_/
Anderung der Wahrscheinlichkeitsstrom
Wahrscheinlichkeit in V durch Oberfliache

Fir V' — oo folgt:

d 3 Lo
T voodr p(r¥,t) =0

Dies war eine heuristische Motivation fiir die Quantenmechanik. Wie wir sehen wer-
den, miissen einige Konzepte der klassischen Physik aufgegeben werden.

12



1 Formulierung der
Quantenmechanik Teil 1

2.Vorlesung

1.1 Quantenmechanischer Zustand und Hilbertraum

Wir hatten argumentiert, dass Quantenmechanische Systeme durch Wellenfunktio-
nen beschrieben werden sollen, die einer linearen Wellengleichung geniigen und deren
Betragsquadrat eine Wahrscheinlichkeitsdichte ist.

= fordern: Superponierbarkeit, Normierbarkeit

Postulat 1

Der Zustand eines physikalischen Systems wird bis auf einen komplexen Vor-
faktor von Betrag 1 durch einen normierten Vektor [¢) in einem Hilbertraum (
linearer Raum mit gewissen Eigenschaften) beschrieben.

1.1.1 Hilbertraum

Menge ‘H von Elementen |f),|g), |h), ... (Vektoren) mit folgenden Eigenschaften

Axiom 1:

H ist ein linearer Raum iiber komplexen Zahlen: «, 3, € C; |f), |h) e H

i) a(lf) +19)) = alf) +alg) eH
i) (a+B)f) =alf) +Blf)eH
i) a(Blf)) = (- B)|f)eH




2.Vorlesung Quantentheorie Quantenmechanik

iv) 1f) = 1[f)

v) O[f) = 10)w
mit |0),:=Nullvektor

vi) «|0), = |0),

Axiom 2:

es existiert ein positiv definiertes Skalarprodukt:

) lg) € H— (If)-19) ) = (flg) €C
) 1g)y = (l9) 10

Beziehungsweise:

(flg) = (glf)* >0

Damit kénnen wir eine Norm definieren:

) A= (L)
0 falls [ f) 7 |0) v/
i) [a-|nl=lal-IIHT Vael

iii) Dreiecksungleichung: ||y + o < [|¢1|| + ||12]|

Ein Hilbertraum H heifit seperabel, wenn es eine abzéhlbare, vollstandige Or-
thonomalbasis (ONB) gibt, wenn also gilt:

{I®n) Jnen € H

VIf)eMr: =D (|)]dn) - o)
n=1

Hat die Basis endlich viele Elemente d, so heifit H endlichdimensional und d Di-
mension von H.

Beispiel:

14
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Cn,TLE]N 7017---7cn>d17-'-7dn e C

(1, .y 0n) - (dyy oy dy) = ZCfdi

ii) L*(R?®) Raum der auf R? definierten komplexwertigen und quadratintegra-
blen Funktionen.

feL*R?: /]Rgdgx |f(z)]* < o f:R*—C

frg= [ d @) gl

1.2 Observablen in der Quantenmechanik

Messbare Groflen sind immer reellwertig. Wir hatten gesehen, dass diese in der
Mirkowelt statistischen Charakter haben.

|4|? ist die Wahrscheinlichkeitsdichte. Dann gilt fiir den Erwartungswert einer Orts-
messung;:

o(z)
= [do v () o(a)
=(Wlo) = (W] v)

= Zustand: ¢(x) = x - ¥(z) entsteht aus ¢» durch Multiplikation (“Anwendung )
mit = ("von x").

stellt den Impuls eines Teilchens dar

15



2.Vorlesung Quantentheorie Quantenmechanik

wir erwarten:

) = [ar @)t S

= (V|g) = (V| py)
o= ?dd;p () ist ein Zustand der aus v entsteht

Observablen = Operatoren

Postulat 2:

Jeder Observable eines quantenmechanischen Mikrosystems entspricht ein selbst-
adjungiert linearer Operator. Die moglichen Messwerte der Observablen entspre-
chen gerade den Eigenwerten des Operators.

Definition (linearer Operator):

A heifit linearer Operator in H, falls:
Aa|f)+8g)) = a- A|f)+8 - Alg) Vo, € C
Definition (Norm):

Norm von A

Ai.
i) (

A
iz (1))

falls HAH < oo heifit A beschriinkt

Ab jetzt betrachten wir, falls nicht anders angegeben, beschrankte Operator At

1 = Dagger

Definition (hermitesch konjugierter Operator):

16
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zu A konjugierter (hermitesch konjugierter) Operator At

A: Dy — Wy AT:DAT—>WAT

Def-Be Werte-Be.

im Allgemeinen : Dy, W, DL, Wji CH

(f| Ag) = (ATf|g) V|f) € Dt lg) € Dy

Definition (hermitesche Operatoren):

A heifit hermitesch, falls:

auf Da N Dy

Definition (selbstadjungierte Operatoren):

Af=Aund Dy=Djy =H
Dann heift A selbstadjungiert.

Bemerkung:

Im unendlich dimensionalem nicht seperablen Hilbertraum gilt im Allgemeinen nicht
"hermitesch=selbstadjungiert"

Beispiel:
H = C?

a b .. a,ceR
A_<b* c> M hec

17
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a-a =g (5 ) (%)

o ko pk\ agi bg2
_(f17f2) (b*gl 092>

=afigr+ bff g2+ 0" f5 g1+ cfig
~— ——
(b* f1)* (bf2)*

e =) = ()=

At = (ba i) . (2) . ;»<<;|1;f\>g>
— = (f|Ag

1.2.1 wichtige Eigenschaften selbstadjungierter Operatoren

Sei A selbstadjungiert, dann gilt:
i) (fIAf) ist reell
ii) die Eigenwerte von A sind reell
iii) Eigenvektoren zu verschiedenen Eigenwerten sind orthogonal

iv) aus den Eigenvektoren von A kann ein vollstindiger Satz von normierten
orthogonalen Basisvektoren konstruiert werden.

Folgerung:

A ist selbstadjungiert, Eigenzustande |a,,)
das heifit Ala,) = an|a,)

i) VIf) eH 1f) =2 calan) wobei ¢, = (an|f)

18
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ii) fir jeden linearen Operator B gilt:

Bl f) = {an|B| f) |an)

n

= Z<an|élam> Crn )

n,m

eingesetzt mit:

) =2 cmlam)

das heifit, es besteht ein eindeutiger Zusammenhang:

)

Jeder Operator in einem seperablen Hilbertraum kann als endlich oder unendlich
dimensionale Matrix geschrieben werden. Es gilt:

B

E(:Bnm = <an

F(A)]an) = f(an)|an) f(A) ist definiert iiber f(x) = a + bz + cz® + ...

Das heifit jeder selbstadjungierte Operator A bzw. jede Funktion von A kann wie
folgt durch die Eigenwerte dargestellt werden:

f(A) = > flan) B, Spektralzerlegung von f(A)

P, ist orthogonaler Projektor auf |a,)

3.Vorlesung Wiederholung:

(1) - 19)) = (flg) = (gl f) €’
(flf)y =0

AN = (fLfer (Norm)

Definition (Observable):

19



3.Vorlesung Quantentheorie Quantenmechanik

Unter einer Observable versteht man eine Messaparatur fiir eine bestimmte physi-
kalische GroBe. (Nolting)

Hilbertraum:
‘H:= Hilbertraum

Hilbertraum = linearer, komplexer Raum mit Skalarprodukt.
hermitesche Adjungation A:
Alg) =|Ag) € H

(flAfg) = (Aflg)
(flAfg) = (Aflg)

hermitescher Operator:

} versch. Definitionen von fl, Af

A= Af DN Dyt

fir n x n—Matrizen:

f T\ *
< ) = ( ( ) ) (transponieren und komplex konjugieren)

selbstadjungierter Operator:
A At DDy —H

Es muss ein hermitescher Operator sein, da ansonsten manche Messwerte nicht exis-
tieren (nicht reellwertig ) wéren. Ein selbstadjungierter Operator ist insbesondere
auch hermitesch.

o (fIAf) = (fIA[f) reell

» Eigenwerte von A reell Eigenwerte hermitescher Operatoren sind reell.
A|A) = A|A) mit A = A*

o Eigenvektoren zu verschiedenen Eigenwerten sind orthogonal
<)\1|)\2> =0 fur )\1 7& )\2

« alle Eigenvektoren eines selbstadjungierten Operators A bilden einen vollstéin-
digen Satz da.

20



3.Vorlesung Quantentheorie Quantenmechanik

2 A2
LA LA, f(A)

Mit P als Projektionsoperator. Definiert als dyadisches Produkt:
P, = lap){an].

Ein linearer, selbstadjungierter Operator P heifit Projektionsoperator,

wenn gilt: p2=p
A|an> = an|an)
Ende Wiederholung

Definition (Projektionsoperator):

A A

P:=p,

A

Qn =1- Pn
hier mit Projektionsoperator:

Polf) = (an|f) an)
= |an) (anlf)
pn = |an><an|

Definition (unitér):

ein beschrinkter Operator auf H, U heiBt unitir, wenn U~ existiert

(U'U=1=00")und|U' =U'

Beispiel:

() ()

21
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(O1£)-Ulg)) = (Uf|Tg)
(fIUTT g) = (fIU" - Ug)
— fl0- U 9)
unitidre Transformation: 1£) — U f]) = (flg)

Definition (Kommutator A, B):
4,
A,

| = AB— BA

B
B kommutieren falls: [A, B] =

Beispiel (Drehungen):
0 1 0 —i 1 0
) ) B ()
Frage: Wie sieht der Kommutator aus? [G,, G| =
0 1)\ (0 —i
= (1) oH
0 1)\ (0 —i
= (1 0) (0=
0 —i\ (0 1 -1 0 .
GyG””:(i o) (1 0>:<0 i)z_le
GC=G+G+G =3 (

[va GQ] = [Gy’ GQ] = [GZ>G2] =0

Satz: Falls A und B kommutieren, d.h. [A, B] = 0 (auf ganz ) . Dann existieren
ein gemeinsamer vollstdndiger Satz von Eigenvektoren.

22
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Beweis:

9 = « Sei: A|)\1> = )\1‘)\1> und B’)q) = 81|)\1>

= €1>\1|>\1>
= Mer| A1)
= BA|\)
= AB|\)) — BA|M) =0
= (AB - BA)|\) =0

Teilen sich die Operatoren fl, B nun mehrere Eigenvektoren, die eine vollstandige
Basis des Hilbertraumes bilden, so gilt die letzte Implikation fiir alle |A\) € H und
damit gilt [4, B] = 0.

, < “Sei nun [fl, f?} =0

= (AB-BA)[y) =0 V) e
Aus Basisdarstellung [¢) = > (\;[¢)|\;) folgt direkt die Behauptung. O

7

Was nun passieren kann, ist, das ein Operator ein entartetes Spektrum besitzt.
Dann gilt z.B.:

AN = A1) und A|X;) = Al\y)  sodass auch a|\;) + |As) Eigenzustand ist.

Derselbe Eigenwert tritt also bei verschiedenen Eigenzustinden auf. Da die Eigen-
werte das Einzige sind, was durch Messungen ermittelt werden kann, bendtigt es
weitere Informationen um den Zustand des Systems zu bestimmen. Dazu behilft
man sich weiterer, kommutierender Operatoren, sodass durch die Kombination der
Eigenwerte der gemessene Zustand eindeutig bestimmt wird:

1.2.2 Volistandige Satze von Operatoren

Es sei (fl, B,C, ...) ein Satz kommutierender Operatoren.
Falls zu jedem Satz von Eigenwerten A\ = (ay, by, ¢y, ...) nur ein Eigenvektor |\)
gehort, dann nennt man diesen Satz einen vollstdndigen Satz von Operatoren.
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3.Vorlesung Quantentheorie Quantenmechanik

Vollstandigkeit:

Satz Ein Operator ¢ der mit jedem Operator {fl, B, ...} eines vollstandigen Sat-
zes kommutiert, ldsst sich als Funktion dieser Operatoren darstellen.

Beispiel:

s (01
=10

Ap =+l A4) =

()0 ()= () ()
() ) ()= ()

Also muss sich (T; durch o, darstellen lassen:

Gy‘“ﬂf—<1 o><1 0)‘(0 1)“

— am Ende kommt raus, das bei vollstindigem Satz von Operatoren nur ein 1
Eigenvektor gehort. siche Definition [1.2.2]
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3. Vorlesun uantentheorie Quantenmechanik
g

1.3 Fundamentale Operatoren in der

Quantenmechanik

klassische Mechanik g5, P

0A 0B 0A 8B>

Poissonklammer {A(g;, P;), B(g;, P;)} = Z ((‘3(] 3P, " 3P a.
j j i 94
{q], Qlp = { P}y =0

{g;, P} =dj

1.3.1 Korrespondenzprinzip

kartesische Koordinaten ¢ und Impulse p werden durch selbstadjungierte Operatoren
q und p ersetzt.

Poisson Algebra — Heisenberg Algebra {}p= —ih[-, ]

1.3.2 Mechanik

F(qjapl) — F((L,Pl) |Symm
x-P=P x— iP#Pi

1(Pi+&P)
L=7xp L=7xp

= €; >k ;- Py
Mit dem Levi-Civita kommt eine identische Darstellung zu Stande, da der

Kommutator der einzelnen Komponenten=0 ist. Als Beispiel:
Erste Zeile: Y Pz — Z Py (diese sind unabhéngig voneinander )
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4.Vorlesung Quantentheorie Quantenmechanik

2

i) H =2 +V(r) H=L +V(f)

2m

1.3.3 Ortsdarstellung

Tlx) = x|z) x € R, kontinuierlich
Annahme: Ort sei diskret: z,; |x,)

) =2 (@a V) |zn)
¥n

Die Zahl 1,, heifit Ortsdarstellung von |1)

im Kontinuum:

¥) = [do (@]v]a)

(x) = (x| )| komplexwertige Funktion von x, Ortsdarstellung von|v)

wahrend im diskreten Fall
(@] T = Oy
hat man im Kontinuum
(zly) = 8(x —y)
v) = [do (@lyle)
= [az 8z —y)la) = Iy) v

4. Vorlesung Wiederholung:

a, P — Gj, D

{gj,ay ={P;, A} =0 (@, @) = [P, ] =0
{a;, i} = 8 [4;, B] = ihs;
flg;, ;) — f(4;, ) |symmetrisch
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4.Vorlesung Quantentheorie Quantenmechanik

1.3.4
Ortsdarstellung
lz) = z|z)
x diskret: x,|z,)
>z (a,] =1 Vollsténdig
|z,) (2| ist Operator |zn) (za|Y) € H
———
komplexe
Zahl
P = [x) (20|
=1
P Py
damit:

[¥) =1[¢) =2 lza) (walt)

n

Linearkombination der |z, ) mit Fakt. (x,[¢)
Yy, : Ortsdarstellung von [1))
Wenn « kontinuierlich:

0) = [do [2) (al)

mit (x[) := Ortsdarstellung von [¢))

Y(z) = (zy)
diskret: (Tn]Tm) = Spm
kontinuierlich: ly) = 8(z — )
nehmen: ) = |y)
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4.Vorlesung Quantentheorie Quantenmechanik

= [dz [} (aly)
= [z |5} 8(z — )
= ly) O
Ende Wiederholung
A App = (x| Alzy,)

diskreter Fall:

n,m W_’ N

Operator =Anm

kontinuierlicher Fall:

A= [ao [av |2)l (@1Aly)

mit (x| A|y) := Ortsdarstellung von|t))
Al y) = (| Aly)
(6lAlw) = (6lAv) = [de [do (9la) (y W) A(z.y)
lA) = [az [az ¢"(x)v(y) Alw,y)
WA = [do [do v (@) v(y) Alw,y)

(z]2ly) = y(oly) = yd(z —y)

das heifit:

(@lale) = [ar [y 6"(@) @) wd@—y) = [de 6'() 2 ()
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4.Vorlesung Quantentheorie Quantenmechanik

G @)0) = [de ¢ (@) f(2) ()

Neue Frage:

aus: Z|x)

zla) — (]2 = (@] = (2T

z(x|ply) — (z[ply) y = ihd(x — y)
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4.Vorlesung Quantentheorie Quantenmechanik

Aquivalenzen:

Ortsdarstellung Impulsdarstellung
Bla) = x|x) plp) = plp) = hk|p)

H + L2(R?) H + L2(R?)

|¢) < () [¥) ¢ (k)

() < Jdu ¢ (z) (x) (Slw) < [dk & (k) (k)
ple) < 50 () ple) < pi(k) = hk (k)
EY) < zip(x) &) > igp(k)

Y (z) <= 1 (k): Fouriertransformation

1.4 Messungen in der Quantenmechanik

Spektrum von selbstadAjungierten Operatoren A
Eigenzustiande/werte Ali)) = A1)

diskretes Spektrum von A : An n=1,23 ..
kontinuierliches Spektrum von A : A € R oder Intervall
auch moglich: A sowohl kontinuierliche Intervalle

als auch diskrete Werte

AW1> = Wl)

fl]w2> = A¢p) ¢ n-fache Entartung

A \qf_/
A’wn> = )\|¢n> (mehrere Eigenzustinde

zu einem Eigenwert )
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4.Vorlesung Quantentheorie Quantenmechanik

Postulat 3a: Die Messung einer Observablen A mit nicht-entartetem, diskretem

Spektrum in einem Zustand [¢) liefert als Messergebnis einen Eigenwert a,, mit
der Wahrscheinlichkeit:

P(ay) = | (a, [0

wobei |a,) Eigenvektor zum Eigenwert a,, ist. Der Zustand geht tiber in |a,,)

) = lan) (5)

an

plan| = [{an|¥)|*

Bemerkung:
Entartung p(a,) = Z|an> = |(an|¢>|2

Beispiel:

-

1 0
Observable:o, = <O _1>

Eigenzusténde: lpy) = (é) mit A\ =1
6_) = (‘f) mit A = —1

p(1) = o) = |
p(-1) = [{o_v)f* = 7

Momente der Wahrscheinlichkeitsverteilung:
Erwartungswert (A) = (| A1)
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4.Vorlesung Quantentheorie Quantenmechanik

wissen: Y |an){an| =1 Alay) = anlay)

(A) = (Y| 1- A 1)

Man multipliziert mit dem 1-Operator (neutrales Element) und setzt die Beziehung
von Oberhalb ein.

= (Wlan) {an Alan) (anlv)

n,m
an‘én,m

= Z |<an|¢>2 “Qp

Schwankungsquadrat:

Varianz:
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4.Vorlesung Quantentheorie Quantenmechanik

Beispiel:

= p(+1)(+;)2 +p(-1)(-1)*=1

Wiederholte Messung einer Observable?

Selbe Observable bildet von ZuSAtand in den selben Zustand:
Messung zweier Observable A, B

A’an> = an’an>

§|bm> = bm|bm>

I
) 5 |an) 55 1bm)
1 1
Qn, bm
p1 = [(an|)]? o = |(bmlan)|?
11
) 25 (b L |ay)
1 1
bm an
P3 = |<bm|¢>‘2 bs = |<an|bm>|2

p(bmv an) =DPp1- D2

P(an,bim) = p3 - ps = p3 - Pa 724 P(bym, an)
p(ana bm) # p(bm7 an)
') # ")
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5.Vorlesung

Quantentheorie Quantenmechanik

Messwahrscheinlichkeit und Zustédnde nach der Messung hangen von der Reihen-

folge der Messung ab!

Ausnahme:

[A,B] =0
fl\an> = aylan)
B‘an> = bylay)
p(bm, an) = |<an|¢>|2 : |<am|an>|2 = 6m7n|<a’n|¢>|2
dm,n
p(an, b)) = |<an|¢>|2 : |<an|am>|2 = 6m,n|<am|¢>|2
T

p(bma an) = p(ana bm)

Bei kommutierenden Operatoren sind wir in der Lage Gleichzeitig und
in beliebiger Reihenfolge zu messen.

5.Vorlesung

Wiederholung

o) 55 lan)

A’am> = Q| Grm)
plan) = [{an|)?
Zp(an) = Z |<an|¢)>|2 = Z<¢|an><an|¢> = (Yh) =1
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5.Vorlesung

Quantentheorie Quantenmechanik

= (Y| Y_ anlan)(an|v)
—Zan Ylan) (an|)

plan)

= anp(an)

) 2 an) 2 lom)

P(bms an) = [(]an) ] [{an|bim)|?
—_———
1.Messung 2.Messung

B A
6) 25 (b} 2+ Jan)

m

Pan; b)) = [(W|br)]? - [(b|an)
P(@n; bm) 7 p(bm; an)

In der Quantenmechanik ist im Allgemeinen die Reihenfolge der Messung rele-

vant.

Ende Wiederholung

Ausnahme : [A, B] = AB— BA =0
= p(an; bm) = p(by; an)

Ein Satz paarweise kommutierender Observablen kann gleichzeitig genau gemes-
sen werden, d.h. das Messergebnis hangt nicht von der Reihenfolge ab.

35



5. Vorlesung Quantentheorie Quantenmechanik

yvertragliche“ Observable

>

¥

—
o |¢) «— A, B, ... falls alle paarweis kommutieren
—

o 1) A B, .. mit [A,B] #0

1.4.1 allgemeine Unscharferelation
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5. Vorlesung Quantentheorie Quantenmechanik

1(A=AB) - [9)][? Norm
= ((A=iAB) - [¥)|I(A —iAB) - [¢)
= (U] - (A= iAB)" - (A~ iAB) - ¥)
= (|- (A +IAB)(A —iAB) - [v)
— (|- A2+ X B2 — \(AB — BA)| - [¢))
= (A%) + A%(B*) —iM([4, B]) > 0

Mi 1t —| =0
inimalterm : 3 /\|

0=2-Xo(B%) —i([4, B])

_i([A, B))
”AO_W

A2 <[A7§]>2 <[Aaé]>2
Ty TR Ty T

oy, (AB) g (A B)Y
0= ) 4(B?) =40 4(B2)

(A, B)" = (AB)* — (BA)*
(TAT> <ATBT>

= (BA) — (AD)
—([A, B))

(i [121, §}>T =i [A, 3} = hermitesch

(4 (B%) 2 3 (1 [4.B])
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5. Vorlesung Quantentheorie Quantenmechanik

allgemeine Unscharferelation:

(AA?) (AB?) > i(i A, BDQ

,=  flir Zustande minimaler Unschéarfe

Beispiel:

Heisenbergsche Unschiarferelation:
2 2 h’
ANTT) (AT > —
< & >< p > =4

Intervall a1 > a < ay < p(aq, ao)
——
Projektor

a seien Eigenwerte einer Observablen A mit kontinuierlichem. Spektrum

Postulat 3b:

Die Messung einer Observable A mit kontinuierlichem Spektrum im Zustand |1))
liefert ein Intervall I : a; < a < as von Eigenwerten mit Wahrscheinlichkeit:

p(I) = (@[p(a, az)[¢)

(diskret p(an)) = |{an|¥)[1* = (¥]an){anl¥))
Nach der Messung ist der Zustand [it) = Np(ay, as)|w))
mit N:=Normierung

Beispiel:
); &
T2 <2z <umxy

ﬁ(xh x2) :?

in Ortsdarstellung
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5. Vorlesun uantentheorie Quantenmechanik
g

p(x1,m9) = O(x9 — ) O(x — 1)

mit Heavyside-Funktion =: O(x) = {

damit: P(I) = (V| p(x1, x2) 1)

= /_O:odx P () O(z2 — ) O(z — 21) Y(2)

= [Cde ()P

1.5 Dynamik in der Quantenmechanik

[¥(to)) — [(1))

linearer Operator:

() = Ult, to) [1(to))
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5. Vorlesung Quantentheorie Quantenmechanik

Norm soll erhalten bleiben!

U =?
0= d t t
— SWO®)
= S0 10) 90} + (0t 10) (1)
— (T (ko) |0 (o)) + (00 (t0)|[TT (ko))
— (UO T (o) | U ko)) + (0 w(to) [TT1 T (ko))
p(t) p(t) p(t) ()

W@ (T ) + () | TO (1))

(0 = 00" = +i
K=k
DGL:
d . N
—U = Fik
P FikU
Anfangsbedingungen:
T(to,to) = 1
U(t, ty) = e (t=t0)

Die einzige dimensionsbehaftete Grofle in der Quantenmechanik ist: A.
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5. Vorlesung Quantentheorie Quantenmechanik

zeitabhingige Schrodingergleichung:

ey =2

dt
d 1 A~
= Ut —to) - [¥(to)) = =5 HU(t,10) [ (t0))

= —ﬁ]:—] ¥ (to))

zeitabhingige Schrodingergleichung:

o d A
ih £ [0(0) = 7 19(0)

Beispiel:

1 Teilchen im Potential V' (7):

H = P + V(7)
2m
ihc‘ft (1)) = (;n n v('F)> (1))

Ortsdarstellung:
(b)) = (1)

~
—~

[4(t)

p=TE T
Ll
— St Yy
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5. Vorlesung Quantentheorie Quantenmechanik

Schridingergleichung (im Ortsraum):

L o) = |- 22w v e )
dt ’ - 2m ’ ’

stationire Zustidnde; Zeitunabhingige (stationire) Schréodingergleichung

Physikalische Groflen sollten Zeitunabhénig sein.

|

(A)e = (WO A (t) = (A)s,

Das ist gerade der Fall fiir |¢(t)) ~ |¢y).

stationire Schrodingergleichung:

Wir wollen diese Gleichung l6sen.

Ortsdarstellung:
— V2 V(T )] 6n(F) = B 6n()
zur Zeit t = to: [(t)) = |¢n)

i l0() = B [6(0) = 7 16,) = Blon) = £ (1)

~ Losung

) = e R E=t0) | )
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6. Vorlesung Quantentheorie Quantenmechanik

(A), = (e n B0 g | A|emn Blt0) | )
= (pu] A (em# BN i BO0) |5 )

=1

= (pu] A00)
]

Kenntnis aller Eigenvektoren |¢,) und Eigenwerte E, erlauben allgemeine Losung
der Schrodingergleichung.

H| ) = E|9)
{|#)} bilden vollstandige Orthonormal Basis (ONB)

[ (1)) = &7 E=10) | )

wegen Vollstandigkeit gilt fiir jeden Zustand:

(1) =" ay(t) e B0 g,

n

einsetzen in die Schrodingergleichung:

= Gy (t) =0
an(t) = a,, = const
d.h.: [Y(t = to)) = |bo)
. d 2
ih [0 (t) = H[p(?))

6.Vorlesung Wiederholung
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6. Vorlesun Quantentheorie Quantenmechanik
g

Fiir die Dynamik in der Quantenmechanik erhielten wir folgende Relationen in der

Ubersicht:

u(t) = Ot.t0)[vto) )
i o)) = frlu)

flér) = B|éx)

vs(t)) = o0 o)

stationarer Zustand:

(), = (eo|Afpst0) = (4),

Sei nun der Zustand eine lineare Superposition mehrerer Zustande:

o [ ()48 o (0)) = [0(0)
= (v0] AJp®) = laf - (v, (0| Aws (1))

162 (0] 4 | 0)

Byt

tar gl T <wE1 (t)) A )wEQ (t)> +C.C.

Dieser Ausdruck ist im Allgemeinen nicht stationér.

allgemeine Losung der DGL:
‘w(t)> =) o En>
vt =0))

oy = <En

Ende Wiederholung

Kenntnis der Eigenwerte und Eigenzustéinde von H erlauben vollstandige Losung

eines Anfangswertproblems.
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6. Vorlesung Quantentheorie Quantenmechanik

Erhaltungsgroflien in der Quantenmechanik:

A ist Erhaltungsgrofie falls:

(w(t)| A|w(t)) = const

A ist Erhaltungsgrofie, genau dann wenn:

(7,4 =0
Bemerkung:
[H, Al =0
= S (rA) =0
Beispiel (freies Teilchen):
g_P
2m
Y [1:5, ﬁ] =0
[P ] = B, 2] = [P H] =0
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2 Einteilchen-QM in einer
raumlichen Dimension

Die Klassische Hamiltonfunktion lautet: H = % + V(7)

Schrodingergleichung
Ortsraum:

F 7 p— 7;‘ v/
Lo ) = — L2 Ap 1) + VEE Y
dt U 9m ’ RANE

Impulsraum:

ih(k,t) = — Dk, t) + V(i V) bk, )



6. Vorlesung Quantentheorie Quantenmechanik

Zusammenhang 1(z,t) < ¢(k,t):

(1) = (zl)
/ dz |z) (z|k)
D(k, 1) = (kl)

— [ dr (k) (aly)
= [z f(k2) ()
f(k,z) = (k|lz) =7

dazu: (k|p|z) / dy (kly) (y|p|$>
f(k.y) Ja@&y x)
h 0
—_ ———_——— k
iodx (k. )

andererseits: plk) = hk |k)
(k[plx) = hk (k|x)

- (k) = 2 k)

Flk,z) = e *(k, £) = /_ Tdr e (b

W, t) = / dk & . (k1)

Bemerkung:

Faktor i kann verschieden sein ,yverteilt® werden. Der Zusammenhang zwischen

Orts- und Impulsraum ist also die Fouriertransformation.
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6. Vorlesun uantentheorie Quantenmechanik
g

2.1 Kontinuitatsgleichung fiir
Wahrscheinlichkeitsdichte (3D)

Die Wahrscheinlichkeitsdichtefunktion lautet:

P () =0+
h h

—ig AV + ot AY
R S

+ ﬁV@b Y- %%b Vi

=0

— G [ - (V)]

"~ 2m

Aus der obigen Relation folgt mit der passenden Definition die quantenmechanische
Version der Kontinuitatsgleichung:

Wahrscheinlichkeitsstromdichte:

o [0~ (V)]
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6. Vorlesung Quantentheorie Quantenmechanik

Beispiel:

Damit 7 und Vj definiert sind fiir endliche Potentiale V() miissen (%) und
V() stetig sein.

Ubergangsbedingungen:

Wir miissen also die folgenden Forderungen fiir giiltige Wellenfunktionen aufstel-
len:

\I\V(x)

X X

11
Abbildung 2.1: Ubergangsbedingung

|

wl(Io) = ¢11($0)
d o d
P Yr(wo) = 1 Yrr(2o)

2.2 freies Teilchen in einer Dimension

Wir betrachten nun das wohl einfachste System in der Quantenmechanik. "Frei'bedeutet
hier, dass das Potential im ganzen Raum gleich null ist. Das Problem im Ortsraum
zu 16sen ist unnotig schwierig, da wir dort eine partielle Differentialgleichung (DGL)
zweiter Ordnung im Ort zu 16sen hatten, im Impulsraum jedoch nur eine gew6hn-
liche DGL erster Ordnung in der Zeit. Die Losung im Ortsraum erhalten wir dann
aus der Losung im Impulsraum, in dem wir diese fouriertransformieren.
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6. Vorlesung Quantentheorie Quantenmechanik

V(z)=0
. d n*  d?
Ortsraum: ih &@/J(x, t) = 9 Fzﬁ(x, t)
d - R*k? -
Impulsraum: ih &w(k,t) i Y(k,t)
d - ihk? -
@’ o
~ ~ ink? (t—t
~ Losung: ¥ (k,t) = ¥(k,to) - o
Ortsraum durch Riick-Fouriertransformation:
ihk? (t—tg)
b(, 1) / dk d(k to) e

ihk? (t—tg)

Propagator des freien Teilchens:

1hk ihk (t—tg)

1
G(z,y,t,t0) 527 / dk eF@=v) . 2m

Mit dieser Formulierung hat jedes Anfangswertproblem die Losung:

Uet) = [ dy Gl th) - vl t)

A,B
m im (v—y)*
= .= G(x,y,t,ty) = ) ———— - e20(=t0)
(79,1 o) 2mhi(t — to)

Fiir die folgenden Themen ist es hilfreich, einige spezielle Integrale und deren Losung
zu kennen. Fiir dieses Zweck machen wir den folgenden Exkurs:
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6. Vorlesung Quantentheorie Quantenmechanik

Exkurs (Gauflintegrale):

(i)

:>]12 :/ dZL‘ e—ax2 / dy e—Oty2

_ /oo dx /OO dy efa(x2+y2)

27
Pol. [ —ar?
= / dr -r- dp e "
0 0
—— —_———

(*)::%dz 2n
o0 7T
= 71/ dz e = —
JO (6]

d
(%) : Nebenrechnung: z = 7? = dz = 2r dr = ?Z =drr

(ii)
/OO dr e—oaa:2 eﬂa} — /OO dx e—oc(ac+zo)2 . ea:co2
—00 —00

—az® + fr = —a(z + x0)* + any?
= —aT® — 20T 0=6Ts Ty

T = _ﬁ
0 2c
L= [ dr exp{ —a(x+mz0)? ;- ¢ a0
—00 ——

ol




6. Vorlesung Quantentheorie Quantenmechanik

Die wichtigen Methoden bei der Losung von Gauflintegralen sind also:
o Berechne das Quadrat des Intgrals und ehe zu ebenen Polarkoordinaten iiber
o Fiihre quadratische Ergianzung im Exponent der Exponentialfunktion durch

Mit diesem Wissen lassen sich die folgenden Relationen zeigen:

(1)) = (p(0))
Ap(t) = Ap(0) = (Ap(0))
klar, da [ﬁ, H} =0

h2t?

A[Bz(t) = A:EQ(O) + m

Beispiel (Gaufl “sches Wellenpaket):

k2 2

20, YT

P(k,0) = A-e % +— (x,0) =

2

e 4oy

2

1 A ——
9 1) = e
205 2y/m\/0,2 + L

Aus diesem Beispiel mit den vorangegangenen Ausdruck fiir Az?(t) ldsst sich erken-
nen, dass die Wellenfunktion mit fortschreitender Zeit duseinanderlauft", der Bereich
mit signifikanter Aufenthaltswahrscheinlichkeit also mit der Zeit anwéachst.

0, =

Oz tIO
Or  t£0

>
X

Abbildung 2.2: Auseinanderlaufen des Wellenpakets

Dies mag befremdlich erscheinen, jedoch stellt diese Tatsache eine einfache Konse-
quenz aus der Unschérferelation dar: Ist der Impuls zu ¢t = ¢y nicht exakt bekannt, so
wird sich diese Unschérfe bei fortschreitender Zeit zu immer grofleren Abweichungen
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7. Vorlesung Quantentheorie Quantenmechanik

aufschaukeln'.

Da die Quantenmechanik bei groflen Energien in die klassische, newtonsche Mecha-
nik tibergehen muss, ist nun die Frage, warum der Effekt des Zerlaufens des Wel-
lenpakets nicht im alltdglichen Leben beobachtet wird. Das folgende Zahlenbeispiel

soll das illustrieren.

Beispiel: (zerlaufendes Wellenpaket)

Wie lange dauert es, bis ein Wellenpaket auf das doppelte seiner urspriinglichen

Grofle auseinandergelaufen ist?
Ax(T)=2A2(0) T ="

T = 2\/5% A 2(0)2

Elektron:
Az(0)=1pm = 10 °m
m=9-103kg
T=3-10%s=30ns
Murmel:

~

lem=102%m

>
5=X
=
II>

m = 100g = 10~ kg
= 3-.10% s = 10?2 Jahre

~
>

7. Vorlesung Wiederholung
Zunehmende Unschérfe des Wellenpakets:

S e im0

>»

X
Abbildung 2.3: Dispersion des Wellenpakets
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, ; h2t2
A =A —_—
z°(t) z°(0) + ImZAL2(0)

Ende Wiederholung

2.3 Gebundene Zustande: unendlich hohes
Kastenpotential

A

1Y g Lo

Abbildung 2.4: unendliches Kastenpotential

0 0<z<L

=]

oo sonst
Es muss gelten:
| P de=1
Ubergangsbedingungen
P stetig
o’ stetig falls V(z) # oo
R d?

~5 75 ®u(®) +V(2) ®p(z) = E @p(a)

I und III:
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7. Vorlesung Quantentheorie Quantenmechanik

V(z) =00
= q)]’][[(l') =0

1I:
2mE
V(z) =0= 07 (z) = - 72 Dyy(z)
Randbedingung: ®;7(0) = Ppy(L) =
E<O0:
iq/mx
(I)[[(x) = ei h
E =—|E|

i /2m\E\x i /2m|E|x
(I)[[(;U) =Ae h + Be h

0=23,;(0)=A+B - A=-B

i 2m|E| : 2m
0=0(L)=AeV * "4 Be V3L £

Allgemein gilt also:

Es existiert keine Losung der Schrodingergleichung mit £ < Minimum von
V(x)

FE >0:

2mkE
(IDH(:B)NeXp{:I:i m x}

72
2mkE 2mkE
(IDH(:B):ACOS{:I: 7;; :B}—{—Bsin{i 7;52 x}
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7. Vorlesung Quantentheorie Quantenmechanik

0= d;7(0) = A=0

0=y (L) = Bsin(,/anL)
—_———

vielfaches
von 27

[2mE
= B=0 4 keine Losung oder mTL =nTm n=123,..,n

Randbedingung (Normierbarkeit) firt zur Quantisierung der Energie:

Energieeigenwerte:

n?m*h?

B, =T
" 2ml?2

Eigenfunktionen:

Es bleibt, B zu bestimmen:

L
/dx 1@, (z)[2 = 1 . B=
0
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7. Vorlesung Quantentheorie Quantenmechanik

n=3

n =2

n=1
0 L

Abbildung 2.5: zustédnde im Potentialtopf

Verschiebe nun V(z) um % fiir ein symmetrisches Potential um die senkrechte Ach-
se:

L L

2 2
Abbildung 2.6: verschobener Potentialtopf

Wir beobachten zwei verschiedene Arten von Eigenfunktionen, die sich in ihrer Pa-
ritdt unterscheiden:

n=2m+1 O, (—x) = d,(x) symmetrisch

n=2m O, (—z) = —D,(x) antisymmetrisch

Fiir beides gilt aber:
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7. Vorlesung Quantentheorie Quantenmechanik

2.3.1 Inversion (Paritatsoperator) (beziiglich x = 0)

m=1 =11 =T11"

=TT ist hermitesch (selbstadjungiert) und unitar

AuBerdem gilt:

A2
~ P
m 2| =
’ 2m] 0
-
Ekin
A h? d? A h? d? h? d?
[’_Zmd:c?] (z) = (‘zmczxzq’( >>—<—zmm2”‘b<@>
h? d? h? d?
= oW T o g ) =0

A

{ﬂ, V(x)} =0 da hier V(—z) = V(z)

d.h es existiert ein gemeinsamer Satz von Eigenzustianden zwischen TT und H.

Nun fragen wir nach dem Spektrum von 1
Mo(z) = AP(2)
®(x) =P () = A TTD(z) = X2 D(z)

———
AP(z)

= | A ==%1

Es gibt also zwei Arten von Eigenfunktionen des Paritatsoperators:

O, (—z) =TT, () = D (2) symmetrische Wellenfunktionen
O_(—z)=TTd_(2) = —D_(z) antisymmetrische Wellenfunktionen
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7. Vorlesung Quantentheorie Quantenmechanik

Allgemeine Eigenschaften gebundener Zustinde in 1D:
i diskrete Eigenfunktionen von H kénnen reell gewahlt werden.

ii Sei E,, > E,, dann hat ®,,(z) mindestens eine Nullstelle zwichen zwei
Nullstellen (Knoten) von ®,,(x)

Beweis:

Sei E,, > E, und a < b Nullstellen von ®,,(z)
OBdA ¢, (z) >0ina<z<b

@) V) R) = Bu(e) [ e
- ae) VR = B) [ ®,)

_ ;n / "de (@) (2) — B (2)Ppn(2))

LB, (@) B, (2)— ) ()8 (@)

_ _i(w%(b) — 8,(1) ()
= (Em — Ey) /abdx P, () Prn ()

—_———
>0

>0

= &, muss Vorzeichen wechsel ina <z <b O

99



7. Vorlesung Quantentheorie Quantenmechanik

2.4 Gebundene Zustande und Streuzustande des

endlichen Kastenpotenials

I 11 17
Abbildung 2.7: endliches Kastenpotential

h2
—Z—CD}'J(x) + V(z)Pg(x) = EQp(z)
m
Randbedingung:
bp(z) stetig
O’ () stetig
I, III:
h2
/"
“om q’[,nz(x) = E@’I,HI(Z‘)) |z >
IT
hQ
o @) = (B + V) (Br1(2)) o] <
Ubergangsbedingung:

W(Hmh) e(d)-enl

L L L
v (-5) = (-3) @, () = 9%

N N
N——
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7. Vorlesung Quantentheorie Quantenmechanik

A) V< E<O gebundene Zustinde

I, III:

2m
() = 55 | B ®(z) = &* O(x)
O(z) =A™+ A e ™relR

Normierbarkeit:
O;(x) = Ay e™
(I)[[](l’) =A_e™ ™
II:
2m(E + V,
@%@:—(m@ywz—ﬁy@

Pr(x) = Cpe* 4+ C_e

Aufgrund der Symmetrie V(z) = V(—=z) kénnen wir unterscheiden:

= symmetrische Losung: O(z) = d(—x)

= antisymmetrische Lésung: O(z) = —P(—x)
symmetrisch: A=A Cc,=C_
antisymmetrisch: A =—-A_ Cc,=-C_

Auswertung der Ubergangsbedingung:

L
symmetrische Losung k =k tan (k; 2) = n = & tan(§)
. . . L
antisymmetrische Losung |k = —k cot (k; 2) = n = —¢&cot(§)
L L
= k —_ = k -
TRy $i=hy

stimmt das?
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7. Vorlesung Quantentheorie Quantenmechanik

Diese Gleichung lésst sich nicht analytisch 16sen. Neber einer nummerischen Losung
gibt es auch die Moglichkeit sie grafisch zu l6sen. Dies ist in Abbildung gezeigt
wobei hier die Schnittpunkte moglichen Paare (n, ) sind. [Siehe dazu: Quantentheo-
rie, Gernot Minster S.42/43 |[Minster, 2010]]

’r]ﬂ

M|
=y,
Iy

Abbildung 2.8: grafische Losung

- es existiert stets einen gebundenen Zustand
- existieren nur endlich viele gebundene Zustédnde
-Grundzustande sind immer symmetrisch

ek /\ ek
/| N

Abbildung 2.9: Zustande im endlichen Potentialtopf

Wir sehen, dass eine Aufenhaltswahrscheinlichkeit auch im klassisch verbotenen Be-
reich existiert, jedoch exponentiell mit der Eindringtiefe abnimmt.

Eindringtiefe:
h? |E|—0
— E d=
Vo< E<O omlE| — 00

62



8.Vorlesun uantentheorie Quantenmechanik
g

B) E >0 Streuzutinde

8.Vorlesung Wiederholung

2.4.1 Gebundene- und Streuzustande

o)

Abbildung 2.10: endliches Kastenpotential

V(x):{—Vo fur —L/2<x<LJ2
0 sonst

A) ’—VZ <E< 0‘ gebundene Zustinde

B) E>0 Streuzutinde

Ende Wiederholung

Klassisch erlaubt: gesamte x-Achse

I, III:
" = —kid
2mE
ki ="— 9
i=or (9)
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8.Vorlesung Quantentheorie Quantenmechanik

II:
" = —k*P
2m(E + V)
K = — > kg
Ansatz:
(I)I — &+eik0x T @,eiikox

Py = Bre®ot 4 B_e kot

(I)II — ,y+eikz + ,Y_e—ikx

eikox transmittiert
> —> e
. transmittiert
reflektiert -
- (reﬂektler

Abbildung 2.11: ebene Welle im Potentialtopf

Dabei stehen folgende Terme fiir:

eikor—iE} einlaufende Welle
e Ror—ik g reflektierte Welle
B eikor—iE " transmittierte Welle

ebeneWelle

ik’

[z vk, )o(k ) = 8k K)
= (k' z) xe

[z v @) (@) = 1

= (K, ) o k'

Normierung auf ¢ -Distribution

Wellenfunktion ist nicht normierbar! Ebene Wellen sind keine normierba-
ren Wellenfunktionen. Formal braucht es nun eine Erweiterung des Hilbertraumes.
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8.Vorlesung Quantentheorie Quantenmechanik

Aber: Wellenpakete, das heifit Superposition von ebenen Wellen sind normierbar!

= Es ist sinnvoll, auch ebene Wellen und analoge Streuzustande als Wellenfkt. zuzulassen.

Was ist die physikalische Bedeutung von o und 8.7

Stromdichte: (Abschnitt 2.1)
h

j=—— ("0 — O
J 2mi( )
fur einlaufende Welle: Join = %
fur reflektierte Welle: Jrefl = —fiko lo_|?
m
hk
fir transmittierte Welle: Jrans = WO\B,P

Aus diesen Einzelstromdichten definiert man folgende Koeffizienten:
Transmissionskoeffizient:

jrans
7= el g
|Jein|

Reflexionskoeflizient:

T — ‘]'reﬂ‘ _ ’a_‘z
‘jeinl

Bei den Koeffizienten o, a_, fBy,... hat man gegebenenfalls die Wahlfreiheit einer
Grofle. Die anderen passen sich entprechend an, da T und R materialabhingige
Konstanten sind.

Kontinuitiatsgleichung:

t) = [(x,1)]* = |¢(x)|” = const,

=—p=0 = J = const,

p(z,
dj
~ o
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8.Vorlesung Quantentheorie Quantenmechanik

I:
, h , 4
=5 (0107 — b101°)
h —ikx * _dikox\ ; ikox okox
=5 {(e + a’ e™F)ik, (e — a_e ) - c.c}
h
= —2(1 - |a_]?)ik
omi ( la|*)iko
h } )
- %(1 - |@—|2> = Jein t Jref
II11:
} 2h . )
JIrr = 2.71]'{:0|ﬁ—|2 = Jtrans
im
jein + jref - jtrans
T+R=1
1
= T=—
V2 sin?(kL)
1+ 40E(E+V0)
2m(E + V)
mit L = breite des Potentialtopfs k= T

T= T=1
R=0

\/

Abbildung 2.12: Transmissionsanteil mit eingezeichneten Resonanzen

Betrachtet man den Plot bzw. die Funktion, so ldsst sich feststellen, dass bei
kL = nm mit n € N =T=1

auftritt. Diese Stellen bezeichnet man als Transmissionsresonanzen. Dieser Effekt
liegt an destruktiver Interferenz der an der ersten Kante (von links kommend) und

66
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der an der zweiten Kante reflektierten Wellenanteile.

2.5 endliche Kastenbarrieren und Tunneleffekt

Abbildung 2.13: endliche Kastenbarriere

E >V,
Mit unserer bisherigen Erfahrung mit Kastenpotentialen setzen wir folgende Félle
fiir einlaufende, reflektierte und transmittierte Wellenteile an:

eikgm + Oé,e_ikor T S _%
U(r) = (e + et —f <z <3
/6+eik0x xr > %
2mE 2m(E — V)
2 _ 2 __
kg = 2 ki = — 7 >0
analog zu 2L mit k — k;
Interessanter ist der Fall:
Klassisch gibt es in diesem Fall keine Transmision.
Ansatz:
eikox + a_efikoz x < _%
() = (e +y e —f<a <5
ﬁ+eik’0m T > %
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mit
analog zu [9 mit k& = ik
=

=
= Tunneleffekt

/\/

T —

e sinh2(kL)

L+ 1E(Vo—E)

Es gibt Transmission im klassisch verbotenem Energiebereich

N

Interferenz von
Einlaufender

und Reflektierter
Welle

exponentielles
abklingen im
klassische
Verbotenen
bereich

-nur transmitierte
Welle

-gleiche Wellenlange
-geringere Amplitude
-keine Interferenz

Abbildung 2.14: Tunneleffekt

Gamow Formel:

Nachdem wir nun eine (sehr idealisierte) Potentialbarriere behandelt haben, wol-
len wir nun allgemeinere Barrieren betrachten. Eine Moglichkeit dafiir bietet der

folgende Ansatz:

AV ()

|-
>

Abbildung 2.15: allgemeine Kastenbarriere

Néherung von V(z) durch kleine Kastenpotential
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- einzelne Kastenbarriere habe Léange L; L sei grof3, sodass: klL«1

= sinh?(kL) = et
= T~ mE(“;ZQ—E)e—"W;W
Abfolge von Késten mit
T ~ e 7V 2m(V()-E)Az

N
= T = H T, ~ e—%\/Qm(V(mi)—E)Am

=1

T ~ e—%fab dr~/2m(V(z)—E)

Dieses approximative Resultat bezeichnet man als die Gamow Formel.

2.6 attraktives & - Potential

(A) Betrachteter Potentialtopf aus mit V) - —oo, L = 0
Aber VoL = A = const. Anschaulich machen wir also den Kasten unendlich
tief, aber auch unendlich schmal.

/d:c V(z) = VoL = A = const

dh. V(z) — Ad(z) analog zur Rechnung aus ([2.5))

L? mVo Lm 10

R2— 2 ¢2— 2 _ oy 0
THE= S e Tapt T
= Es existiert nur ein gebundener Zustand
=k tan(k— —
K an( 2) =
2m|E|  m(E+ V)L
R h
mlL? mL2V?
E|= E? —2E ?) ~ 0
mA?
E=-
2h?
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mA(x)

®(z) = Netlel = Ne™ "2

(B) diskrete Rechnung:

J
Abbildung 2.16: delta Potential

V(z) = —ad(a)
freies Teichen x <0 t>0
¢7(0) = ®44(0) Stetigkeit
®(0) =7 Stetigdifferenzierbarkeit

Die Stetigkeit der Ableitung der Wellenfunktion soll nun untersucht werden.
Dafiir bilden wir das Integral iiber die Schrodingergleichung in einer e-Umgebung
um null:

[ [ Do) Aé(a)%(a:)] ~ B0(0)

Com da?

h2 d2® :
_md;@ |~ A8(@)25(x) = B2l
= Ble) - By(—e) = _2T;A¢E(0)

Wir sehen also, dass bei einem d-Potential die Ableitung der Wellenfunktion
an dieser Stelle eine Unstetigkeit besitzt.
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3 Der Harmonische Oszillator

9.Vorlesung

3.1 Hamiltonoperator und dessen Spektrum

o klassisches Federpendel

Abbildung 3.1: klassisches Federpendel

o T

2 fir 1D



Quantentheorie Quantenmechanik

9.Vorlesung

charakteristische Langenskala

h
lop =\| — Oszillatorlange
mw
nomierte Koordinaten / Impulse
et A=P2 [P =in
— — = — €T =1
lo h ’
N 1 A A
= H = h/,u§ <ﬁ2 + 52) symmetrisch in &, 7t
~ T Iy ~ N
{f,ﬁ = f,—OP =i H positiv
lo" h
A ? A A A A A A
H=ATA (WIATA[p) = [|Ajp)]]* = 0
man kann eine solche Darstellung finden
definiere
A A
a= 75 (§ + 17t)
it = (¢ - i)
2
nicht selbstadjungiert
a+al é:i(aﬁﬁ)
V2
1
—= (a+af)

A hw ’\2 A2
=g @)=

A hw

LSS PPN
H= 5 (a a -+ aa )
Vertauschungsregeln
1rs 1
0,01 = 5 (iR =50+ =1
[a,af] =1 =aa'=1+a'a
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9.Vorlesung Quantentheorie Quantenmechanik

aus H = hw (&Td + ;)
folgt E > h;
da: (laTaly) = ||ale)|* > 0)

Nun folgen die Eigenschaften von @ und af

i) Sei A Eigenwert/Eigenvektor

ata ist positiv, d.h atald) = A\

0 < |[lalA)* = (Aafalx) = X (A[X) = A
1
=A>0

ii)
falls A Eigenwert von a'a dann ist A + 1 ebenfalls Eigenwert mit Eigen-
zustand ~ af|\)

= (1+M)(@'\)

— Zustand ~ a'|\) ist Eigenzustand von a'a zu A + 1 (falls af|)\) nicht
der Nullvektor ist)

iii)
falls \ ein Eigenwert von a'a daraus folgt A — 1 ist Eigenwert mit Eigen-
zustand ~ ( al)):
Beweis:

ata(a|l\)) = a'aal\) = (aa’ — 1)a|A)
T

— Zustand ~ a|\) ist Eigenzustand von a'a mit A — 1 (falls a|A\) nicht
der Nullvektor

— a,a' sind Leiteroperatoren
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ATQ /\Tl ).‘ ATl )‘T2
| ] L] L] | ] | ]
a R

a al af

>

Abbildung 3.3: Aufsteigeoperator

iv)
aus (i)-(iii)folgt:

A=0,1,2,34, .. A=neN

Bew: Sei A Eigenwert >0

alr) Eigenzustand zu A — 1
a*|\) Eigenzustand zu A — 2 etc.
A — 1] = Chal\)
A —2| = Cad®|N\)
a7 = (Ala*Dal D) = (A —nfata s — n)
| —
|Cn|?
N —
_ 27" —A=0,,1,2,..n nenN
|Chl
A=0 Ap=n

In) = Chafln — 1)
1= (n|n) = |Cp|*(n —1]ad a'|n — 1)
= |Cp|(n — 1]ata + 1jn — 1)

= |Cn|2 (n—1n—1)n = n|Cn|2
—_——
1

1
A e = — OBdA Cp =
n
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1
En:hw(n+2> n=20,1,2,..

aln) = v/n|n — 1)
a'ln) = vn+ 1|n + 1)

Spektum der Energie, sowie bestimmende Gleichung der Auf- und Absteige-
operatoren

AT
In) = \‘;ﬁm— 1

_ at . at
CVnvn—1
Setzen wir dies fort, so folgt nach n schritten:
a
n) =
Vn!

)

In—2)

3.2 Eigenfunktionen

Wir miissten eigentlich die Schrédingergleichung losen

_hQ d2 (

9 1
%@Qﬁn(l’) 70‘] T Pn(z) = + 2) Pn(T)

Aber: Die DGL ist im k-Raum genauso schwer: Schrodinger in Fourier-raum:
(im k-Raum)

2727 m _ 1) 7
R — 6,0 = oo (n+ ) ,08)

Grundzustand: (niedrigste Energie )

Einfacher: es muss ja gelten: a|0) =0
1 z l

E+in 0_0_< )0_0
f( )10) NG 0)

=0

Gi-lo B0
=5 B 40
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Ortsraum:

4 lo2 ¢(x) =0 Definiere neue Variablen: y = L
l() ox lo

— (y + (fy) o(y) =0 = do(y) = —y do(y)

Einschub:

—
‘ =
<
|
|

—

S
QU
S
3
—~
s
I
|
‘ S
no
NS
I
CDI
o,

o8,

Einsetzen und normieren mit: y = T und y = e
0

2
— &

1 212

. e 0

liefert: ¢(z) = —
il

Oszillatorlange= Ausdehnung des Grundzustandes
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Angeregte Zustiande:

n) WIO> o1 <x2 1515)
n) = i'=—|=-—
Vvnl V2\P o
Ortsraum und y = %:
1 (1 o\\"
Pn(Y) il (\/§ (?/ - 8y>> Po(y)
1 _¥
wobei H,(y) definiert ist als:
2 dn 2
Ho(y) = (—1)" e ——e¥
)= et o

Ho(?/) =1
Hi(y) =2y
Hy(y) = 2y* —2
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|
| S
|
|

Moden

3.3 koharente Zustande des harmonischen Oszillators

Definition: (kohdrente Zustande)

—lo?

o0 a{n
— 2 GC
R o

dies ist kein Eigenzustand von H mehr und es ist normiert
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5’”771
_5 o™ e _ 4
o !
— nl
2
e‘a|
Leiteroperator:
afoy =7
. > A" e
ala) = e 2z aln
=3 T )
=y/n|n—1)
> a” —laf?
=y ———ez |n-1) Def: m=n—1
n=1 (n — 1)'
(o] am —‘04
=« e"z |m)
m=0 m‘
|ar)
= ala)
= |ala) = ala)
Rechtseigenzustand von a :
M existiert nicht! Denn a ist nicht selbstadjungiert.

Eigenschaften:
i) dala) = ala) = (ala! = a*{a]

ii) (alafala) = a* (a]a) a = |al?
- ~——

=1
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Das Quadrat davon ist:

A2 1) = (alata-ala
(a7 |a) = (ala'a-a' a|a)
ata+1
= (a'a'aala) + (ala’ala)

=lof" + |af?

10. Vorlesung Wiederholung: kohirente Zustéinde

Zur Erinnerung dies sind die koharenten Zustédnde:

Wie wir sehen sind diese bereits normiert

e 1o (n, n)

(a]a) = Z \/n‘— )

6nm

b
et n!

i) Wir betrachten nun einige Eigenschaften der kohérenten Zustinde.Die
kohérenten Zusténde sind Eigenfunktionen des Vernichtungsoperators/
Reduzierungsoperator

ala) = afa) (ala’ = a*(af

Es existieren aber nicht:

ii)

30
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Dies ist die Poissonstatistik also eine Statistik zufélliger unabhéangiger Fr-
eignisse.

Ende Wiederholung

iii)

(#) = o) = (" + )

’ V2

l .
= 75 l{ald'lo) + (alala)]
l
% [a* + a] = V2l Re(a)
2Re(a)
. h h h
Py = () = al —a) = —v/21
(P) = (7 = 56 —a) = ' VEIm(a)
iv)
Schwankungsquadrat:

2 2 g2y _ o
- (alAf%]a) = B(AE) = 2

. h,. . h?

(a|Ap?|a) = S (AF?) =

l§ 203

h2
= | (AP (AP = T Also |a) sind Zustédnde minimaler Unscharfe

v) Wie sieht die Zeitentwicklung (wende U(t, o) an) der kohérenten Zustinde aus?

[e's) n
1,12 (%

(= 0)) = |a) = e72I° ~ |n)
Eigen-
zustand
von H

() = o~ zlol? i Lne—iw(n+§)t‘n> mit e~ #Ent — g—iw(n+3)t
= V/n!

ey e—iwt)n

1,12 s (CY
—ec 2% 3o ZWWL)

n=0

Nur Phasendnderung zu vorher
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10. Vorlesung Quantentheorie Quantenmechanik

Mit |ae | = |a| folgt:

_ —Liwt —iwt
P(t)) = e 2" ae ())
=a(t

Also wieder ein kohéarenter Zustand: Einmal koharenter Zustand immer kohé-
renter Zustand.

Weiterhin konnen wir sehen:
(#(1)) = (W(0)|2](1)) = V2o Re (™)

(50} = (O pIH(D) = Y2 I (ae)

Spezialfall « = a*ag Also ist « reell
((0)) = V2lpag (2(t)] = V2 cos(wt)

(p(0)) = 0 (1)) = ﬁf sin(wt)

= N
>

Abbildung 3.4: mit kohérente Zusténde

Wir sehen, dass in den koharenten Zustanden der quantenmechanische harmo-
nische Oszillator eine Kreisbewegung beschreibt, sehr analog zum klassischen
harmonischen Oszillator im Phasenraum. Zusammen mit der minimalen Un-
scharfe erkennen wir also eine grole Analogie zwischen den klassischen und
quantenmechanischen Pendants.
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10. Vorlesung Quantentheorie Quantenmechanik

vi)
kohérente Zustande sind nicht orthogonal (siehe Aufgabe)

lo2 1812

a|B) = e P2 2
|<Oz|5>|2 —¢lo- BI* — ola*B+B a—a*a—p*B)

vii)
Sind {ibervollstéandig

—/da o?la)(a /du /dv la)(a| =

u = Re(a) v =Im(«)
2
| = 0) =7 =Grundzustand , da |\af>/ =3, \ﬁ L|n)
0
= 0% =1 einziger Term, also: |a = 0) = 0°e"|0) = 1/|0)
viii)
kohérenter Verschiebungsoperator (U,A)
r a*a—aal
) = D(a)|0) = e 10)
D(a)™! = D(a)f

A

D(a)t = et = gd'-a"a — =4

3.3.1 Baker-Hausdorff Theorem

e®e® = P wenn gilt [a, 5] =0

Wenn [fl, é} # (0 aber mit [fl [121 BH = {B, Vl é” =0.

dann gilt:

o NP P
oAoB — (A+B+3AB] _ A+B L[AB)

33



10. Vorlesung Quantentheorie Quantenmechanik

3.4 Die Sommerfeldsche Polynommethode

Wir wollen nun noch einmal die Losung des harmonischen Oszillators finden, nun
aber direkt mit der Losung der Schrodingergleichung. Dies bewerkstelligen wir mit-
hilfe der Sommerfeldschen Polynommethode:

i) Wir iberfithren zuerst die Differentialgleichung selbst in eine einheitenlose
Form, indem wir neue Parameter einfiithren.

ii) Wir 16sen die Differentialgleichung in den Grenzféllen der Variablen, iiblicher-
weise null und unendlich.

iii) Wir setzen den Produktansatz der Grenzfall-Losungen mit einer Restfunktion
in die Differentialgleichung ein und erhalten eine weitere Differentialgleichung
fiir die Restfunktion.

iv) Aus den Bedingungen an das Grenzwertverhalten und Normierbarkeit lasst
sich die Form der Restfunktion bestimmen und weitere Bedingungen an deren

Aussehen stellen.

Beginnen wir also:

i) Einheitenlose Parameter:

d? 2m 1

2
_z _ 2,
v= lo ‘= Aot mw
2 kanr21 vernachléssigt werden
= din(I)E(y) + (¢ —y")Pr(y) =0

Losungen miissen nomierbar sein (dh. miissen im unendlichen verschwinden)
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10. Vorlesung Quantentheorie Quantenmechanik

ii) Asymptotisches Verhalten bei |y| — oo:

" — y*P =0
2 2
Ansatz:® = e~ T P =—ye T
2 2
P = —e T +yle

iii) Ansatz fiir die Gesamtlosung:

Waihlen einen Polynomansatz fiir F(y). Das ist moglich, da F(y) im unendli-
chen langsamer wachsen muss, als eine Exponentialfunktion

»

O(y) = Fy)e =

Fly)=>_ cuy"
n=0

einsetzen in DGL

2

¥ = F(y)e s +2F () (—y)e T + P F(y)e T — Fly)e
"+ (e —y")® = F"(y) — 2yF'(y) + (e — DF(y)

= >_n(n—Deny"* =23 neay” + (€ = Deny™ =0

n

Vergleich der Potenz von y

Z[(n +2)(n+ 1)cpio — 2nc, + (e — D)eyly" =0

n

0
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10. Vorlesung Quantentheorie Quantenmechanik

VA
V(z) = smw?s?
'
X
Abbildung 3.5: Potential
N 2n+1—¢€
Cny2 = Cn
P+ 2)(n+1)
iv) Rekusionsbedingung;:
a) gerade koeffizienten = symmetrische Losung
b)ungerade koeffizienten = antisymetrische Losung
symmetrische Losung
co=c3=c5=..=0
1—e¢ N 2n+1—e
Cy = ¢ Cnia = Cn
o 2T n+2)(n+1)

Die Bedingung der Normierbarkeit erfordert, dass alle ab einem gewissen m die Reihe
abbricht, da sonst unendlich viele Terme aufsummiert werde. Nach der Rekursions-
vorschrift reicht dafiir ein ¢,, = 0 fiir n gerade aus, da dann alle weiteren Terme
verschwinden. Es muss also der Zéhler der Rekursionsvorschrift verschwinden. Da-
fiir muss € = 2n + 1 setzt man dies in die Definition so folgt direkt die quantisierte
Energie

= Em:ﬁ;d(Qm—l—l):hw(mﬁL;)

antisymetrische Losung analog

N

®,,(g) = Polynom e~z ~ H,,(y)e

Y ﬁ
2
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10. Vorlesung Quantentheorie Quantenmechanik

Also ein Polynom, welches proportional zu den hermiteschen Polynomen ist.
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4 Beziehung zwischen klassischer
und Quantenmechanik Ehrenfest
Theorem und klassischer Grenzfall

11. Vorlesung

4.1 Vergleich Klassik/ Quanten-mechanik

klassische Mechanik:

Quantenmechanik:

Massenpunkt:
7(t), P(t)

deterministisch

klassisches statistisches Ensemble
(zb statistisch schwankende Kraft)

Ap =10 p = po deterministisch

Beispiel:
siehe Abbildung |4.1a| J4.1b| und |4.3a|

Wellenfunktion (Zustand):
(1)

Wahrscheinlichkeitsdichte

19(7,t)]? im Ortsraum

W;(Ea t)|> im Impulsraum

Unscharferelation

(Ax?)(Ap?) = Iy

(Ap?) =0 = (Ar?) = 0

z.B. ebene Welle ¢ () ~ e®

siehe Abbildung |4.2a|,|4.2b| und |4.3b|




11. Vorlesung

Quantentheorie Quantenmechanik

T
(a) Wahrscheinlichkeitsvertei-

lung von x

_ p

(b) Wahrscheiglichkeitsvertei—
lung von p

Abbildung 4.1: Wahrscheinlichkeitsverteilung

Az
AN
& z k ]

(a) Ortsunschérfe

V(z) = smw?a?
Epot = max

\

Epot = max

Eiin = max ¥
pot —
(a) klassisches Potential

(b) Impulsunschérfe

Abbildung 4.2: Unscharfe

é@ =0 X

ﬁ> = Pmax

(b) quantenmechani-
sches Potential mit
unschéarfe

Abbildung 4.3: klassisches und quantenmechanisches Potential
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11. Vorlesung

Quantentheorie Quantenmechanik

klassischen Mechanik:

Quantenmechanik:

Hamiltonfunktion H(q,p)

oH
b —aiq—{Z%H}p
o0H
Q—aip—{qu}p

d

o
%f(%pat) - a_{_{va}p

da Ob Oa 0b
{a, b}p B Z {a% api} B {api 3%}

i

ot

oOf oH Of OH
{f,H}={f—f} =75,

dp Oq

4.2 Ehrenfest-Gleichungen

Schrodingergleichung

o A
i () = H1(0)

150 = S W@ b))
d
= Ll
e + (2

G o 2k

p% la,b] =ab—ba {a,b} = ab+ ba
Ip {-,-} := Antikommutator

+ V(%)
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11. Vorlesung Quantentheorie Quantenmechanik

N A pape;
i (7))
2ih(p)
1. Ehrenfestgleich 4y = Lipy
. Ehrenfestgleichun —(z) = —
g g q o \P
Das Ergebnis iiberrascht uns nicht, da ja ((Cilf = v, 2 = v) aus der klassischen

Mechanik bekannt ist
£<A> = —i<[ﬁ o)) = —i<[ﬁ V(2)])
FTAAEE AU S A

Aber was ist der Kommutator vom Impuls mit einem allgemeinen, von x abhédngigen
Potential

5.Vl = |1 52V vl
h o h o
= v - v (1 4) o)
_ h (OV(z)
i ( Ox > V(@)
2. Ehrenfestgleichung CZ(@ =— <8‘gim)> = (F(x))
Aber
(F(x)) # F((z))
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11. Vorlesung Quantentheorie Quantenmechanik

klassische Naherung:

C4p) = (VV () # YV ()
4 _ )
A

Wann gilt zumindest approximativ die Gleichheit?
= Taylorentwicklung von

F(7) = —=VV(7)

in 7 — (7)

In 1D:
F(2) = F((2) + F'(2)]o=(@) - (2 — (2)) + 21, F ()o@ - (2 = (2))* +
(F(2)) =F((2)) + 0+ 21, F'() =ty - (2 — () )?) +
(A22)

Also (F(2)) = F({(2)) falls (A2?) klein

Die beiden Ehrenfest-Gleichungen:

1.Ehrenfest-Gleichung: @ = @
dt m
2.Ehrenfest-Gleichung;: dé];) = F((z))
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5 Der Drehimpuls in der
Quantenmechanik

5.1 Elementare Eigenschaften

klassische Mechanik L=7Fxp
(i, pj] = 1RO,

Quantenmechanik
(&5 = Levi Civita)

L; = €, 7 pr

Wir benutzen die Einstein’sche-Summenkonvention und kénnen auf Symmetrisieren

verzichten.

L; = Eijk Tj Pk = &ijk Pk L5
L=7xp

Ly = 2p. — 2p-
Ez = iﬁy - Qﬁx

In Ortsdarstellung gilt:
L=—ihFfxV




11. Vorlesung Quantentheorie Quantenmechanik

elementare Vertauschungsregeln:

(L, L] = [95: — 2By, 2Pa — 2]
= 9P - (—ih) + ih- 2P,
— ih- (&P, — 0p)

= ihl,
Analog folgen die anderen:
(L., L, =ih- L,
(L, L.]=ih- L,
(L., L,) =ih- L,
= [f/z, fzg] =ih- Eijkf/k (zyklische Vertauschung)

L=1,6 +L,€, +L.ée.
EEop o aiiiioi, i
[ﬁzy [A/Q] = [zza ffjf/]] = IA/] [zu [A/J] + [Aia zy] f/]
=ih €ijk (f/] f/k+ﬁkfzj) =0
——
anti- symmetrisch

symmetrisch

[L;, L*] =0

Es existiert ein gemeinsamer Satz von Eigenzustinden zwischen L, und L?, zwi-
schen L, und L? etc. Dies darf aber nicht zu der Annahme verfithren, dass damit
auch L, und L, eine Basis teilen. Die Basen von L? und den anderen sind aufgrund
von Entartung nicht eindeutig und damit auch nicht deckungsgleich.
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11. Vorlesung Quantentheorie Quantenmechanik

allgemeine Unschirferelation:

[(L2) P

N ~ h2
2 2
(A L3)- (& Ly) > T

d.h. auBer fiir (L.) =0

kénnen L, und [A/y nicht gleichzeitig gemessen werden.

5.2 Spektrum des Drehimpulses

2.B. [ﬁz,ﬁﬂ =0

was sind Eigenwerte und Eigenzustédnde von L,und L2 ?

Leiteroperatoren:

~
H,

Il

~
)

H-

~
<

Lt =1
[L.,Ly]=[L., Ly +iL,)

A A

—il, —iih- L, = h(L, +iL,) = hil,

analog: (L., L_]=—hL,

95



12.Vorlesung 30.11.16 Quantentheorie Quantenmechanik

Spektrum von L,:

La |tm) = hm |th)

m =7
%) =7
betrachten L. |9m)

iz z+ [Vm) = (f“r ffz + hﬁx) [Ym) = h(m+1) Ez [%m)

Ly [thm) o |thms) Aufsteigeoperator

analog : L_ -+ [t,) o< [t—1) Absteigeoperator

12.Vorlesung 30.11.16
5.2.1 Spektrum von L2

[ﬁz, EQ] =0
Ym) = [Vm)

k sind Eigenwerte von L2
L? kommutiert mit den Leiteroperatoren (L) : [L* Ly] =0
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12.Vorlesung 30.11.16 Quantentheorie Quantenmechanik

k* =7 L?rm) = WK [m)
EZEi’wkm> = j—/iz2’wkm> = thzzi’wkm>

Die Eigenzustiande |iy,,,) haben denselben Eigenwert h%k? fiir alle
m(mE+1l,m=£2..)

T
~——
h2k2 >0 >0 >0
= k? > m?

k vorgegeben: |m| <k
Es existiert ein maximaler Wert (< k) und minimalen Wert (> (—k)) von m
k legt also min/max von m fest.

Z/\—J‘i‘ | wkmmaz >

=0

Nun wollen wir L? durch Leiteroperatoren f/+ und L_ und L, ausdriicken.

o (Ex 4 iiy) (Em - iiy)
= L2+ L) +iL,L, —iL,L,
=12+ L2+hl.=1"—-L2+hlL,

—
i2-12

PP i.h 41— ni.
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bzw. L?= f/iﬁ¢ + sz F hlA}z
L2\ W Ymin = (L4 Lo+ L2 = BL.) [Wtom ) min
= K’ (mfmn — mmin) | n) min
h2k2|qjl§m>min = h2mmin (mmin - 1) |‘I’km>min
Nun konnen wir k% ablesen.
E* = Mupin (Munin — 1)

ff|\llkm>max - (E—E+ + fé + hﬁz) |\I[k:m>max

k2 = mmax(mmax + 1) ; mmin(mmin - 1)

—Mmax = Mmin

Vereinbarung: mpax = { = kK =1+1)

Eigenwertgleichungen von L2 und L,:

L0, = B2+ 1))
L0, = him|T,,)
—1 <m <+l

Wir wissen dabei noch nicht, was die Zahlen m und [ bedeuten, werden diese spé-
ter aber als Drehimpulsquantenzahl [ (Form des Atomorbitals) und magnetische
Quantenzahl m (raumliche Orientierung des Drehimpulses) identifizieren.
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Li|thyn) = aliszmiﬁ
Lt )b [* = (Wi | Lz Lot [tP1m)
= (Yim| L? = L2 F RL|toim)
= B2l + 1) — B*m® F B*m
= B[l +1) = m(m F 1)] = |a,|”

L) = h/I( +1) — m(m F 1)|¢ms)

Mpax = l Mpin = —1
|l kann entweder
1=0,1,2,3 oder =132
In jedem Fall:
m =
—1,(1-1),..,-1,0,1,...,(l = 1),1 —l—=(1=1),.., =3 (=11

gerade ungerade

PO P 3

L.y 1

n )

Y 1
L -1
Li o s
. 2

—— S

Abbildung 5.1: Drehimpuls
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diskreter Drehimpuls:
Grenzfall m ~ —[ +n und n <<

Lalthim) = BJUI+1) = (1 + n)(—(n+ 1))

Li|thm) = BV +1 =12 +1—n% — n+ 20|t

Ly [um) = hf20(1 +1) = n(n + 1) [¢mi)

Dabei ist n(n+1) unter der Wurzel ~ 0 da n«l

h\/—LJr |wlm> VN + 1’wlm+1>

aT

~afn) = Vn + 1|n + 1)
5.3 Drehimpuls in Ortsdarstellung

T p = —ihV
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12.Vorlesung 30.11.16

Quantentheorie Quantenmechanik

Polarkoordinaten:

Abbildung 5.2: Kugelkoordinaten

x = rsin(Y) cos(p)
y = rsin(¥) sin(y)
z = rcos()

Einheitsvektor in krummlinigen Koordinaten

L o7
. or be

ef:bigﬁig

F=r ( sin(¢) cos(), sin(¥) sin(yp), COS(M) '

€, = sin(v) cos(p)€, + sin(¥) sin(p)e, + cos(V)e,

€y = cos(V) cos(p)€, + cos(V) sin(p)e, — sin(V)e,

€, = —sin(yp)€, + cos(p)é€,

F=r-€,
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13.Vorlesung

Quantentheorie Quantenmechanik

7"‘619

_’lg—i—_’ 1 0
r oY

e sin(d) Oy

AEER—

L=ré x (ﬁv):-
1

é¢% -

L,=é,L=ih <Sin(go)

f,y = éyi =ih (— Cos.(go)g + sin(yp) cot(ﬁ)i@)

0

Ex] + cos(yp) COt(ﬁ)éio)

o

- -

I*?=L-L

Vorsicht Eigenvektoren €, €y, €, sind vom Ort abhéngig

z.B.
0

—

0
= .=

so g 10

sin(v) 00

Laplaceoperator in Kugelkoordinaten

10 ,0

13.Vorlesung

— sin(¥)— +

——7
r2or Or
—_———

Radialanteil

—€y = cos(V)€,

Ubungsaufgabe

1 &
(sin(?))? Op?

LZ
h27“2
——

Rotations-
anteil
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5.4 Eigenfunktionen des Drehimpulses

f) ﬁz sind nur Funktionen welche von ¢, ¢ abhangen
Wellenfunktlon im R : £L2(IR3)

R} +— R, ® S*

Mit R4:= Abstand r und S2?:= Winkel 9,

Die Eigenfunktionen von L;, L? sind sinnvollerweise im £2(S?) definiert

Skalarprodukt auf S2:
(Wila) = [AQ 01 (9,¢) va(0, )
= [fa sin@) [T w000 60,
Zuerst untersuchen wir das Spektrum von L,:
Lothim (9, ) = —ih§0¢lm(ﬁ> ) = hmiim (9, ¢)

= Yun(9,0) = e un (V)

Dim (0, + 270) = P (9, 0)

= eim27‘[ -1

=

Fiir den Bahndrehimpuls kommen nur ganzzahlige Werte von 1 in Frage

Nun untersuchen wir das Spektrum von L?:

L..L% =0

0 0 1 o
Lt (9, ¢) =~ [sm 9) 99" (19)619 * sin?(9) Op?

= JPU(L+ 1)t (D, @)

77Z11m(197 QO)
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1 0 O m2
[sin(f}) o sin(v) 99 sin®(9) +i(+ )1 Upn () = 0
Koordinatentransformation & = cos(1) = d¢ = — sin(9)dd

0 0 m?
o (1 - §2> Kgulm + (l(l +1) - 1_£2> Upy, = 0

Miissen nun diese Gleichung 16sen wobei -1<£<1

i)
Spezialfall m = 0
Dies ergibt die Legendre Differentialgleichung:

d 2 d -

Das ist eine Differentialgleichung 2. Ordnung = man bekommt 2 Losungen
wobei nur eine im £2(S?) liegt

uim(§) = Fi(§) = Fi (cos(V))

Legendre-Polynome:

19, !
p(§) = 271 ol (f - 1)
Beweis durch Einsetzen:
Grad von 1
P(—€) = (-1)'P(¢) [ gerade = symetrisch
[ ungerade = antisymmetrisch
Py(§) =1
Py (5) =¢
3 1
P(§) =8 — <
2(6) = 56 — 5
5 3
Py(6) = =& - =
3(€) = 568 - o€
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Eigenschaften:
a) Orthogonalitét
1d P& P 2 d
| de P& Pule) = 5w
b) Symmetrie
P (=€) = (-1)' R(¢)
c) Rekursionen
(+1) Py =20+ - Py
0
(1-¢) 57513’ =—1(P+1P,
d) erzeugende Funktion
1 S Pifeos(i) o
= ) (cos s
\/1 + 52 —2s-cos(¥) =0
al
Py(cos(v)) = @() o
ii)
m # 0
Losungen sind die zugeordneten Legendrepolynome
m m 2\ 2 am
0<m<l PPE) = (1) (1= €% S )

RO = (1) (e FE)

! kann maximal m sein da man maximal [ mal differenzieren kann bis Null
raus kommt
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Zusammenfassung Kugelflichenfunktionen:

20+1(1—m)! .
P J) e™?
I (s m) ym(cos(V) e

¢lm(197 90) = Ylm(197 ‘20) = $

LY]" (0, ) = b Y[ (9, )
LAY7(0, ) = RUL+ 1)Y](0, )

Orthonormalitit (auf Kugeloberfliche r=1)

, U 27 ,
A9 Y7 @.0) Yir (,) = [ di sin(@) [ de Y(0,0) YiF (9,0) = S

F) =Y Y VP ¢)

=0 m=—1

/ AQ Y (0, ¢) f(9,0) = e

Yo(d, ) = \L/g

VI, 0) = 5/ o sin(d) e
YO, 0) = || o= cos()
Y10, p) = ;\/gsin(ﬁ)e_w
Yi0, ) = [ 2 Pcos(v)
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13.Vorlesung Quantentheorie Quantenmechanik

10 L2
AN=——p>_ —_
r? 87"70 h2r2
- 2
2 PN
2m 2m

Was passiert wenn man ein Problem gelost hat und dann das System dreht? Was
passiert mit den Eigenfunktionen?

5.5 Translation und Rotation

5.5.1 Translation im Ortsraum

Es gibt 2 Moglichkeiten zum Verschieben

T A
@
N
Fr T ¢
>
Y
(a) aktive Translation (b) passive Translation
Abbildung 5.3: Translation
Frage
[v) = 1) = Uly) =7
Ortsdarstellung (passive Interpretation):
(") W(F) =+ @) = Uy(r)
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Taylorreihe:

i) Abel’sche Gruppe:

= U(a+b)
ii) infinitesimale Verschiebung;:
Uda)~1— 15 ap p = Generator der Translation

h

iii) Falls gilt U(@)HU (@) = H dann ist das System invariant unter einer Trans-
lation von @
Beispiel (Potential):

|

iv)

falls U@HAauYa) =H  Va
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13.Vorlesung Quantentheorie Quantenmechanik

& {3 ist eine Erhaltungsgrofie d.h. (£ 1% |E) = const

Entspricht dem klassischen Noetertheorem

5.5.2 Rotation

T A
(N
\
L >
Y
(a) aktive Rotation (b) passive Rotation
Abbildung 5.4: Rotation
in 2D:
Assiv: 2"\  [(cost? —sind) [z
P ' y')  \sind cos? | \y
D(9)
aktiv: '\ [ cos¥ sin?) [z
' y']  \—sind cosd) \y
D(—9)=D~1(9)
in 3D:

Rotation um die z-Achse

cost —sind 0
D.(¥) = | sind cos?d 0
0 0 1
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infinitesimale Drehung [J] << 27 U =c¢

1 —e 0

D.(e)=1¢e 1 0

0 0 1

1 0 0

D.(e)=10 1 —e

0 € 1

1 0 €

Dye)=]0 1 0

0 1

= Rotationen sind nicht kommutativ! Frage nun:
) =Dl D=7
Rotation wird durch L generiert.

14.Vorlesung Wiederholung (Rotation)
aktiv:

passiv:

(1) = () 2t) )

=:D=1(=9)=D(9)

Ende Wiederholung
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Frage:

¢') = D)

(D verkntipft Zustand nach der Drehung)
passive Interpretation:

v'(F) = D () = (D' (W)F)
infinitesimale Rotation: D = D, (¢)
= D.(e))(7) = ¢(D.(—2)7)

= 77[}(.17 + ye, —€x + Y, Z)

Taylor U(x,y,2)+¢e ( v _ dd}) +0(e?)

=|D(e)=1——¢- L.+ 0(c)

endliche Drehung: ¥ = ne mit:n — 0o, € — 0

[ﬁz(g)}” = D.(9) = lim [1 _ ;ﬁL ] — o b0l

n—oo

(wie bei Translation)

Beliebige Richtung: 7, |73| = 1

A

Da(9) = e~ +77L (10)

Bemerkung:

i Drehungen sind eine nicht-abelsche Gruppe. D.h. dass sie nicht kommutativ
sind.

ii Wenn: Dy(9)- H-DZ'(9) = H,

=-System ist invariant unter Drehung um 7 Achse um Winkel 1.

iii Gilt (ii) V Winkel ¥ € (0, 27:

(i
[ﬁ i]_o
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= L, bleibt erhalten! (Drehimpuls bleibt erhalten)

Behauptung:

ist definierende Eigenschaft fiir Drehimpuls

M miussten Vertauschungsregeln erhalten

Vertauschungsregeln fiir den Drehimpuls:

D.(e)- Dy(e) — D,(e) - Dule) = D.(?) — 1

1 2 3 4
I - 1 545 i - I 52y
(1 — ﬁng — ﬁg Lx> . (1 — ﬁELy — ﬁg Ly)
1 2
1 s 1 272 1 s 1 272
— (1 — ﬁELy — ﬁé‘ Ly> . (1 — ﬁELm — ﬁé‘ L:C)
3 4
=1 %€2ﬁz + o (e%) A
e . . 5 iy
also: — ﬁ[[’”’ L,+o(e) = —E L,
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6 Einteilchen-QM in drei Dimension

6.1 Das freie Teilchen

Wollen stationdre Schrodinger Gleichung losen.

. %9 A2
g_P_ "
2m 2m

(A) Schrodingergleichung in kartesischen Koordinaten:
n* ([ d? d? d?
<dx? Tt

B2k
20

- ) oel) = - 02 ()

setzten: F :=
2m

setzen spezielle Losung an 7 (Schrodingergleichung ist linear):

pp(r) = X(x) Y(y) - Z(2) (Separationsansatz)
— h " " " 1
= E- X}:Z = —%(X (@)Y Z+ XY"(y)Z + XY Z"(2)) e
X// Y/I Z//
= k% = + T+

jeder Term muss const. sein!
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also:
X//
= —k,°
X
Y//
v
Z//
Z k?z2
Z
= ]{32 — Z k’iZ
1=x,Y,2
Losungen also:
X (z) ~ et 1y, 2z analog
= op(F) = C*T K = (ky, by, k2)
h2k? .
= |FE= k= k| = /K2 + k2 + k2
2m Y
—_———
E=hw
gilt fiir alle k € R3
Zeitabhangige Losung:
Vp(T t)—CeiE"LiZﬁt cu—h—]€2
BT, - - om
Entartung: alle 7 mit |7 = |l_5\ liefern gleiche Losung, jede Linearkombination
ebener Wellen mit |k|=const ist Eigenfunktion von A mit E = h; 7’;2.

« kartesische Koordinaten vorteilhaft, falls Randwertproblem mit entsprechen-
der Symmetrie, z.B: Boxpotential:
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14.Vorlesung

y
7z
0<x<A 1
1
0c0<y<B
V(F) = =Y= C B
0<z<(C .
00, sonst
*)X

Abbildung 6.1: Beispiel Boxpotential

« unendliches Boxpotential:

PE = 0 fur

2
X(0)=0,X(A)=0 :>X(x):sm(2nx n ez
27
analog: Y (y) = sin (Bmx m € 7
2
Z(z) = sin (gpz) pEZL
= e (r,y,2) = N sin < %n x) sin (gm y) sin <gp z)
~~
ke
R [/mN\2 , (m\%2 , /m\?%,
> Bame=op KA) o (5) m(6) v

K2
fiir n,m,p # 0 — sonst nicht normierbar.
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6.1.1 (B) Kugelkoordinaten:

o klass. Hamiltonfunktion:

) 2 12
g-P _ P
2m 2m  2mr?
Radial—
impuls
« Fiir den Radialimpuls gilt:
mi =P — p, =n,-p  als Projektion
7]
e und:
L=7Fxp
) SN 2.2 (= 2\2
L’ = (7 x p)(F x p) = 1*p* — (7 - p)

e Nun Quantenmechanik:

L
e Was ist mit — 7
r2

o Ist [L2, f(7)] =07

Beweis (Ortsdarstellung)
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!

(1= 380 L) 7)< ()

= 7i-Lf(r)=0und

~2 72
Also: | H = Pr L
2m  2mr?
N i? 2 [19 ,0 12
tsdarstell s H=— — A= |
Ortsdarstellung 2m 2m [73 o 87“] 2mr?
1 ~ hl h
Radialimpuls: —-7-p=-—7¥V = 72
r ir i0r
A 1
p-r— = —ihVe,
r
V wirkt auf Wellenfunktion und auf e,
R ih (0O . S
pr)(r) = ) (37“ + Ver> W»(7)
ih |0 . .
= _L 71/} +erv’¢ +77Z}(V€r)
2 or N—— S~~~
2y 2
N AN U N
= —ih (r + r) = —ih ;Erw (7) = P, - ()
19 \]° 19 (10
P2 — | _ - _ 852 - -
" [ ih (7’87“7”)] h (r@rr (r@r ))
1 0? 0? 2 0
h 7“87’2T f [07"2 r@r]
190 ,0
h 72 8rr or
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Ubungsaufgabe:

mit r in Ortsdarstellung

6.1.2 Eigenfunktionen von H in Kugelkoordinaten:

A

Lpry B ) o) = B
2m " 2mr? vE\T) = BT
Es gilt wohl: ep(T) = Rk (7) y" (¥, @)
1d L(L+1) 5
= l_r(iﬂr + T.2‘| RKL(T) = K RKL(T)
Def: z = kr
spharische Bessel-DGL:
d 2 d I(l+1)
@R[a(I) + ;@RKI(I‘) |} — ZE2 ‘| RKL(JJ) = O
15.Vorlesung Wiederholung
L, f(r)] =0 (11)

Wir sahen, dass das Quadrat des Drehimpulses mit jeder Funktion kommutiert,die
nur vom Abstand und nicht von den Winkeln abhéngig ist
freies Teichen

. %9 o) iz
q_P _ B
2m  2m  2mr?
1 /18 & 5 ol
pr—<'r p+p 'r>
2\r r
10
! rarr

118
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[p, L*] =0 7, pr] = iR (in Ortsdarstellung)
(sieche Aufgabe 26)

LY (0, ) = hmY" (¥, ¢) (12)
Eigenfunktionen auf freie Teilchen in Polarkoordinaten

A

o (74 ) ents) = Bonie) (13
Ansatz:
h2k?
65(7) = RO)Y"(0,0) =0 ()
1 6° I(1+1) )
[_r&r’f + 2 Ry (1) = k*Ryy(r) (15)
nach einer Koordinatentransformation x = kr erhilt man die
spharische Bessel Differentialgleichung
d 2 d (1+1)

Ende Wiederholung

Die Losung lasst sich als superposition von den spharische Besselfunktionen und
den sphérische Neumannfunktionen schreiben wobei wir sehen werden, dass die
spéahrischen Neumannfunktionen nicht nomierbar sind und somit nur die sphérischen
Besselfunktionen in Frage kommen.

spharische Basselfunktionen sharische Neumannfunktion

]O(I) _ sinx(z) TL()([L') _ _coi(x)
jl ([L’) _ sir;gz) o coi(x) n ([L’) _ _co;gx) smz(x)
ja(z) = (& = Lysin(z) — L cos(z) no(z) = —(% — 1) cos(z) — 2 sin(z)
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onlm(rv 797 90) = jl<k7 T‘) Ylm<197 90)

h2k?
E, = E(l

Wir sehen, dass die Energien hochgradig entartet ist, da E weder von 1 noch von m

abhangt
Spezialfall Kugelwellen:
Il=m=0
, sin(kr) elfr o7k 1
= jJo(kr) = = — — 1
Pr00(r) = Jo(kr) L ( ” , 9k (16)

unendliches Kugelpotential:

Vig) = {o 7] < 7o

o0 sonst

Siehe Aufgabe auf Ubungsblatt. Die Losungsfunktion miissen auf der Oberfliche des
Potentials verschwinden, wir erwarten ein diskretes Spektrum von Eigenfunktionen.
Weiterhin ist das Potential kugelsymmetrisch, Losungen werden also Kugelfldchen-
funktionen sein, durch die mindesten zwei Quantenzahlen enthalten sind

AZ

Y

Abbildung 6.2: unendliches Kugelpotential

6.2 Gebundene Zustande in einem Zentralpotential

V(7)) = V(7 =1) (17)
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Wir wechseln zu spharischen Polarkoordinaten, da wir wissen dass die Bewegung in
Zentralpotentialen in einer Ebene verlauft.

+ V(r) (18)

da [V (r), L;] = 0 existiert ein gemeinsames System von Eigenzustinden L., L? und
a
Ansatz:

oo = "Dy, )

Diesen Ansatz setzen wir in die Eigenwertgleichung (Schrodingergleichung) ein
I:[SOE(F> = Epp(T) (19)
Durch einsetzen des Hamiltonoperators folgt

o2 R+ 1)

2mdr? " 2m 2

+ V(r)| u(r) = Eu(r) (20)

Dies ist ein Eindimensionales Problem im L?([0,00]) also auf einem Hilbertraum
von null bis unendlich

Wir erhlten ein effektives Potential, was wir als Zentrifugalpotential aus der klassi-
schen Mechanik identifizieren:

B2+ 1)

2

Ver(r) = V(r) +

2m v

S
Zentrifugalpotential

o Satze aus dem 1 dimensionalen Fall gelten
— Knotensatz

— U(r)(Radialfunktion) kénnen reell gewahlt werden

Wir sehen, dass Veg von [ abhéngig ist. Daher wird auch die Energie von 1 abhéngig
sein: F = E(l). Wichtig ist jedoch, dass Vg nicht von m abhéngt, wie sehen also
die sogenannte "nattirliche Entartung'von (27 + 1).

= E=FE (21)
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EA

Emin

=y

Abbildung 6.3: effektives Potential

Beispiele fiir Zentralpotentiale

i V()=-% Coulombpotential

(i)  V(r)=—2e Yukawa Potential

(iii) V(r) = ae™™" Exponentialpotential

iv)  V(r)=ar? isotroper harmonischer Oszillator

Anzahl der gebundenen Zustinde:

Es gibt nicht in jedem Potential gebundene Zustinde, und nicht immer unendlich

viele. Die Bargmannsche Schranke liefert fiir

die Anzahl der gebundenen Zustéande:

Vir), =20

< L 2m
ST

/Ooodr r V()| 6(=V)

eine Abschétzung fiir

Hier ist #(—V') die Heaviside-Funktion sie beschrénkt das Integral auf Bereiche mit

V<0

o falls das Integral endlich ist, dann existiert ein .y

Fiir das Coulombpotential ist das Integral nicht endlich ( wie man leicht veri-
fizieren kann), das Yukawa-Potential sowie das Exponentialpotential hingegen
besitzen maximale 1.
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« Es existieren keine gebundenen Zusténde falls 22 [>dr r [V (r)]0(=V) < 1

6.3 Coulombpotential

7 2
Vi =-25 ZeN (22)
r
Dabei setzen wir in den Hamiltonoperator H = % + V(r) das effektive Potential:
R+ 1) Ze?
Verr(r) = - 2
() 2mr? r (23)
——

Zentrifugalpotential ~ Vioulomb

(A) gebundene Zustidnde und Spektrum:

= Eu(r) (24)

_Ficﬁ RA(L+1) B Ze? ul(r)
2m dr? 2mir? r

gebunde Zustande sind nur fir £ = —|E| < 0 moglich
Zur Vereinfachung der Differentialgleichung fithren wir skalierte Grofien ein:

h%k?

Bl="2 p=2kr (%)
d?  1(l+1) 221 1
i 2 ) = o (20
Po = 21{?@0 (27)
h2
ag = —— Bohrscher Radius
e2m

Zur Losung der Differentialgleichung betrachen wir verschiedene Grenzfille, um
dann einen gezielten Ansatz fir die Losungsfunktion aufstellen zu kénnen

p—>00:
d? 1
d7p2u<p) = ZU(P) (28)
) nicht normierbar
=  u(p) = Ae 2 4 Bez (29)
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15.Vorlesung Quantentheorie Quantenmechanik

p—0:

d? I(1+1)

dfPQU(P) = u(p) (30)

nicht normierbar

—  u(p) = Cp* + DT (31)

Der zielfihrende Ansatz ist also:

u(p) = F(p)p' e ® (32)

Durch einsetzen dieses Ansatzen in [24] erhédlt man eine neue Differentialglei-
chung, dieses Mal fiir die bisher unbekannte Funktion F(p). Diese Gleichung
tragt den Namen konfluente hypergeometrische Differentialgleichung

d*F dF 27
L @42-p——(l+1 - ) F=0
pdp2+( + p)dp <+ p0>

Aus der Grenzwertbetrachtung fiir p sehen wir, dass die Funktion F maximal
ein Polynom sein darf, da F nicht schneller wachsen darf als eine Exponen-
tialfunktion. Wir machen also den Ansatz einer Polynomfunktion nach der
Sommerfeldschen Polynommethode und gehen danach wie folgt vor:

F(p)=> Cip’ Sommerfeldsche Polynommethode (33)
=0

o Einsetzen
« sortieren nach Potenzen von p
o Koeffizientenvergleich

Dies ergibt eine Rekursionsvorschrift

IR ks o ki) (34)
GG +2a+2)

Die Polynomfunktion muss einen maximalen Grad besitzen, da sie als unend-
liche Potenzreihe einer Exponentialfunktion gleich ziehen kénnen und damit
die geforderte Normierbarkeit gefdhrdet.
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Abbruch der Rekursion bei j = jax

. 27 Z
]max—i_l_'—l:i:i
po  kag

n n e N>0 (35)

mit n:=Hauptquantenzahl
Sodass Jmaxi1 =0

Wir herhalten eine Quantisierung der Energie:

A A

2m 2m agn? n? Y

E, = —|En| =

Hierbei ist R;, die Rydbergkonstante:

h2

- 2
2mag

R*

)

Die Rydbergkonstante ist die charakteristische Energieskala des Coulomb-
Problems, die Dynamik wir sich also in der Groflenordung der Rydbergkon-
stante abspielen

Aus Gleichung [35] folgt:

Abbildung 6.4: quantisierte Energie
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Man beachte hierbei die Abhéngigkeit von n? in der Position der Energieneveaus.
Als Entartungsgrad hatten wir die natiirliche Entartung von (2[4 1) erwartet, statt-
dessen sehen wir, dass die Entartung mit [36| sehr viel hoher ist. Wir werden sehen,
dass diese zusatzliche Entartung aufgrund der zuséatzlichen Symmetrie des Coulomb-
problems entsteht (der Ruge-Lenz-Vektor).

Entartungsgrad:

n—1

> (20+1) =n? (36)

=0

Als Losung fir die Funktinonen von F'(p) erhalten wir schlussendlich die
Laguerre Polynome:

e’ d™
Lm _ m_—x
(@) = - )
sowie daraus die
assoziierte Laguerre Polynome:
L 1)? & L
= (=1)9—L,,(t
1(2) = (=11 L)

Als Beispiel seinen hier die ersten Laguerre-Polynome angegeben:

Lo(z) =1 (37)
Lo(z) = (1 — 2z + x;) (39)

16.Vorlesung Wiederholung
Das Coulomb Potential:

o RI+1)

S T SO =F
o er—i— 572 +V(r)| w(r) w(r)
wu\r
QOE(Ta 90719) = l( ) }/lm(ﬁa QO)
7Ze?
V)= -2
r) =%
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Ty = 55— Bohr’scher Radius

F(p] = Z CJ/O7
j=0
(j+1+1) =22
TGy 2+
C;=0 J>Jo
27 Z
n:jmax—i_l—i_l:i:i
po  kag
[<n-1
Die Reihe muss abbrechen!
2772
g 7
2magn?

Die Eigenfunktionen (F'(p)) sind die Laguerrepolynome und die assozierte La-
guerrepolynome

Ende Wiederholung

Wir fragen uns also, welche nun die Eigenfunktionen des Coulombpotentials insge-
samt sind:

_P
un(p) ~ e 2 p L2 (p)
Z
p=2kr = w—r
nag

Spezialfall Z = 0 Wasserstoffatom
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Eigenfunktionen des Wasserstoffatoms:

Unim(r, 0, 0) = Nog - e o r L (— ) Y (0,9
nm(aa) n - n—Il+m nag l(?)
Normierung exponetieller Winkelanteil
Abfall polynominaler Term durch L2
1 =
Yro0(r, 0, ) = ;¢
Ttay
1 T __r
¢200(7’7 197 QO) = |:2 - ] e w0
44/ 2ma} o

Wir beobachten folgende Eigenschaft der Losungsfunktion: Der exponentielle Ab-
fall, benotigt fiir die Normierbarkeit, geschieht in Einheiten des Bohrschen Radius’,
welche die natiirliche Energieskala des Wasserstoffproblems darstellt. Weiterhin kon-
nen wir erkennen, dass, wenn die Quantenzahl n in diesem Exponenten grof§ wird
(n=>50;60,...), wir noch von Null stark verschiedene Aufenthaltswahrscheinlichkeiten
des Elektrons weit vom Kern erhalten, das Atom also an groflie stark zunimmt. Dies
ist die grundlegende Eigenschaft sogenannter Rydbergatome, auf die wir hier nicht
naher eingehen.

}Lq&o wnlm<r7 197 (;0) =0

h2

—120+1)=n%2>>20+1 Ei=———
dn—1(20+1)=n + | Sma

=0

Grundzustand

Wie sehr haufig ist der Grundzustand nicht entartet

Eigenschaften der Laguerpolynome:

i) Orthogonalitit:

Woher kann der geneigte Leser bereits wissen, dass eine Orthogonalitatsrela-
tion existieren wird? (Hinweis: Eigenfunktionen hermitescher Operatoren)

/Oodx Lp(x) Ly (z)e™ = dpm
0

/ooodx Li(z)LE (x)e 2 = nl[(n + q)*8nm
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ii) expizite Darstellung:

iii) erzeugende Funktion:

(1—t)"te ™ =3 L, (a)t"
n=0

(B*) dynamische Symmetrie des Coulomb-Problem:
klassische Mechanik V(r) = —%

Runge-Lenz Vektor:

.1 . S
F=—(pxL)- L. F=0
m r
Quantenmechanisch
Fe l(pxL—Lxp -2
_2mp P r

In Einer Ubungsaufgabe wird gezeigt, dass [F', H] = 0 gilt
Wir sehen, dass der Runge-Lenz Vektor eine Drehimpuls dhnliche Algebra auf-
weist.Daher definieren wir zwei Operatoren J; und Js:

Unterraum konstanter Energie E

[Li7 F]] = ihqjk [A/k : [f/z, ﬁ}} = iheijk Fk

[J1i, Juj] = ihesjn [jlj, jZk:} =0

{jQi; j2j:| = iheijkj2k; algebraische bestimmung von £,
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In der Tat stellt sich heraus, dass diese Operatoren Drehimpulse sind. Mit ihnen
wird die algebraische Bestimmung von F,, moglich sein

6.4 Das Wasserstoffatom -Teil 1

2 Teilchenproblem:

Proton: Ty, Dp gp=c Masse: mp

Elekron: Te, Pe e = —€ Masse: me

Was ist (7, 7.) ?

62

) = T R
e D
|:7%p77%e:| - [ﬁpaﬁe} =0

7 Be] = [Py = 0

Aufgrund dieser Relation kénnen also Protonen und Elektronen getrennt voneinan-
der behandelt werden.

Relativkoordinaten:

Wie auch in der klassischen Mechanik gehen wir in Relativ- und Schwerpunktsko-
ordinaten tliber, um dieses Zweikérperproblem zu losen.

Schwerpunktskoordinate:

klassische Hamiltonfunktion:
M = .
H="R+572 4+ V()
2 2
Mit

M =m.+m, =
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g

Der Schwerpunktsimpuls ist eine Erhaltungsgrofle und kommutiert somit mit dem
Hamiltonoperator

d :, oH 5
& (M) =0= 55— .1 =0
72 B2

Hierbei ist der erste Summand die kinetische Energie des Schwerpunkts und der
zweite Summand die kinetische Energie der Relativbewegung
[, Py| =0

(R, 7) = *Bop(F) = epp(F)

Fiir die Schwerpunktsbewegung ohne duflere Einfliisse konnen wir also das Modell
des freien Teilchens anwenden.

(<5 80+ V) - 0(r) = 00

h2k?
2M
——
Schwerpunktsenergie

E=¢e+
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7 Geladene Teilchen im
elektrischen-Feld

7.1 Minimale Kopplung und Eichtransformation

Hier wird im Gaufischen CGS-System gerechnet das bedeutet:

_ 1 QlQQ s F— QlQQ
dteg 12 r2
—_——
SI Einheiten CGS-system
L= - U
c
Maxwellgleichungen im Vakuum
VE = 4mp VB =0
- 10 = = 10 = 4dm-
VxE+-—B=0 VxB—-—-—E=—j
B cot x c ot ¢

Losung durch Poteniale
da VB = 0 gilt lasst sich B folgendermaflen schreiben
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Damit lisst sich E darstellen

E=-V¢— i a@t*&
Eichtransformation
A— A = A+ VA®F)
6= = 0= O
E=F B=PB

klassische Hamiltonfunktion

Quantenmechanisch (hier kommutieren A und r im Allgemeinen nicht, also symme-
trisieren wir)

Se

A 1
=

2m

oI

A)) (5 LA@) ) + a0 + v

Um diesen Missstand zu beheben, nutzen wir die Wahlfreiheit des komplexen Vorfak-
tors vom Betrag eins einer jeden Wellenfunktion. Dabei ergdnzen wir die Eichtrans-
formation durch eine Transformation dieses Vorfaktors und gelangen zu Eichpha-
sentransformationen:

H ist hier nicht invariant unter Eichtransformation

A— A= A+ VAT 1)
— L6
6= ¢ = 6— - S A
U= (F) = e {SLAFE D v

Die Schrodingergleichung ist invariant unter Eich-Phasentransformation
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17.Vorlesung Wiederholung

O

konnen spezielle Eichung nehmen:

Ende Wiederholung

7.1.2 Coulomb-Eichung:

mit:

ergibt sich:

PA - APy(r) - —’;f‘ V- (A7) + LAF V)
L (VA () 0

N 1 2, > A \2
= — (P—qA(F)> TP
2m c
mit P : kanonischer Impuls und mo = P — %/Al(?%) = 7t : kinetischer Impuls
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o kanonischer Impuls ist keine Observable, da die Eichphasentransformation U

UPU! :ﬁ—fvz\( t)y£P
mit U = exp{ }
diesen nicht invariant lasst. Damit ist der kanonische Impuls keine gute Ob-
servable.
aber:
0 (13_ q) 0 =P dvam) - 14
c c c
_p 14
c
Es gilt:

mit Z; : Ort und 71, :Impuls

7.2 geladenes Teilchen im homogenen Magnetfeld

Wir setzen:

O(F) = 0 B=VxA F.=1 (5% B)
C

auBerdem soll: V- A = 0
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17.Vorlesun Quantentheorie Quantenmechanik
g

oL

|

A=—1(FxB)

7.2.1 Hamiltonoperator in Ortsdarstellung

FI:——A+V(7’)+ﬂ1~(FX B)V + ¢ (7 x B)?
2 2me i 8mc?
h . = h = S5
T(pr)Vz—;B-(rxV):—BL
H = —h—QA +V(r)+ ¢ (7 x é)z - sgn(q)u B-L (40)
m 8mc? R

Der Letzte Term von H stellt dabei die Kopplung von L und B dar, also die Kopp-

lung des durch die Bahnbewegung erzeugten magnetischen Moments an das duflere
Magnetfeld.

gl n

5 beschreibt dabei das Bohr’sche Magneton
Me

UBahn = sgn(q) - %ﬁ Das Moment des Elektrons (Ladung)
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7.2.2 Landau Niveaus:

Sei:

E:(o, 0, B)zBéZ v+

wihlen A = (—yB, 0, 0) d =0

(Landaueichung )

1B\’
H = (ﬁﬁC) + Dy, + b

1
2m

Losungen der stationdren Schrodingergleichung? H o = Eog:
Welche Groflen kommutieren mit dem Hamiltonoperator?

Pz und =

A

[P ) = 0= [py, H] H=—(p— AP +q2+V

Eigenzustinde: elf=otik=2 £, (q))

A2 27.2
Dy ~ms o _ kS
2o -l fe) = (- 52 sot
hk
Yo = —Cqu = 1D Schroédingergleichung
B
Q= m = Zyklotronfrequenz
me
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= harmonischer Oszillator mit Frequenz €2

W2 k2

Landau Niveaus
2m

1
E, = hQ (n + 2) +
() := harmonischer Ostzillator in x, y—Ebene

h2K? . . . .
5= =Kontinuum freie Bewegung in z—Richtung

7.2.3 Grundzustand des Harmonischen Oszillators

| h | h
ln = i |€ch magnetische Linge

7.3 Der Aharonov-Bohm-Effekt

]l

)

T
'i
B0

|

5
°i
(X)

Ag

"
!
(X

g
't
X

'!

OO
m
OO

R
R—<3

|

"'
!

(

1

B

auflen — 0
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B=0 auflen, aber:

BR: . Pua 40
©

A = _
2R %° 7 R

7.3.1 Hamiltonoperator fiir Elektronen

Hamiltonoperator fiir Elektronen q = —e auf Kreisbahnen (a), (b)

(a)

1 (A1 0O EEJﬁ

2
-~ (222
2m<iR890+02 R)

jo L (hLO cBR
2m \i R0y c¢2 R

1 <h1 0 eBR§>2

2
out __ _i(K+BEs"qR in
() = ¢l 2eR ) -

. 2 .
wlc;ut _ el(K— Cgfg )R | ¢1n

_maBRg_i
 ¢h  he

CI)mag

A¢
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7.3.2 Aharonov-Bahn Phase

o A¢ hdngt nicht von der kinetischen Energie (Zeit des Durchlaufs) ab.

o A¢ héngt nicht von R (genauer vom konkreten Weg ) ab, solange die Spule
eingeschlossen ist.

= topologische Phase:

Grundlage fiir

Quanten-Hall Effekt, topologische Isolatoren

Es ist jedoch nicht so, dass durch die Aharanov-Bohm-Phase das Vektorpotenti-
al direkt messbar wird und damit eine mathematische Hilfsfunktion physikalische
Bedeutung erhélt. Durch die Definition des magnetischen Flusses durch das Ringin-
tegral iiber das Vektorpotential verfillt die Eichfreiheit und der magnetische Fluss
ist eindeutig definiert.
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8 Der Spin

8.1 Das Stern-Gerlach Experiment

----------------------
=

Tonenstrahl o

inhomogenes Magnetfeld

g

Abbildung 8.1: Stern Gerlach Versuch

Wir beobachten, dass der Strahl von Elektronen im inhomogenen Magnetfeld in
zwei Strahlen aufspalten, und keine von beiden im Vergleich zum urspriinglichen
Strahl unabgelenkt bleibt. Das legt Nahe, einen inneren Freiheitsgrad des Elektron
zu postulieren, der ein Drehimpuls ist ( weil er mit einem &dufleren Magnetfeld wech-
selwirkt) und nur zwei Einstellmoglichkeiten hat — also nur —i—% und —% sein kann.
Diesen nennt man Spin. Da jedoch der bisherige Hilbertraum diesen Freiheitsgrad
nicht abdecken kann, miissen wir ihn erweitern um den Hilbertraum des Pins, den

C2.
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8.1.1 Hilbertraum des Elektrons

Das Spin-behaftete Elektron muss also in folgendem Raum beschrieben werden:

L2<R)3 ® (DQ

wobei R? externe und C? die internen Freiheitsgrade angibt

8.1.2 Pauli-Matrizen

Eigenschaften (o0, 0y, 0,)
i) 0; = o) selbstadjungiert
ii) Tr{o;} =0 det{o;} =—1
iii) [0y, 0;] = 2i€;5,0%
iv)
{os,0;} = 0,0; + 00, = 25;;

2 _
o; =1

aus (iii) folgt:

5 R

Szi(cme}—i—oyéy—i—@@)

[A@', Aj] = ihEiij'k

[52,5,]=0

h2 3 1/1
2 M ]1:h2:h2< 1)

S 4( +1+41) 1 2+
1

= S ==
2
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18.Vorlesung Wiederholung

H =L R ) ® C?
~—~— ~—~—
externe Bewegung interne Bewegung

h2
:Z.g.]l
g (o
[S’Z,S’Z]:O

innerer Drehimpuls mit Betrag %
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Ende Wiederholung

: . A h(l1 0
Eigenzustande S, = 5 (O _1>

Alle bisherigen Operatoren, die den Spin nicht betrafen, miissen nun erweitert wer-
den, um auf den Produktraum von £?(R?*) und C? zu wirken. Diese Erweiterung
wird durch die Einheitsmatrix 1 im C? bezichungsweise £?(IR?) erreicht, die wir von
nun an aber weglassen.

ﬁ—>f3®]l

§1 —-1® §
8.1.3 Teilchen mit n inneren Freiheitsgraden

H=LPDR) o C"

n=2s+1

S?=n?-s(s+1)-1,

S’Z|m, s) = h|m,s)

Spinquantenzahlen: my, = —s, —(s — 1),..., (s — 1), s
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8.2 Spin und Rotationen; Gesamtdrehimpuls von Spin
3-Teilchen

Nun soll untersucht werden, ob folgende Gleichung gilt, wobei D eine Drehung in

C? beschreibt.

A (Vi) 2 (Yi(D7HF)

b(m)* (o) )
kann so nicht sein!

Wir betrachten zwei Stern-Gerlach-Apparate hintereinander. Die erste Kombination
ist problemlos, da dort zweimal nach S, gepriift wird.

R

Beim Zweiten jedoch sehen wir: Ist die Up- oder Downkomponente null, so wiirde
sie nach der Transformationsregel von oben auch fiir immer null bleiben. Dies kann
nicht sein, da S, und S, nicht kommutieren und deshalb hinter dem zweiten Apparat
wieder Up- und Down-Komponente auftreten. Folglich ist obige Transformationsre-
gel falsch.

S P |

Ky |1 =<w0 49 . —

L (7

IR

Abbildung 8.2: Aufteilung beim Stern-Gerlach Versuch
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90, 5:] #0

falls korrekt wére, miisste bei diesem Experiment nun | J,) herauskommen. 4

) 2 (e

Drehung in R3

s (7)

——
Drehung in C2

)

It

A s ‘.E s
Dﬁ:e 19nh‘e i©

=

1

falls § halbzahlig liefert nur Drehung um 47tn den Anfangszustand, da [§;, [:J] =0da
L mit der Einheitsmatrix aus C? kommutiert und analog S mit der Einheitsmatrix

aus R3

Definiere also einen neuen Operator, der diese beiden Drehungen zusammenfasst:

A

Dﬁ(@) = e—i@ﬁ

>

Gesamtdrehimpuls (des Elektrons):

ny

J=L+

= ]1L2(]R3) X §+E®]l@2

J ist Gesamtdrehimpuls, da gilt:

[ Ji] =1

>

A

i+8i, L + 8]

~»

[Li, Lj] + (S, S

= ih&ijkf/k + ih&ijkgk

[ji, jj] = ih&ijkjk

146
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—
LS

= 2i Eijk (ikgj + E]§k>

antisymmetrisch
in j,k

symmetrisch
in jk

=0

Der letzte Term wird null, da die Einsteinsche Summenkonvention gilt und die Sum-
me iiber einen symmetrischen und einen antisymmetrischen Term verschwindet.

so gilt ferner:

[J2,58.] 40
[J2,L.] #0

Aus diesen Relationen sehen wir, dass zwei Satze kommutierender Operatoren exis-
tieren:
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8.2.1 Gekoppelte und ungekoppelte Basis

a) ungekoppelte Basis:

A

s ¢ A A
L, L, 55, |1, my, s, M)

b) gekoppelte Basis:

J27=]zaL27’S2 |j7mj7l78>

J2ljomy, 1 s) = hj(G+1) [j,my, 1, 5)
jz|ja my, l73> = hmj |j7mj7la S)

mj = —j, ,j

Was sind Werte von j?

’j? my, la S> = Z ernj,ml,ms l7 my, s, ms>
ms,my
mit ¥ =:Clebsch-Gordan-Koeffizienten
3, Mg

Die Clebsch-Gordan-Koeffizienten helfen uns also, von einer Basis in die andere zu

transformieren.

1

Errechne zunachst Koeffizienten fiir s = 3
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J|j7m]al>3 ZZ mmlms S +[A’Z) S7m5>
ms My g
=[x+)

o)

nx [en vy om)-

ms,mg
ey =) o))
= hm j,m,l,s>

in Summe nur Terme mit m; = m £ %

=

11 1
m,my—g,3 mmi+5,—5

ii)

jj,m,l,s>—ﬁ2 (j+]‘> ]7m7l78>

A A
= =

J2P=1*+5*+2-LS

=12+ 8 +2- 1282 +2- (L2852 + 1252)

andererseits gilt auch:

LS+ L8 = (Ly—iLy)- (S +i8,) + (Le +iLy) - (Sa +18,)
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& GG +1)—1(1+1) —s(s+1)]

(o= ey s 1) o)

—a(m =) [Lm— 1) xs)+ B (n 1) llm+ 1) )

X+>+5

_ \/l(l+1) — 4+ ) m = 1)

2 2
.(5

l,m—;>-

X+> +all,m+ §> - !X—))

=0

Da |l,m — 3) - |x+) und |l,m + 3) - |[x_) orthogonal zueinander stehen, miissen die
Koeffizienten beider Vektoren unabhéngig voneinander verschwinden:

l,m—§>' X+>:
o e -1 -G ) - (- 1)

=3[0 = (me 5) (m-5)

Wl

ety o).

Wir erhalten somit ein homogenes Gleichungssystem fir «, 3:

(-
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My, M, A Mo+ Mo _ 0
My May B Moy + Myo 8 0

linear abhanig von m: det(M) =0

<:>'—l+1
ST
1
=4+ =:
J ‘|‘2
m; m}mx:j
S J
L

maxr __
my; <mi;* =j
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A 7

Eine andere Methode zum Errechnen der Koeffizienten ist die Addition von Drehim-
pulsen in der Quantenmechanik IT

Bemerkung:

2 =J

TR
SR

1+

j - |,]1 _j2’7 '”7j1 +]2
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19.Vorlesung

A

i) 12.1,,52, 8, ungekoppelte Basis

ii) J2,.J., L%, 52 gekoppelte Basis

8.2.2 Clebsch-Gordan-Koeffizienten

j? m7 Z,S> - ZZ Cf;l,mhms l78’ml7ms>
m; Mmsg

8—27]_ 2 m,mf%,%_ 2l+]~
1
1 I —m+1\2

CHQ L= 2

m,m+35,—3 20+ 1
1
. 1. -4 l—mt3)?
1
1 [+m+3)2

C 1L_1 = =
mm+35,—35 2l+1

Bemerkung:

Wir fassen nun den Gesamtdrehimpuls der einzelnen Teilchen in dem Gesamtdre-

himpuls des Systems zusammen: J = J, + J, Die moglichen Werte dieses neuen
Operators sind damit (Stichwort Addition von Drehimpulsen):

j = jmina '-'7jmax jmin - ’jl - ]2‘ jmax = jl +]2
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8.3 Superauswahlregel fiir den Gesamtdrehimpuls:

Wir stellen uns nun die Frage, ob Bedingungen an den Drehimpuls von Zustdnden
existieren.
Dazu betrachten wir zuerst eine Drehung im Raum um 27t

lA)ﬁ(zn)‘jmls) = (_1)2j ’jmls)
Mit der Bedingung der Invarianz unter Rotation um 27t ist das nur moglich, falls:

|) ist Superposition aus zwei Zustanden mit: j = 0,1

oder |¢) ist Superposition aus zwei Zustanden mit: j = =, =, =, ...

N | —
DO W
DO | Ot

Beweis:

Diese Bedingung ist einleuchtend:Kombinationen aus halbzahligen und ganzzahligen
Drehimpulsen fiithren in beiden Féllen zu ganzzahligem j.

|p+) sei Zustand mit: j =0,1,2, ...
135

_ i Zustand mit: j = =, =, =
|¢_) sei Zustand mit: j 535

‘(5+> = Dﬁ@”) |9+) = |é+)

|6-) = Ds(2m) |6-) = —[¢-)

<¢~5+ ‘ A|¢;+> = <¢+ | A|¢+> v

(G- | Alp-) = (p_ | Alp_) v
aber:

9) = a-|os) +5-o-) a,#0
[0) =a-os) = B-1o-)

(D1 A1) =la> (o |Aloy) + B (90— |A|¢-) —a"B- (¢4 | Al ¢-) —aB* - (¢_ | A| s)
£ (0| Alg) 4
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= Bei jedem dynamischen Prozess kann sich der Gesamtdrehimpuls nur um
ganzzahlige Schritte &ndern.

8.4 Spin ;-Teilchen im duBeren Magnetfeld

Wir hatten gesehen, dass der Bahndrehimpuls eines geladenen Teilchens ein magne-
tisches Moment mit sich bringt. Wir wollen nun der Frage nachgehen, ob dies auch
fiir den Spin gilt.

Wellenfunktion eines Spin 1/2-Teilchens lautet (aufgrund des Produktraums aus
Hilbertraum der Bewegungs- und Hilbertraum der Spinfreiheitsgrade):

oo ()

Dabei benutzen wir den Vektor der Pauli-Matrizen: 6 = 0,€, + 0,€, + 0.€,

Mit dem kinetischen Impuls T = P — fAk erhalten wir:

. 1 &8
H=— Z ﬁkdkﬁlol + q(I)
2m o2
) 1 1 .
mit 0,0 = 5[0‘]@,0'1]—{—5{0'143,0';} = 6kl+1€klj0j

Die Pauli-Matrizen lauten : o, = <(1) (1)> oy = (O _1> 0, = (1 0 )

R 1 3

= H=— .70 (O j o
2m]§::17T7T K+ i€r;0;5) +q

N BN N\ 2 B

H=<ﬁ—qA) _ "B .giq0
2m c 2me

A ]_ A q—» 2 2 [j/—» —

H=—|(p A) - —B-5+q®
2m<p c sgn(g) h
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Der Faktor 2 im Kopplungsterm mit B und S ist dabei als das anomale magneti-
sche Moment des Elektrons bekannt. Im Spezialfall eines konstanten Magnetfeldes
erhalten wir damit insgesamt, also mit dem Term aus dem Bahndrehimpuls:

In diesem Ausdruck steht @ fiir das elektrische Potential, der Term danach bildet
das Zentrifugalpotential und der letzte Term gibt die nun vollstindige Kopplung
von Bahndrehimpuls und Spin mit dem dufleren Magnetfeld wieder.

Aus dem anomalen magnetischen Moment folgt: Elektron ist keine geladene Kugel
mit Eigendrehimpuls §

Uy

Spinprazession: Wir betrachten nun nur die internen Freiheitsgrade.

—

sgn(q) = —1 B = (0,0, B)
A 20 A
H=—BS,

h

Die Eigenzustdnde erhalten wir sofort aus der einfachen Matrixdarstellung von 5_*;,
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die Eigenwerte sind dann offensichtlich:
1
X+) = <0> By =uB

IX-) = (?) E_=—uB

Zeitentwicklung einer Superposition:

Ix(t=0)) =a-|xs)+8-[x-)

—ipuB

() = a-e' Tl xs) + 8- ekt x)

Speziell:
5= [x(1 = 0)) Bigenzustand von o, mit m, = +1
a=8=— = 1genzustand von 0, mit m, =

vz * °
1 . ) 0 1 eiwot

_ (s~ iwot iwot . .

= <C7x(t)> = 2(6 , € ) <1 0) (e—lwot>

1

=3 cos(2wot) (o, (1))
1 B

=3 sin(2wot) Wwo = %

A5

RN
e
9

Eine solch oszillierende Schwankung der beiden Werte ist uns nicht unbekannt: Wir
identifizieren dies als eine Prazessionsbewegung, in diesem Fall prazediert also der
Spin um die S,-Achse, in der auch das B-Feld verlauft.
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8.5 Spin-Bahn Kopplung

Feinstruktur bei H-artigen Atomen (Wasserstoffartigen):

“ Wechsel-
S — magnetisches Moment — Magnetfeld wykung Bahn-magnetisches Moment

N h? 7 e? N N
H=——A——+ f(r) L-S=Hy+ Hsp
2m T ——
aué.lﬁl.
Hop = f(r)l_j .S Spin-Bahn-Komponente
Nebenrechnung:
J=L+8
J?=1?+8242L-8§

L2, S kommutiert mit allen Komponenten von L und S !

=

J2 J. L2, 5? kommutieren mit L - S:

ﬁSB:f(T)<j2_E2_§2)

= Wir betrachten die Spin-Bahn-Kopplung natiirlich in der gekoppelten Basis |7, m, [, s)
Figenzustande von Hj :

Unjl(r)Qb‘ _1/[]:1—{_%
r jmlS_Q\‘j:l—%

CbE(F) =

Was sind Eigenzustédnde von f[o +H s ?

Az R I(+1) Ze* Ry, 3
{_277’Ld7“2+ % 7‘2 - , +? j(] —|—1) —l(l+ 1) — 4:| f(’f’)} . Unjl(r)
:EUnjl(T)
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jzl—{—%:

Abkiirzung: U} (r)

h2  d? h l(l+1 Ze? h
B D 29 Mgy |-y = B U

o2m drz ' 2m 72 r
—_——
Spin-Bahn-
Kopplung
j=1-3
Rz d? h? I(1+1) Ze2  h
—_——+ — — ——(+1 U, =FU,
[ 2m dr?  2m 72 r (I+1Df(r) i(r) !
Naherung:

f(r) — (Fr))a = (Un(r)] f(r)|Un(r)) = C = const
(Upi(r)] ist ohne SB-Kopplung

h? +1 j=1+3
Enj=FE, + — ’ 2

Aufspaltung der Energieniveaus (Feinstruktur)

Bemerkung:

Auch der Kern hat einen Spin und damit ein magnet. Moment Dieser Kernspin

wird als I bezeichnet. Es entsteht eine Kopplung von I an J Dies ist Ursache der
Hyperfeinstrukturaufspaltung.
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9 Schrodinger-,Heisenberg- und
Wechselwirkungsbild

9.1 Schrodingerbild

20. Vorlesung Physik: Zustand im Hilbertraum; Observable; Zeitentwicklung ist
eine unitare Evolution

d 5
in " o)) = A
Wt ‘90( )>

sO(t)>

Formale Losung durch einen unitédren Operator
Ult,t) = Ut — to)

Dies gilt jedoch nur wenn der Hamiltonoperator (ﬁ ) nicht Zeitabhingig ist

Y(t) = ULt to) [ (k)

Es gilt Ut = U~! damit das Skalarprodukt erhalten bleibt

(W(1) | 6(t)) = (Te(ts) [ Ud(t)) = (v(to) | U'T | 6(to))

1

= (¥(to) | ¢(t0))

A

Ulto,to) =1
Wie sieht U explizit aus?

d - fon
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i

U (t, 1) = exp { 130 to)}

Generator der Zeitentwicklung:

t=to+ 5t U(t,to):]l—%]flét

Die Auswertung von e~ #" ist nicht trivial doch falls H|E,) = E,|E,) bekannt ist
dann wird es sehr einfach

Ut to) = Zeh (t=to) | B, ) (E,|

U(t,to)|¢) = Zee B (E9)

Basisdarstellung

Wie sieht die Zeitentwicklung von Observablen aus?
(A)r =7 = (1) [A]4(t)
= (U (to) | A| U3 (to))
= (¥(to) | UTAU [ 9(to))
= (¢(to) | U™ (t, 1) AU (¢, to) | 1) (to))
Dies entspricht einem Erwartungswert im Zustand zum Zeitpunkt ¢,
Ap(t) = Ut 1) AU (1, L) Unitar transformierter Operator

Wie wir sehen, gib es eine andere Betrachungsweise der Dynamik in der Quantenme-
chanik, namlich eine, in der die Operatoren selbst die Zeitentwicklung beinhalten.
Dies fithrt zum:

9.2 Heisenbergbild

Operatoren lassen sich wie folgt im Heisenbergbild schreiben

A

AH(t) = U_l(tv tO)A(j(t7 tO)

Erwartungswerte werden im Zustand ||¢(ty)) = const, | ausgewertet (Aus Schrodin-

gergleichung, konjugiert transponiert). Was ist die Bewegungsgleichung fiir die Ope-
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ratoren?
4 (t) = iU—l(t to) | AUt t,) + U (L, 1) A iU(t to)
dt H - dt 5 L0 y bo 5 L0 dt » L0
- % U HAU — U1 ARU|
- % U HUU AU - U AU AU |
1ra A ~ A
=+ [HAu(t) - Au(t)H]|
1 raA A

Dies ist die Allgemeine Bewegungsgleichung im Heisenbergbild. Fir die fundamen-
talen Operatoren 7, p gilt:

d 1o~ d i

A

%TH = ﬁ[H,TH] %ﬁH = ﬁ {HaﬁH}

Dies ist sehr analog zur kassischen Mechanik nur das aus dem Kommutator eine
Poisson-Klammer wird

d i d i
—F=_—{HF —p=_-{Hp

Also folgt fiir die Analogie:

klassische Mechanik < Quantenmachanik
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9.3 Wechselwirkungsbild

Aufteilung der Dynamik auf Zusténde und Operatoren
oft hat man

mit Hy := _freier“ Hamiltonoperator

H, := Wechselwirkungsoperator

H, hat z.B. bekanntes Spektrum

dann kann
ﬁo(t, to) = e_%HO(t_tD)
explizit angewendet werden

es gilt:

[W(t)) = U(t, to)|¥(to))

Ul(t, to) ist dabei der Zeitentwicklungsoperator des gesamten Hamiltonoperators, Uy
ist nur der, der H, enthéilt, mit:

U(t, tg) = e 7=t

Nun definieren wir den Zeitentwicklungsoperator im Wechselwirkungsbild:

Ur(t, to) = Uy (¢, 1)U (t, o)

sowie:

() = Up(t, to)|v(to)) «— Zeitentwicklung gemif H; (42)
Ar(t) = U7 Yt to) - AU(L, L) «— Zeitentwicklung gemif H, (43)
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es gilt offensichtlich die Aquivalenz der Bilder

Schrédingerbild Heisenbergbild
(A = @O A1) = (wt) | T AT [ (k)
Ar(t)

= (Urd(to) | A (t) | Urip(to))
Wechselwirkungsbild

Differentialgleichung fiir [¢;(¢)) bzw. A;(t)

d . do\ 2 g a(dn ira
() = (dtUo ) AUy+U; A ((HU()) = - [Ho, Ar(t)]

nun ist

—~—
mit (43)
= Hy+ Hy(t)
d'\ iA A
— U, =—H,®U
de * 7 1B
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Nebenrechnung:
d
o= My
1d
y if(t)

Sy = —if0)

In(t) — In(ty) = —i th f(7)

to

() = yto) exp { i [ ar 1)}

naiv wiirde man sagen:

= [ e" (45)

da iA. [Hy(t), Hi(t)] #0

Ut +8t,¢) =1 — %ﬁl(t) 5t

A

Up(t +25t,t) = Uy (t + 26t,t + ot) - Uy (t + 6t,t)
i

=1- (Fu(t + 8t) + Hy(t)) 8t + (—%)2 Hy(t + 6t) H(t) 5¢

Zeitgeordnet!
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9.3.1 Dyson “sche Reihe

~ ] t A
Oty to) = 1+ <—;_L) d 7 (7)

to

2 t T N N
-+ <—h) d’T dT, Hl(T)HH(T,)

to to

i\ 3 T ! t . " .
<_fli) / dr dr’ [ dr" Hi(t) Hi(7") Hy(7")
to

to to

mit > 7 > 71"

es tauchen nur Zeitgeordnete Operatorprodukte auf!

9.3.2 Dyson “scher Zeitordnungsoperator

Definition:
AU A(t) B(ty) t, >t
TA(ty) B(ty) = A(t) Blt2) 0>t
B(tg) A(tl) tl < tQ
. B(ty) A(t;) t; >t
TA(ty) B(tg) = A< 2) A< 1)t 2
A(tl) B(tg) t1 < 9

damit
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10 Naherungsverfahren

21.Vorlesung Fiir den Hamilton des harmonischen Oszillators ist uns die exakte
Losung wohlbekannt. Wird nun eine kleine Stérung hinzugefiigt (was "klein"heif3t
sehen wir noch), so wiirden wir erwarten, dass sich die Eigenenergien des Systems
nicht allzu viel d&ndern, wir das Problem also nicht komplett von vorne angehen
miissen sondern lediglich die vorherigen Losungen leicht abandern kénnen. Mit dem
Ermitteln dieser Abédnderungen beschaftigt sich die Stérungstheorie.

A2
A p m 2/\2
H=X 4+
2m+ 2wx

1

jetzt:

~9
g %w%ﬂ 40,0012

10.1 Zeitunabhangige Storungstheorie von nicht
entarteten Zustanden

Problem:
Wir betrachten also einen Hamiltonoperator, der aus zwei Teilen besteht: der Stor-
hamilton H; ist dabei neu.

[’A[)\ - FIO + )\ﬁl
« im gewissen Sinne sei H klein —» formaler Parameter A (spater A=1)

« Bigenzustand und Eigenwert von Hy seien bekannt: A — 0 :Problem gelost.



21.Vorlesung Quantentheorie Quantenmechanik

jetzt: Naherungsverfahren als Reihenentwicklung nach A\ bekannt:

Hy o) = B |¢0)

Zuerst nehmen wir an, die Losung der Hamilton weise keine Entartung auf.

o) Aoy = B # B

Da die Storung klein sein soll, konnen wir einen Reihenansatz fiir die neuen Eigen-
zustande wahlen.

160) = [60) + MoM) + N2 [8)) + ...
nicht normiert:
[60)
| én) ]
E,=EY9 \EW 4+ X2ED 1

|¢n> =

Einsetzen von |¢) und E, in zeitunabhingige Schrédingergleichung:

(Ho + M) (1687) + AD) + N[2)...)

= (BD + AED + XED + ) (162 + Algl) + ...)

wobei gilt das Hy und H; auf |p() wirken wie folgt:

Hy auf [¢V), .. Hy auf X2, ..., Hy auf |67, ..., H; auf [¢1)
und:

EO auf [¢W), . X auf [p)), ..., A2 auf [¢(?))

n

Wir sortieren nun nach Potenzen von \:

A (Hy — EMY[¢©) =0v — gelést, ungestortes Problem (46)
AL (Ho— ED) o) = —(Hi = EY) [ (47)
o (Ho— ED) D) = —(H — E) [6))) + AEP [ (48)
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10.1.1 1. Ordnung Storungstheorie

o multipliziere Gleichung 47 mit (¢{?)] :

(o) | (Ho — E) | D) = (o | (1 — EV) | 6)

=0
= (80 | i o) + B
daraus folgt schliellich:
BV = (¢ | | 6] (49)

die erste Energiekorrektur ist also der Erwartungswert des Storoperators H, im
Eigenzustand des ungestorten Hamiltonoperators Hy.

o multipliziere nun Gleichung mit (¢9| wobei m # n gilt
(@) | (Ho — EP) | 61) = =) | (Hy — EPV) |6
(BS — E) (o) 1617) = = (o0 | Hi | o)
m n m n m n

£0

da keine Entartung

Es gilt dabei (¢9]¢®) = 0, somit gilt insgesamt:

oW | Hi |
(69 40y = § E(Ol) _1| (0)> Vm £ n (50)

Mit diesen Koeflizienten bietet sich natiirlich eine Entwicklung in dieser Basis an,
mit der wir die erste Korrektur zum Eigenzustand darstellen kénnen:

= [80) =" |6\ (Q | o) (51)

=1

hier ist die Voraussetzung, dass gilt: m # n ausreichend, d.h. es gilt oBdA
(W)Y =0, da |¢,) bereits [¢?) enthélt.

|¢$Ll)> — Z <¢$2)|H1‘¢£LO)>

0
- E(o) _ E(o) |¢£n)> (52>

e Da diese Summe iiber m # n geht sehen wir, dass die erste Korrektur zum
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Eigenzustand proportional zu den nicht diagonalen Matrixelementen des Ha-
miltons ist.

o Korrektur wird grof, falls gilt: £ ~ E(©)

10.1.2 2. Ordnung Storungstheorie

o Multiplikation von Gleichung mit (¢

(@0 | (Ho — ED) | 67) = —(6 | (B — B | 6)) + E

=0

Durch Umstellen und Einsetzen der Relation fiir die erste Korrektur des Zu-
standes B2] erhalt man:

mit:

g — 5~ 011600 D | ulg) _ g~ 1o | Ha o)) P

——_— ——
Falls E,, kleinste Energie

Nenner negativ <0

m#n

Da der Zéhler nur positiv oder Null sein kann sehen wir, dass der Grundzustand
durch eine kleine Stérung in jedem Fall abgesenkt wird: Da F,(0) dann die nied-
rigstmogliche Energie ist, wird jeder Korrekturterm negativ.

Beispiel: (1D anharmonischer Oszillator)

. p2 A 202
=g + gt v 20
Ho
|
Hy = hw <a+A+2) aln) =+vn|n—1)
A R f ot
= (a+a) a'ln) =vn+1n+1)
2mwyg
A FLQ_)O
_ a1 At
Hl—Oé 1 (a—|— )
hw .
=a-— (a'+a'" +a%a” + 4afaala + 4aa + 207° + .. + 1)
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Wir wollen nun (n| Hy | n) auswerten, dabei bleiben nur Beitrige von Termen mit
gleicher Anzahl von & und &' existent.

= EW =q. ihwo (2n(n+1)+1) (53)

Wann war die Storungstheorie nun gut?

Sie war gut, wenn gilt: £ < |[E©) — E,(Bm, also wenn die Energie hoherer Ordnung
zur Energie nur kleine Differenzen aufweist.

= im Allgemeinen gilt dies (leider) nicht:

So zu Beispiel beim harmonischen Ostilator: Die Eigenzustande sind dquidistand,
die Differenz im Nenner der Korrekturen bleiben also gleich gro8 und der Bruch
konvergiert nie gegen Null. Im Zweifel muss in Betracht gesogen werden, dass die
Annahme kleiner Abweichung nicht mehr gerechtfertigt und daher die Reihenent-
wicklung nach A ungeniigend ist.

y A 1n<y> A I4
1'4
2
xr J}Q
X X

10.2 Zeitunabhangige Storungstheorie entarteter
Zustande

(o) | Hi | o)

(0 el)) = oo o 4
n m
wann nicht 07
Bestimme Entartungsgrad:

seien alle Eigenzustidnde von Hy zam Eigenwert E(”), wie beheben wir nun das
Problem, dass E® — E©) = 0 ist?

= Es gibt kein Problem, falls gleichzeitig auch: (¢ | H; | ¢(©) = 0 ist.

Wir suchen also nun nach einer Basis:

W) «— |6!))
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so dass:
w;&)} | H, |¢S%> ~ 845 (Diagonalisierungsproblem)

d.h: {[9{%))} diagonalisiert H, im Unterraum zur Energie E(®) (Dass diese Diagona-
lisierung moglich ist liegt daran, dass H = Hy + H; und H_0 selbstadjungiert sind
und damit H; ebenfalls)

Man finde eine Basis:

WOH [ )) = 805w | Hi|p Q)

Ansatz:

[Pn.a) = 190 + Alpid) +
Eno=E" +\EY)

Einsetzen in stationdre Schrodingergleichung liefert:

N: (Hy—ED)[9) =0v  gelost (55)
M (Hy - EO) W) = —(H, — ED) [9) (56)

mit <1/J,(LO/%| Gleichung und da Wﬁ%) eine ONB folgt daraus:

0= @ Hi | ¢0) — 80 B

)
n,x

= B = @0 | H [¢) (57)

n,

o Korrekturen geben in der Regel ¢ verschiedene Werte o« = 1,2, ...,q. Daraus
folgt eine (teilweise) Aufhebung der Entartung.

22.Vorlesung Wiederholung: (Zeitunabhingige Storungstheorie entarte-
ter Zustinde)

geg: H = Hy + AH; mit A formaler Parameter, klein. Wir wissen die Losung des
ungestorten Problems:

o 60)) = B © % EQ wit m £
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Wir miissen dabei beachten, dass fiir a (Index fiir die verschiedenen Zusténde) o =
1,..,q gilt. Im nicht entarteten Fall, gilt also: ¢ = 1. Ein Reihenansatz liefert:

En=EY 4+ ED 4 N2ED
|6m) = |69 + X[pDY + X2pD) + .. nicht normierter Zstd.

OBdA ist anzunehmen, dass gilt:

(6W]p0)y =0

O | A, | 6©
1 (Q m) __ <¢n |H1’¢m>
Sl =L eamlo?) A = T g

BV = (| H | 61")

o _ s~ (001 B 69) (60| B [0)
w =2 0 _ 5O
n#m n — Lm

Mit Entartung: d.h. g > 1, hier ist:

(60 | H |9k

Problem!
59 D

Obwohl [¢{)) # [¢(©)), das heiBt hier gibt es ein Problem!
Ende Wiederholung

Losung: alle Zustinde {|¢{9,)} mit o = 1,...,¢ bilden ¢ — dim Unterraum von
Eigenzustanden zum selben Eigenwert von Hy EO)

o Jede Linearkombination aus den {|¢{0))} ist wiederum ein Eigenzustand von
Hy zum Eigenwert £ d.h. wir durfen

0
D) = U |60

setzen. mit U uitdare g x ¢ Matrix
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Jetzt wahlen wir U, g bzw. U so, dass:

A | A
WO | E |00 £ 8,5 (O, | By |00

Eigenwerte von 1:11

in {|6fnla)}
Das heifit, H wird durch U diagonalisiert.
Jetzt:
(e | H1[9)) .
W fir n % m
m7ﬁ o n m
Cna = 0 firn=mund a #
0 firn=mund a =
Eno = B + (0001 Hy [0 (58)

wobei EY g-Fach entartet ist und H, im Allgemeinen von « abhéangt, d.h. das die
Entartung (teilweise) aufgehoben wird.

AE,,=E,,—EV = <¢,(,??a | H, | %(10())) (Korrekturen)

Eigenwerte der
gXxq Matrix

det [<¢7(10L | H, | <Z5£2,)5> - )\601,5} =0 Sekulargleichung (59)

Zum Finden der Eigenwerte errechnen wir folgende Determinante:

A = Eigenwerte

HY—x H?2 HB ... H
| HEHE A HE - e .
€ . . . -
Hfl oo HIT )

Diese Gleichung ist eine algebraische Gleichung g-ter Ordnung mit q Loésungen:
AN
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EY + M\
EO + ),
EQ + )3

EP + X,

im Allgemeinen Aufhebung der Entartung, falls wir Glick haben sind alle )\, ver-

schieden = Entartung vollstindig aufgehoben, hohere Ordnung wie im ungestorten
Fall.

Beispiel: (linearer Stark-Effekt im H-Atom fiir n=2)

Der Stark-Effekt ist das elektrische Analogon zum Zeeman-Effekt und bewirkt eben-
falls eine Aufspaltung der Energieniveaus bei duflerem elektrischen Feld.

ohne Schwerpunkt:

H=H,—¢ E-7 E=FE. ¢,
=H

Dipolmoment: —e - F=d
Ohne Spin:
Hy|n,1,m) = E, |n,l,m) Es gibt Entartung!

Mit n=Hauptquantenzahl, [=Gesamtdrehimpuls (da ohne Spin), m= Drehimpuls in
z-Richtung

poo_ 1
2a9 n?

Ortsdarstellung in Kugelkoordinaten:
H = Hy—eEr cos(V)

Bei n =1 — Trivial, da l = n — 1 = 0 = keine Entartung!

175
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n = 2 gilt:
1 T __r_ 0
12,00 = s <1 - 2> 200 Yy'(9, ¢)
\/ 2a;3 o
1 T __r_
wQ,l,m - —e 2% lem(f‘97 90)
\/24a3 o
Notation:
1) =12,0,0) 2) =12,1,0) 3) =12,1,1) [4) =12,1,-1)

Matrixelemente von Hy in {|1), ..., |[4)}

auBlerdem:

(| Hy |4) ~ /0” d9sin(9) cos(d) [Y;"? = 0

Integral H;

N 27 . ,
(n,l,m|Hy|n,l',m’) N/o de "y

21 X ,
~ ng efl(mfm ) ~ 6mm’
0

Einzig verbleibende Matrixelemente sind:

(1|H,|2) = (2| H,|1) = =3¢ - E - aq

Sekulargleichung:

—A —3eFay O 0

—3€ECL0 _>\ 0 O o 2 2 2 L
det | N (\ = (3¢Eao)?) =0 (60)
0 0 0 —A

Eigenwerte: \; o = 0\ = £3eFay
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3eFayg

—3eFay

Abschlieflend wollen wir uns noch einmal die Frage stellen, in welchen Féllen die
Storungstheorie brauchbare Ergebnisse erzielen wird.

Energiekorrekturen miissen mit steigender Ordnung kleiner werden, die Reihe der
Korrekturterme muss konvergieren. Zudem miissen die Energiekorrekturen kleiner
als die Differenz zweier ungestorter Eigenernergien sein.

Ein weiteres Verfahren ware:

10.3 Ritzsches Variationsverfahren

Die Storungstheorie setzt die Kenntnis der Losung des ungestorten Problems voraus.
Was ist wenn wir keine Kenntnis iiber die Losung des ungestérten Problems haben?

Wailhle eine diskrete ONB {|n)} mit n =0,1,2,---

Satz: Falls H von unten beschrinkt

WIAIY) | p (61)

Wly) —

Wobei Ej kleinster Eigenwert von H, ist.

|1) ist beliebiger unnormierter Zustand # |0)
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Beweis:

() =2 (n[¢)|n)

n

W H ) =3 (nl H|m) (m|¥)(w|n)

n,m
En 5nm

sei nun |n) eine unbekannte Eigenbasis von H

=Y B[ ()P = By X [ (n]v)

(WP [)
Daraus folgt das:
(W | Hlv)
>R
wig)y =7
O
Ansatz fiir Naherungslosung:
) = |U(a, B, 7, ...)) a, 3,7, ... € C endlich (iiberschaubar viele) ®
N b H |4
H(a,B,7,...) = 7<¢ |~ ym
(1)

Minimum von H bei Variation der Parameter a, 3,7, ... liefert mehr oder weniger
gute obere Schranke flir Ey

OH _O0H _ . _

aa—aﬁ—— a = g
B = Bo
Y ="

Bemerkung: «,f,7,... komplexe Zahlen das heifit wir miissen sowohl Realteil
Re(a) also auch Imaginérteil Im(a) betrachten:

oH oH

= DRe(a) ~ Ofm(a) 0

Daraus folgt fiir uns:
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‘w(a07607707“')>
— ~ | 62
e 02
EO ~ ﬁ(ao,ﬂo,’}/o, ) (63)

streng genommen gilt: By < H(ag, 8,7, ...)

Beispiel (1-D-Box):

o exakte Losung:

Va 2a
h2 7.[2
Ey=— —
07 om a2
e Variationsansatz:
Ua(z) = a* — [z 2] <a

diese erfiillen die Randbedingungen ¢q(4a) =0

179



22.Vorlesung Quantentheorie Quantenmechanik

A2

a7
2m
o 2T (@ = o) de s (0!~ Ja)
M=o (@ — o) do
L A1)-@2A+1) B2
I 220—1 4dma?

Nun setzen wir die Ableitung von H = 0 um das Minimum zu erhalten:

OH (X 1++6
_ 5+ 26
HA=X) = ... = (g) Ey ~ 1,00298E,

Damit ist das Ergebnis recht gut mit einer Abweichung von gerade mal 0, 2%0. Das
Ergebnis sollte grofier 1 sein, da man nicht unterhalb der Schranke (Ey, Grundzu-
stand) eine sinnvolles Ergebnis erhalten kann.

10.3.1 endlicher Superpositionsansatz

N

[0) =" o |on) {l¢n)} ,geeignete Basis*

n=1

= Ef = <w(041, ...,OéN)lﬁ“p(Oél, ...,Oén»

oH 0 oH
da,, oa*

=0 aquivalent zu Re(ay,), Im(a,)

Zn,m a:LOémHnm
Zn,m OZ:LOém<¢n ‘ ¢m>
min

H: %EO
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oH
ooy,

> (Hum = Bolén| 6m)) am =0

Wenn nun aber = 0 = wann gibt es dann eine Losung?

= lineares Gleichungssystem in a,, ist homogen

————

6'r7.7"n

Der kleinste Eigenwert ist die beste Schranke fiir die Grundzustandsenergie.

23. Vorlesung

10.4 Adiabatische Ndaherung,Berry Phase

Bisher hatten wir immer einen zeitunabhangigen Hamiltonoperator betrachtet. Jetzt
werden wir zu einem zeitabhangigen Hamiltonoperator tibergehen wobei hier nur
eine ,langsame“Abhangigkeit bestehen soll.

Wir betrachten:

A

H(R), R = R(t): Parameter des Hamiltonoperator

Instantane Eigenzustidnde/Eigenwerte:

A

H(R())[n(R(t))) = En(R(t))|n(R(1))) (64)

Adiabatisches Theorem:

Falls R(t) hinreichend langsam von der Zeit t abhéangig ist, wird ein anfanglich
in einem instantanen Eigenzustand prépariertes System in diesem Zustand
verbleiben.

Es gilt:

n(R()) (65)

1 t
a,(t) = ~ /0 dr E.(R(7)) dynamische Phase (66)
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Einsetzen von [65] in Schrodingergleichung [64] liefert:

AR (R())) = ih G n(R()
—0
=S 6o (t) € £) e O]t >+1&@cn<t> e n(t))
_En@®
i ot 7 =0
——ﬁ;cne

En()[n(t))

Multipliziere von links mit (m(t)|- (beachte, dass (m|n) = 8,,):

160 3 () € m, i) = 0 ) = In(t)

Was ist hier (m|n)?

jtﬁ(t)‘n(t)> = (jtﬁl(t)) ‘n(t)> + ﬁ(t)’n(t)>

En()[n(t))

durch multiplizieren (m| von links folgt:

<m’iEn(t)‘n(t)> _ <m‘jtﬁ(t)’n(t)> - En(t) <m’n>

(1) {mln) +Eo(8) (m) = <m'd |n>+E () (ml)

(m| 4 Hn)
En(t) - Em(t)

= (ml) =

(m|gGH|n)

én(t) == 37 Cn<t>ei(a"(t)fam(t))En(t) — En(t)

n#m

Annahme: Zum Zeitpunkt ¢t = 0 sei das System im instantanen Eigenzustand

cn(0) =1 Cmzn(0) =0
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VYm #m

L
il = an-an() Iz HIn)
- E,(t) — En(t)

Annahme: E,(t), H(t) ist nur langsam von der Zeit abhéingig

- . En—Ep
el(an(t)—am () ~e t

_ih(m\%lﬂm (e_i(Engm(;t _

cm(0t) = (E, - B,

o falls |m) # |n) existieren mit E,(t) = En,(t)

lem(t + 6t)] — 00 %

h(m|4 H|n)

(B — B,)° <1

Lhinreichend langsam“bzw. adiabatisch Evolution liegt vor falls fiir
alle Eigenzustande |m) # |n) gilt:

d -
—H

= i.A. gibt es kein adiabatisches Verhalten bei entarteten Zusténden, es
sei denn alle relevanten Matrixelemente ((m|% H|n) = 0) sind Null.

(Em B En)Z

ST
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\VAVAVAVAVA

VAAVA VA

AFE = hAw = h%

t t

Abbildung 10.1: Adiabatische Phase ist in der linken Abbildung moglich, in der rech-
ten nicht, da dort ein Kontinuum der Eigenenergien auftritt.

Adiabatische Zeitentwicklung fiihrt neber der dynamischen Phase zu ei-
ner geometrischen- oder Berry-Phase:

im adiabatischen Limes gilt:
m#n
lem(t)] =0 und e (0) =1
= ea(t)] = 1

aber was passiert mit der Phase?

enlt) = al) [ ) = Fin(t)ea (1

auBlerdem haben wir (von vorhin):

Z neten®) In) 4+ c elen® 1)

durch multiplizieren mit (n| von links folgt:
Cn = —cp(n|n) da ¢,(t)=0 m#n

daraus folgt nun

50(0) = (i) § o0
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und damit die Berry-Phase:

a4
dr

Tn(t) = 1/0th <n(7‘)

o)

Die Berry-Phase ist nicht von der Geschwindigkeit oder der Dynamik des
Durchlaufs abhéngig, im Gegensatz zur:
Dynamischen Phase:

1 rt it .t
anlt) = 7 [dr B(m). In(e) = e kb B0 O (o))

m%(t)’n(t)> _

4u(t) = (n(R)

Vi

Was ist die Anderung der Phase?

A = 1(T) = 4 (0) = /0 Yar () =i [ B <n(ﬁ)

Vi

n(R))
Betrachte periodisches System:

R(T) = R(0)

= | Ay, =i fai ﬁ‘n(ﬁ)>

Ay, hiangt nur noch vom (geschlossenen) Pfad im Phasenraum ab, nicht mehr
von der Geschwindigkeit des Durchlaufens des Weges! (geometrische Phase)

Frage: Wann ist A~, # 0?7
Satz von Stokes:

Ay, = ijéodR R (n|Vgn) = i{f)dSVR x ((n|Rg|n))

A7, # 0 falls endlicher Fluss durch Fléche
Definiere:

V.(R) = Vg x ({(n|Rg|n))

daraus folgt:
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V.(R)=Tm

m#n

<n|VR]:I|m> X (m|Vﬁ]:I|n)

(Em - En>2

Die Form dieser Gleichung erinnert an die des magnetischen Feldes; daher wird
es Ublicherweise als ,,Berry Magnetfeld“oder ,,Berry-Curvature“bezeichnet.

Treten Entartungspunkte auf, so:
E,, = FE, = Monopole des effektiven Berry-Magnetfeldes.

Zusammenfassend lasst sich also sagen: Wenn sich Zustinde im adiabatischen
Limes befinden, so verbleiben diese dort und alle anderen Zustande konvergie-
ren gegen null. Die Zustdnde sammeln zwei verschiedene Phasen auf, davon
neu ist die Berry-Phase, die eine geometrische Phase ist.
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11 Quantenmechanik von Systemen
unterscheidbarer Teilchen

11.1 Tensorprodukt von Hilbertraumen

System 1 : 1)) € H, =  Zustand des Gesamtsystem
System 2 : |¢) € Hy V) @ @) = ) |p) € H=H1® Hs

‘H: Raum aller Linearkombinationen Y-, ¢pm|tn|cn)

i)

H ist ein linearer Raum

i)
Es gibt ein inneres Produkt  (x1|x2) = (¥1]|t2)(d1]¢2)

Sind {|f.))} und {|g.)} ONB in H; und in H, dann ist:

Also wéchst die Dimension den Hilbertraums aus M Teilchen exponentiell mit
M an

iii) Operatoren in H:
A
(A x

Ain H, B in H,

B
Blx) = Aly) ® B|g)
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Jeder Vektor|x) € H = H; ® Hy mit dim(H;) = Ny und dim(Hz) = Ns

Lasst sich schreiben als:

min(N1,N2)

Ix) = Z A fi)lgi) \fi) € Ha und |g;) € Ho

=1

Beweis: OBdA gelte Ny < N2

{|k)1} ONB in H, {|I)s}  ONB in H,
= {|[k)i|l)2} ist ONBin H =H, ®H,

Es gilt stets:

N1 N Ny Ny Ny
X)=D ek D=1k D cull)a =D Aelkr)|l)e
=1 1=1 =1 et =
—_——

Superposition in Ha,
abh. von k,:=\|k)2

24 Vorlesung

11.2 Separable und verschrankte Zustande

Gedankenexperiment von Einstein, Podolsky und Rosen (EPR) (1935)

Definition:

Ein quantenmechanischer Zustand [¢) von zwei Teilsystemen A und B mit H 4 und
H p heifit separabel, falls es eine Darstellung der Form [¢) = |¢a)|¢p) (Schmidtzahl
n = 1) gibt. Andernfalls nennen wir |¢) verschriankt (Schmidtzahl n > 1).

Beispiel: (2 Spin-;-Teilchen)

0.4 =—1) o T =11
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) =|Mall)p  seperabel

V) = (| PDalDe+]dal L)B> verschrankt

) =

Sl- ol

(14241125 + 1104l D +1 Dhal Do+ 414l 4)5)

= (\}50 Tha+] UA)) : (\}50 DERS $>B>) separabel

Wir sehen bereits, dass verschrankt bedeutet, dass Information iiber System A auch
in System B steckt.
= Korrelation

Wir betrachen hier die Bell’sche Variante:
System aus 2 Spin—l-Teilchen'

EPR) = 25 (1 104l D = | Dl 1))
Behauptung:

|[EPR) ist Eigenzustand von o, 0, 0,

8, = 84+ 57 S,= 5 +5) S.= 51 +87
mit Figenwert = 0
A h
S, = -0, te.
5 etc
Oz = | ¢> Oy = | T)

S, |[EPR) = (54 + SB)|EPR)

N\m

( +o >]EPR>

= 5= (1004l Wb = [ hal B [ 04l 0 = | 414l )

analog Sy, S.
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d.h:

BPR) = —= (Im- = $alm. = —po = (m. = —3)afm. = $)s)
=5 (Ime = Boatme = =45 = (me = —3alme = 30

= 75 (Imy = alm, = 35 = (m, = ~D.alm, = )
Also egal ob S;, .S, oder S,!

Die Tatsache, dass Messung von S, bei A instantan den Wert von S, bei B festlegt
wird hédufig als Problem der Quantenmechanik beschrieben. Dem ist jedoch nicht so,
da die dem zugrundeliegende Korrelation auch im klassischen existiert. Das Problem
entsteht, weil [EPR) Eigenzustand von S,, S, und S, ist und diese drei Operatoren
nicht kommutiertieren.

| |

| 00 |
Erde Alpha Centauri
Alice Bob

| DAl s = Dal 1) s = Messung von o2 liefert *}

= Messung von o7 liefert 1

Problem:

Messung von 0,, 0, oder o, bei A legt instantan den Wert von o, o, bzw.
0, bei B fest!

Folgende Konsequenzen wéren im Stande, diesen Problem zu lésen:
(i) Die Quantenmechanik ist nicht lokal. (,,Fernwirkung“?)

(i) Die Quantenmechanik ist unvollstéindig, dh. es existieren verborgene Parameter
die jede Messung festlegt, aber unbekannt sind.

Wir werden sehen, dass (ii) falsch ist (zumindest im Sinne von verborgenen Para-
meter, die lokal sind).
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11.3 Bellsche Ungleichungen

Konnen wir im Prinzip feststellen ob eine Theorie mit verborgenen Parameter richtig
oder falsch ist?

Antwort:
o Im allgemeinen: Nein!
o Falls die verborgenen Parameter lokal sind Ja!

J.Bell (1964)

Betrachte die Spin-Korrelation und seinen a, b Einheitsvektoren
P(@b)=(G-04-b-0p) PR (@ b) = —a-b
Annahme: 3 lokale verborgene Parameter A mit Wahrscheinlichkeitsverteilung p(\)
P(d,b) = / d\ p(\) A(@, \) B(B, )

A ist hier der Wert des Spins bei A bei einer Messung in Richtung a
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Da |A| <1 und |B| <1 folgt:

Bellsche Ungleichung fiir klassische Theorie mit verborgenen Parameter

wihle speziell: b=ad

&-I;:cos(ﬁ) La-b
|P(0) — P(20)| + P(9) + P(0) <2
aber: PEPR(9) = — cos(6)

| PEPR(0) — PEPR(20)| + | PEPR(9) + PPPR(0)| = | cos(6) + cos(26)] + | cos(0) — 1

= 2(2cos(f) — cos(20))

Fiir 6 = % folgt:

=2(1 —(—0,5)) < 2 4

EPR Zustand verletzt die Bellsche Ungleichung! ‘

experimenteller Nachweis: Clauser, Aspect,...
= Bellsche Ungleichung ist verletzt!
= Quantenmechanik ist im stengen Sinne nicht lokal!

Verschrankung erlaubt kein Informationstransport mit v > ¢
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Weiterhin kann man zeigen, dass die Bellschen Ungleichungen nur dann verletzt
sind, wenn der Zustand verschrankt ist. Eine Verallgemeinerung der Ungleichungen
ist damit ein Kriterium zur Uberpriifung der Verschrianktheit von Zustinden.

11.4 Quantenteleportation von Spin—%—Zustéinden

No-Cloning-Theorem

Es existiert kein unitarer Operator der beliebige und unbekannte nichtortho-
gonale Zustade dupliziert.

\V/|¢> S Hl und |O> S HQ mit dlm(Hl) = dlm(H2>
U |9} 10) = |9) [4)

Beweis:

Seien |a), |b) 2 orthogonale Zustéinde und U existiert

0la) [0) = a) lo 01 10) = 1) b
~ 1 1 A N
U5 () +16)) 10) = = (U [a)|0) + T [b) 0))
= 2 (lala) +10)16))
# 2 (la)+ 18) - (a) + I6)

Folgerung:

Ein unbekannter Quantenzustand kann durch eine Messung nicht vollsténdig be-
stimmt werden. Ansonsten wére es moglich, die gesamte Information, die fir eine

Reproduktion des Zustandes notig ware, zu extrahieren und den Zustand daraus zu
rekonstruieren.

25.Vorlesung Problem:

o) =a| 1) +6]])
la]* + |8]* =1 a, 3 beliebig.
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und System von A nach B schicken:

11.4.1 (B) Teleportation:

|EPR)

A OO > 3

Annahme: A und B besitzen Bell-Zustand (im Folgenden keine Normierung )

[EPR) = [Dal s —[1al s

« habe A zusatzlich |¢) :

|6) [EPR) = (a| 1) +811) ) (ID)a 95 — | a [ 1)s)

—{ (114 114 + 194 19a) - (@195 - 81 D5)
+(IDa [ Da = 1 Dalda) (el bs +811)5)
—(IMa [ Da+ 1Ha [Da)-(alDs —8IL)5)
= (114 194 = 19 1Da) - (al D5 + 8105 ) }

Nach der Messung: Projektion auf einen der 4 Zustande, darin sind keine Informa-

tionen enthalten. Alle 4 Zustande haben eine gleich verteilte Wahrscheinlichkeit von

1 und Spins von 3,1 .

e Orthogonale Zustande sind immer durch eine Messung eindeutig unterscheid-
bar.

o Bei der Messung kollabiert das System auf einen von vier Bell-Zustanden.
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12 Quantenmechanik von Systemen
identischer Teilchen

12.1 Ununterscheidbarkeit identischer Teilchen

— klassisch: Sto8 zweier Teilchen (im Prinzip)

— bel. gut auflésbar — Unterscheidbar (durch “draufsehen”)

e Quantenmechanisch:
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Durch Unscharferelation existiert eine prinzipielle Grenze der Auflésung. Da-
durch ist die Historie der Teilchen bei einem Stofl prinzipiell nicht nachvoll-
ziehbar.

= identische Teilchen sind ununterscheidbar

klassisch quantenmechanisch

o] | AN

o [0 ] AL

L 7

12.1.1 Transpositionsoperator

A

B 1<

Der Transpositionsoperator wirke auf den Produktraum von mehreren Teilchen und
vertausche genau zwei Einteilchenzustiande. Formal gilt also:

e im H-Raum von n—identischen Teilchen:
%T’L :H1®...®Hn

mit

Hi=Ho=..=H, identisch
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Gilt:

) = [61) |d2)..|n) Py |61) ... @) ... |65)-... |dn)

|61
|01)--1D5) - i) | dn)

« Eigenschaften:

Pl= Py, PPy =1
Eigenwerte: A= =1

Die erste Konsequenz der Ununterscheidbarkeit findet sich in den erlaubten Ope-
ratoren auf Raumen ununterscheidbarer Teilchen: Wenn wir die einzelnen Teilchen
nicht unterscheiden kénnen, dann darf es keinen Unterschied machen, welches wir
nun messen. Hinge die Messung vom Teilchen ab, so waren sie unterscheidbar. Es
muss also gelten:

WAy = (P | A|Pyp)  Vi,j

Diese Bedingung formulieren wir im ersten von zwei Symmetriepostulaten:

12.1.2 Schwaches Symmetriepostulat

Alle zugelassenen Observablen eines Systems identischer Teilchen sind selbstad-
jungierte Operatoren A, die symmetrisch unter Transposition sind:

A

{A, Pm] =0 also 121]51] = PijA = pijAﬁ)ij =A

(W[ Alv) = (Pyp| A| Pyab)

Fiir alle Observablen, da:
(W AI9) = (| PiAP; |v) = (| P AR, [¥)

Erwartungswerte von physikalischen Gréfien sind invariant unter Transposition iden-
tischer Teilchen.
Beispiel:

o Schwerpunkt:
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A
—

¢ Relativkoordinate:

1%:’1%1—’1%2 X
%:’7%1—%2’/

Fiir identische Teilchen: Operatoren der Form H (’;71 - ’;72) sind unmaoglich!
Nur H(|7, — 75), also:

A

A ﬁ% _ﬁ22 A A A A
Ho= o 2 Vi) + Vi) +V (|7 — 7))

identisch!

12.2 Der Hilbertraum identischer Teilchen

Bosonen und Fermionen

» Die Menge aller Transpositionen (Pm fiir N Teilchen) bilden eine nicht-abelsche

Gruppe bzgl. Hintereinanderausfithrung (Permutationsgruppe Sy ) (mit Ele-
menten T) .

e Sei 1,2,3,..., N die natiirliche Anordnung, dann ist das Signum einer Permu-
tation T € Sy gleich (—1)", wobei N die Anzahl der Transpositionen ist, die
man bendtigt, um von der natiirlichen Anordnung zur Gegebenen zu kommen.

Beispiel:

123 natirlich
213 — sign = —1
231 — sign = +1

12.2.1 Raum der total (anti-) symmetrischen Zustande

Hs={|v) e H: Pylu) =+v) VP;}

und der Raum der total antisymmetrischen Zustéande:

Has = {I0) € H: Bylw) = —[4)  VEy}
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Haben gesehen: erlaubte Variablen bilden ab:
A:’Hs—)?'[s oder A:HAS%HAS

(damit (| Aly) = (B 0| A| By ) gilt)

Das zweite Symmetriepostulat betrifft nun die erlaubten Zusténde. Sei |¢y) ein sol-
cher Zustand und |py)(¢xn| dann ein Operator, der das schwache Symmetriepostulat
erfiillt. Es folgt:

lon) (dn| = By |on) (on | By = | Byjbn) (P

Wir sehen, dass sowohl |¢y) als auch Py |¢x) den gleichen Raum aufspannen. Das
ist nur moglich, wenn dir beiden parallel stehen, also gilt: 152-]- lon) = A|on), also
wenn der Zustand ein Eigenzustand des Permutationsoperators ist [siche: Nolting 5.2
8.Auflage S.255 |[Nolting, 2015]. Wir erhalten also zwei Moglichkeiten fiir Zustande,
die im folgenden Postulat formuliert sind:

12.2.2 starkes Symmetriepostulat

Die erlaubten Zustinde von Systemen identischer Teilchen sind entweder total
symmetrisch (Bosonen) oder total antisymmetrisch (Fermionen).

Also z.B:

[D)a ) — [¥)ald)s
(D) al)s +1¥)ald)s
also HP =HnD g "Hfs)

Es gibt keine Mischrdume/Zwischensituationen! (Also nicht: plg symm. und pgg
antisymm.)
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26.Vorlesung Wiederholung: Der Hilbertraum identischer Teilchen: Bo-
sonen und Fermionen

symmetrische Zustinde := Hg = {|1/1) €H: Pyly) = +|v) VISZ-J}

antisymmetrische Zustande := H s = {W> eM: Pyly) = —|b) VPM}

Hg und H 49 bilden Hilbertraume

starkes Symmetriepostulat:

Die erlaubten Zustidnde von Systemen identischer Teilchen sind entweder total
symmetrisch (d.h. € Hg) oder total antisymmetrisch (d.h. € H4g) unter Per-
mutation zweier Teilchen.

Es gibt somit keine Observable, die Hg und H 45 verkntipft.
fiir 2 Teilchen:
Hy=2 = /HﬁiQ EBH%:Q
Ende Wiederholung
aber fiir n Teilchen:
dim(H5,_,), dim(H2,) < § dim(H)
Folgerung: (Superauswahlregel)

Die Unterraume Hg und H g konnen durch keine erlaubte unitidre Transformation
verknlipft werden.

Bemerkung: (Zeitevolution)

antisym. bleibt antisym., sym. bleibt sym. < kann Boson und Fermion nicht mit-
einander verkniipfen, solange Teilchenzahl erhalten bleibt.

Fermi-Dirac Statistik:

AsN

Hid =@ H

7-[54]? ist AbschlieBung des Raumes aller Linearkombinationen.

) = Xresy sgu(T) - [V)ry - [)ri2) - - [¥)rv),
wobei [1); € H (1-Teilchenraum)
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Bemerkung:

|1) # 0 nur falls alle |¢); linear unabhénig sind. Insbesondere: Falls 2 gleich oder
auch nur linear abhéngig sind, so ist der N-Teilchenzustand [¢)) = 0, da dann zu be-
liebigen Permutationen diese linear abhangigen zusétzlich permutiert werden kénnen
und so jeder Term mit beiden Vorzeichen auftritt und die Summe iiber die Zustédnde
verschwindet.

Pauli-Prinzip:

Jeder linear unabhéanige 1-Teilchenzustand in einem fermionischen System kann
nur von einem Teilchen angenommen werden.

Bose-Einstein-Statistik:

s N
H =R H

”HgN) ist AbschlieBung des Raums aller Linearkombinationen.

) = >oreSy W>T(1) : |1/’>T(2) T W>T(N)’
wobei [); € H

Bemerkung:

jeder 1-Teilchenzustand kann mit beliebig vielen Teilchen besetzt sein.

Spin-Statistik-Theorem: (Beweis Quantenfeldtheorie)

identische Teilchen mit ganzzahligem Spin werden durch Zustiande im HgN)
beschrieben (Bosonen), identische Teilchen mit halbzahligem Spin werden
durch Zustande im 7—[541? beschrieben (Fermionen).

Unterscheidbarkeit identischer Teilchen:

Wann sehen wir eine Konsequenz der (Anti-)Symmetrisierung? In anderen Worten,
muss Ich fiir mein lokales System von Teilchen auch die Bosonen/Fermionen auf
dem Mond beachten?

dazu: Seien 1-Teilchenzustande {|f),|g), ...}

Tréager von (x|f) sei in Raumbereich By Trager von (x|g) sei in Raumbereich By
B1 N B2 == 0
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Bemerkung:
Man kann zeigen, dass das nur approximativ richtig ist (kann nicht kompakt sein).

Pj Projektor auf B;

Pilf)y=1f) Prlg)=0
B|f) = |0) Pylg) = |g)

lokale 1-Teilchenobservable
PAP, = PLAP, =0
Matrixelemente zwischen beiden ergeben null!

9 = —=(Ihl)s % ghl o)
A= A+ Ay
— =~

nur in By nur in Bo

c{Io)s = (1A + 2ol Aalgde + 1lglAulhs + 2071 Aal )2 % (gl il +) )

=0

A ist lokale 1-Teilchenobservable mit ]52 A ]51 = ]51 A ]52
< Fiir lokale Observablen nur lokale Anti-/Symmetrisierung relevant!
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12.3 Zwei Elektronen im Coulombpotential (Helium)

Der gesamte Hilbertraum der zwei Elektronen ist:

M= (PR © )8 (R 9 C)
e A
raumiche Spin

Freiheitsgrade

Da die Raume beider Elektronen antisymmetrisiert zusammengefiihrt werden miis-
sen.
Daraus folgt der Hamiltonoperator des Systems:

i 2 (_ h? Z62>+ Ke?
i=1

— A — - — —
; 2m |71 |7y — 7|

Er besteht aus den einzelnen Hamiltonoperatoren der beiden Elektronen zusammen
mit deren Coulombwechselwirkung.

Erhaltungsgroflen:
S = 51 + §2 L= fq + f/g (da rotationssymmetrisch)

Es ist zu beachten, dass nicht nach einzelnen Teilcheneigenschaften wie S gefragt
werden kann, da dieser Operator nicht dem schwachen Symmetriepostulat gentigt.

{SM,H]:[[:M,H}:O =,z

A

Folgende Operatoren kommutieren also mit dem Hamiltonoperator: fz, L., gz) SZ,

Aus der Gruppentheorie erkennen wir folgende Zerlegung (erkennbar aus der Sym-
metrie: Sollen die Rdume antisymmetrisch zusammengefiihrt werden, so kann er
aufgeteilt werden in einen symmetrischen und einen antisymmetrischen Teil):

H=Hwo D Hn

Heoy = (52(133) & 52(133)) ® (c? ® @2)

sym. Ortsraumwellenfkt. antisym. Spinwellenfkt.
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Hoy = <£2(]R3) ® 52<R3)) ® (@2 & @2)

antisym. sym.

12.3.1 Basissdtze fiir symmetrische bzw. antisymmetrische
Spinraumwellenfunktion von N-Teilchen

Der Raum der Spinfunktionen zweier Elektronen ist vierdimensional, da alle mogli-
chen Zustinde Linearkombination der folgenden Basiszustdnde sind:

[ TR IO, THIT)

Daraus konstruieren wir nun anti- bzw. symmetrischen Linearkombinationen, die
Basen der entsprechenden Spinrdume bilden werden.

9 AS o . g .
(C ® C ) eindimensional

Die Eigenschaften des Zustandes lauten:

Spin-Singulett:

1

xan) = <= (1 914 =1 91D S =0, M5 =0

SalXoo) = (S + SO) (I D 1) = [ 1] 4)

|wirkt nur auf 1} A
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RS

Selvan) ~ (1D +101D) + (= 1010 = 10ID)

Sl

2

Il
o

N 2, 20\ 2
52 |x00) = (51 + 52> |X00)

=[St + 832808245082+ 5,- 82 )] haw)

§182 48182

=..=0

A A

d.h. |yoo) ist Eigenzustand zu 52 = (5’1 + 5‘2)2 und S, = St +
S=0,Ms=0

2 mit Eigenwerten

25 o . )
C°®C 3-dimensional

Triplett-Zustande:

Ix11) =1 S=1,Mg=1
aoh = 2= (11D +1011) §=1,Ms=0
IX1-1) = D) S=1Mg=—1

Eine solche Aufteilung der Zustdnde in anti- bzw. symmetrisch ist mathematisch
anschaulich: Die Zustande

[ DD 1D

sind offensichtlich symmetrisch unter Vertauschung. Beim ersten Zustand sehen wir
die Eigenwerte als S = 1 Mg = 1, beim zweiten Zustand gilt Mg = —1. Aus den
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Drehimpulseigenschaften wissen wir damit natiirlich, dass ein Zustand existieren
muss, der S = 1 Mg = 0 erfiillt. Die Konstruktion dieses Zustandes erfolgt iiber
Leiteroperatoren Sy = S, + iS’y Damit sind die drei Basiszustande des symmetri-
schen Raumes klar. Der vierte Zustand muss dann eine Basis des antisymmetrischen
Raumes bilden, da dieser nicht leer sein kann. Die Form dieses Zustandes ergibt sich
leicht aus Antisymmetrietiberlegungen.

12.3.2 Basissdtze fiir symmetrische bzw. antisymmetrische
Ortsraumwellenfunktion von N-Teilchen

Sei {®,,(7) }nen vollsténdige ONB von 1-Teilchenfunktionen. Eine simple aber auch
umstédndliche Darstellungsmoglichkeit von antisymmetrischen Systemen ist offen-
sichtlich:

Antisymmetrische Wellenfunktionen:

1
AS S . S
QL iy = JN TGZS:N sgn(T) - Pr1)(71) - Pr2)(72) - oo - Pevy (T)

mit Sy :=Permutationsgruppe der N Teilchen
l1,...,1, sind Sets von Quantenzahlen

Tel,..n

Eine andere Moglichkeit ist die folgende Darstellung. Die Forderungen des Pauli-
Prinzips und der Antisymmetrie folgen direkt aus den allgemeinen Eigenschaften
der Determinante.

—

®l1,l2,...,lN('r'1,...,’l°N) W .

wobei wir die Determinante als Slater-Determinante bezeichnen!

Symmetrische Wellenfunktion von N-Teilchen:
ni:=Anzahl der Teilchen in ®(7)
ng:=Anzahl der Teilchen in ®5(7)
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n1+n2—}—...+ner
D.h. es gibt r < N verschiedener Zustande.

-----

Wie wir sehen, gestaltet sich die Buchhaltung der mdéglichen Zustiande von unun-
terscheidbaren Teilchen mit zunehmender Teilchenzahl aulerordentlich kompliziert.
Die Konstruktion, die wir nun definieren, wird dem Abhilfe schaffen.

27 .Vorlesung

12.4 Fockraum, Erzeugungs- und
Vernichtungsoperatoren

Betrachte die Anzahl der Teilchen im 1-Teilchenzustand
Definition:

Sei H der Hilbertraum eines Teichens und sei H™ das n-fache symmetrische (Bo-
sonen) oder antisymmetrische (Fermionen) Tensorprodukt von H, dann heifit

.7"57,45(7‘[) = HO ©® HO D HP ®..= @'H(n)
n=0

Fockraum; hierbei ist H(©) der Hilbertraum von null Teilchen=: C :=Vakuum.

Der Fockraum ist somit die Zusammenfithrung der Hilbertraume fiir O-Teilchen, 1-
Teilchen, 2-Teilchen,...
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Definition:(Zustandsvektoren im Fockraum)

Zustande und Operationen mit diesen sind im Fockraum wie folgt definiert:

7} = (179,170, 17), ..
1) +1G) = (170) +1g), 150 +1g), .
(FIG)=> (™ g"™)

n=0

Annahme:(F' | F) < oo

12.4.1 (A) Teilchenerzeuger und Vernichter: Bosonen

Definition: (Symmetrisierungsoperator)

Sy HOH® ..o H — HI)

n

Beispiel:

S |®1) - @) - ... Z 1D1)) - [Priz) - ooe - [Py

TESN
Dabei seien OBdA alle |®;) verschieden.
S’n ist Projektor S’n =S,
S, ist selbstadjungiert AIL =3,
Definition:

Sei |f) € H, dann heifien die Operatoren a(f) und af(f) € Fs(H) Vernichtungsope-
ratoren bzw. Erzeugungsoperatoren im Zustand |f).

i)
(f): HO =0

Q>

a(f) : ’H ) 'H(n D bildet von sym. auf sym. ab!
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i)
a(f) - Sp|®1) - @) - ... - |D,,)

S - Sy [D1) - @) (i) [B,)

=1

E\H

Bemerkung:

a entfernt einen Ein-Teilchenzustand (sein ehemaliger Zustand skalarmultipli-
ziert mit f).

iii)

at(f): HE — HETY

ar(f)-10) = |f) |0) := Vakuum-Zustand (kein Teilchen)
iv)
af(f) - Sn |1} - [@o) - | @)
=V +1-Snlf) 1) - |Bs) - ... - |Dy)
Bemerkung:

Das hinzugefiigte Teilchen ist genau im Zustand |f)

Satz:

a(f), a'(f) sind hermitesch adjungiert in Fg(H).

Satz:

Seien |f) und |g) Zustédnde € H, dann gilt:

alf),alg)] = [a'(f),a' (9)] =

Bemerkung:

a(f), a'(g) vertauscht nicht:
im Vakuum vernichten, dann erzeugen gibt 1 Teilchen.

im Vakuum erzeugen, dann vernichten gibt 0 Teilchen.
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Beweis:

77.: {&(f), &T(Q)} =(flg)

a(f)-a(g) - 5 |®1) - .. ®2)
—a(f) Vi F 1S lg) - |D1) - [B2)
= (flg) - Sul®1) - .- D)

+ iy (F 1D - Snlg) - 1@1) oo [@1) - [@rys - - |

&T(f) -a(g) - S(n [®1) - .. - Pr)
—gaf .L.n DS D) - D) - 1) e | @
(9) 7 l;(f!‘“ Sn-1[®1) - oo [Pra) - [Prga) oo [ Pr)

1 (f19) - 5nl@1) oo |@ia) - (@) - oo @)

Q>

t—a'-a(f) = (flg)
U

a(f) -

speziell: betrachten |f), |g),... als Element einer VONB
{|®)} e [=1,2,..,dim(H)
(O] Pr) = O

Analog zu mehreren harmonischen Oszillatoren!
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Bemerkung:

Bei einem Teilchen ist der symmetrische- und der antisymmetrische-Hilbertraum
gleich.

Mit Hilfe der Erzeugungsoperatoren lasst sich jeder symmetrische n-Teilchenzustand
aus dem Vakuum erzeugen.

Beispiel:

n-Teilchenzustand mit (ny, na,..., 1), wobei n; ein Zustand in |®1) bzw. n, ein
Zustand in |®,.) ist.

Ws) =

-4

mit: ny +no+ ... +n, =n

(@’ =1
0ol =1

Definition: (Teilchenzahloperator im Zustand |®;))

Die Eigenwerte des Teilchenzahloperators sind die natiirlichen Zahlen.

12.4.2 (B) Teilchenerzeuger und Vernichter: Fermionen

Definition: (Antisymmetrisierungsoperator)

Ay HOH® ... H— HY

n

Beispiel:

An- ’(I)l> . ’®2> c .. n \/_ Z sgn > ’®7(2)> RPN ’@T(n)>

. TESN
Wiederum seien alle Einteilchenzustande verschieden
fln ist Projektor fln fln = fln

A, ist selbstadjungiert AIL = A,
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Definition:

Sei |f) € H, dann heifien die Operatoren &(f) und ¢'(f) € Fas(H) Vernichtungs-
operatoren bzw. Erzeugungsoperatoren im Zustand |f).

i)

e(f): HO =0
e(f) - 7—[% — H‘}g b bildet von antisym. auf antisym. ab!

ii)
e(f) - An|®y) - @) - .- | D)

iif)
) HGE = HGTY
&(f) 10y = [/)

mit: H'4E' := Antisymmetrischer Hilbertraum mit n+1 Teilchen

iv)
E(f) - A |Pr) - |B2) - .- D)
=Vt 1- Al f) - 1@1) - |s) - ... - [ D)
Bemerkung:

Das hinzugefiigte Teilchen ist genau im Zustand |f)

Satz:

é(f), é'(f) sind hermitesch adjungiert in Fg(H).

Definition: (Antikommutator)

{A,B} = AB+ BA
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Satz:
Seien |f) und |g) Zustdnde € H, dann gilt:

Beweis:

az:  {e(f), '(a)} (fg)
&) -ef(g) - Ay @) - ... - @)

=) Vi F T Aualg) - [91) - [,)

A

=+ 1) (n+2) Ao [f) - |g) - [@1) - |@,)

aber:

A

&) - &'(f) - Ay|®y) - ... - @)

— o) VA F T AL ) - [D1) - - |D,)

A

=S+ 1) - (n+2) Auia|g) - |f) - [81) - oo |)

= ()t ef(f)-ef=0

Pauli-Prinzip:

Fazit:

Es ist unmoglich zwei Teilchen im selben Zustand zu erzeugen; ebenso zu vernichten,
da es keine zwei Teilchen im selben Zustand geben kann. In der Antikommutativitit
der Erzeuger- und Vernichteroperatoren fiir Fermionen spiegelt sich also direkt das
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Pauli-Prinzip wieder.

Teilchenzahloperator:

Anzahl der Telchen im Zustand |[):

A= ¢ -8

Die moglichen Eigenwerte sind nach Pauli offensichtlich 0 und 1.

Nach Pauli in jedem Zustand max 1 Teilchen wéhle speziell |f), |g) aus VONB

{10}

n-Teilchenzustand mit (ny, na, ...,n,), wobei hier n; € {0,1} (Pauli-Prinzip)

[@as) = (ED)™ - (@)= - ... - (&)™ |0)

10) H
sym. , antisymm. a,c (
{15} H

sym. , antisymm.

|f>|g> |g>|f>|f>|9> +glf) H l Has

antisym. atl
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12.4.3 (C) Darstellung von Operatoren im Fockraum

+ Einteilchen-Observable:
A:H—H
{|®;)} ONB in H

Aldy) = ; (Pr|A|Dy) - | D) = ; Awt|Pr)

Bemerkung:

"= "Vernichtung eines Teilchens in |®;) und Erzeugung eines Teilchens in |®y)
mit Vorfaktor Ay (=: Amplitude).

b= a}af vgimn o n
k,lmm
0|®) [Pr) = D, (P ( P10 Prn) | Pr) [Pr) [D1)
k7l =Vk,lm,n
Feldoperatoren:
A) Bosonen:
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B) Fermionen:

i () = i () - &

mit: ®;(7)-1-Teilchenwellenfunktion
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13 Zusammenfassungen der ersten

Kapitel

13.1 Schrodinger

13.1.1 Schrodingergleichung

» zentrale Bewegungsgleichung der Quantenmechanik:

stationare Schrodinger-Gleichung im Ortsraum:

h? . _ ,
(<30 V() 017) = B () (67
m
 entspricht Eigenwertgleichung des Hamilton-Operators
N N h2
B(7) = B () = AV (68)
zeitabhangige Schrodinger-Gleichung:
. d
Hlp(ﬂﬂ = Zh&wCr?t) (69>

o partielle DGL, linear, 1. Ordnung

e Superpositionsprinzip: Interferenzen moglich
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13.1.2 Materiewellen (De-Broglie)

g~
I
=
N
!
=
I

p] =mv

SRSy

 Elektronen sind beides: Welle und Teilchen
(Hat Eigenschaften von beidem, ist etwas neues! )

13.1.3 Die Wellenfunktion (7, t)

e« Kann einem Teilchen eine solche Wellenfunktion zuordnen

o keine messbare Grofle wie E oder B

o irgendwo muss das Teilchen am Ende sein:

= Normierung der Wellenfunktion / > (7, 1)) =1
V.

oo

13.1.4 Wahrscheinlichkeitsstromdichte

Beispiel:

|¢)(7,t)|* ist die Wahrscheinlichkeitsdichte, das Teilchen am Ort 7 zu finden.

(70)

(71)

« Ein guter Bogenschiitze trifft mit einem Teilchen (Pfeil) die Zielscheibe mit

p=1(=100%).

o Nach einem Glas Wein ist p = 0,8 (= 80%), das heiit es gab einen Wahr-

scheinlichkeitsstrom zu ,,Scheibe nicht getroffen®.

o Diese Wahrscheinlichkeit muss 20% betragen, da die Wahrscheinlichkeit, dass

der Pfeil ,irgendwo* landet nach wie vor 1(100%) ist.
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o h * *
§(78) = 5 (Vo Vi) — Y Vi) (72)
Kontinuitiatsgleichung:
4 + Vjwn =0 (73)
dt p(’f’,t) ']('Pvt) -

o Die zeitliche Anderung der Aufenthaltswahrscheinlichkeit in einem bestimmten
Volumen ist gleich dem Wahrscheinlichkeitsstrom durch dessen Oberflache (wie
in E-Dyn).

Postulat 1:

Der Zustand eines physikalischen Systems wird bis auf einen komplexen Vor-
faktor vom Betrag 1 durch einen normierten Vektor |¢) in einem Hilbertraum
beschrieben.

* |1) hat keine reale Bedeutung im Sinne von Messbarkeit: zusammen mit Ope-
ratoren beschreibt er experimentelle Ablaufe.

o |¥) Uheregne |¥) mit a € C beeinflusst Messergebnis nicht

— |¢) und « - |[¢) reprasentieren denselben Zustand.

13.1.5 linearer Operator

A heiBt linearer Operator in H , falls

Alalfy +Blg) =a-Alf)y+B-Alg)  VYa,BeC;|f)lg)eH  (T4)

Norm von A :

JA) = sup LA (75)

in#o )]

falls || A]| < co heifit A beschrankt
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13.1.6 zu A konjugierter (Hermitesch konjugierter) Operator Af

A

(f |Ag) = (AT f|g) A:Dy— Wy
AT s D — Wy

Hermitesch: A heift hermitesch, falls At =Aauf DyND At

selbstadjungiert: A heift selbstadjungiert, falls:

At=A Di=Dy=H (76)

13.1.7 Eigenschaften selbstadjungierter Operatoren

A sei selbstadjungiert =
i) (f|Af) ist reell.
ii) Die Eigenwerte von A sind reell.
iii) Eigenvektoren zu verschiedenen EW sind orthogonal.

iv) Aus den Eigenvektoren von A kann ein vollstandiger Satz von normierten,
orthogonalen Basisvektoren konstruiert werden.

13.2 Spektralzerlegung von f(A)

f(A) ist zu behandeln wie eine Funktion f(z). Statt 2" —s A" = A. ... A.
—_—

Man kann selbstadjungierte Operatoren durch die Eigenwerte a,, darstellen:

f(le) = Z flan) ]5” (77)

P, ist orthogonaler Projektor auf den Eigenvektor |a,)
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13.2.1 Projektionsoperator P,

A

Pn = o) (o) (78)

Anschaulich projiziert P, einen beliebigen Zustandsvektor |t) auf die Richtung von
|

pn‘w> = (an|Y) an) (79)

~—~
Skalar Richtung

13.3 Unitdrer Operator U

experimentell iiberpriifbar in der Quantenmechanik sind:

Eigenwerte a; : Ala;) = a; |a;) (80)
Skalarprodukte : (¢|) (81)
Erwartungswerte : (¢ | A |4)) (82)

Auf die Zustandsvektoren [i)) kommt es eigentlich gar nicht an.
— konnen diese fast beliebig verandern (transformieren), solange obige Grofien
unverandert bleiben:

U nitir <« U0 =00"=1 < U =0" (83)

13.3.1 Unitare Transformation

|1): Transformierter Zustand

fiir Zustande : [¢) = U | ) (84)
fiir Operatoren : A=U A0 (85)

Eine unitdre Transformation dndert die Physik (also Eigenwerte, Skalarprodukte,
Erwartungswerte) nicht!
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13.4 Kommutator

'"Maf} dafiir, wie gut zwei Operatoren vertauschen'
« [A,B]=AB - BA
« AB kommutieren falls [A, B] = 0
o Der Kommutator ist als Kombination von Operatoren ebenfalls ein Operator

e Man kann zwei Observablen a und b genau dann gleichzeitig beliebig scharf
messen, wenn die zugehorigen Observablen A und B vertauschen.

13.5 Korrespondenzprinzip

"Die QM sieht ein bisschen aus wie die klassische Mechanik"
— Der Hamiltonoperator H setzt sich aus Z,p zusammen, genau wie sich die
Hamiltonfunktion aus ¢ und p zusammensetzt.

13.5.1 Ortsdarstellung von ¢ (diskret)

EW, alsoJ/Messwert

Ortsoperator

Ort sei diskret: x,, ; |z,), Dann gilt:

) = 3 (walth) |20) (87)

Die Zahl 1), heiit Ortsdarstellung von |¢)
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13.5.2 Ortsdarstellung von 1 (kontinuierlich)

[0) = [dz (x| ) |a) (ly) =8z~ )
v(a) = (@] ¥)

Die komplexwerte Funktion (Funktionswerte € C ) der Variable x heifit Ortsdar-
stellung von [))

13.5.3 Aquivalenz

(physikalischer Sachverhalt d&ndert sich nicht durch Betrachtung im anderen Raum)

Ortsdarstellung Impulsdarstellung
Blo) = ) plp) = plp) = hk|p)

H <+ L2(R3) H <+ L2(R3)

[¢) < ¥(x) ) ¢ (k)

(@lv) ¢ [da ¢ (x)y(x) (Gl¥) < [dk " (k) (k)
plY) « §5:¢(2) ) < pi(k) = kP (k)
T[Y) & zi(x) &) ¢ i (k)

»Ortsoperator anwenden “ bedeutet im Ortsraum lediglich die Multiplikation
mit X.

Analog bedeutet "Impulsoperator anwenden® Im Impulsraum die Multiplikation
mit p = hk.
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13.6 Messung in der Quantenmechanik

Die moglichen Messwerte einer quantenmechanischen Messung sind die Eigenwerte
des jeweiligen hermiteschen Operators A.

Eigenwertgleichung: A1) = AJ¢)) (88)
Das Spektrum eines Operators beschreibt, welche Eigenwerte er hat:

i) Diskretes Spektrum:
Asmn=1,23; A\, diskret

ii) kontinuierliches Spektrum:
A € R oder Intervall; A kontinuierlich.

13.6.1 Entartung

Entartung bedeutet, dass es mehrere Eigenzustinde zu einem Eigenwert gibt.

A| ¢1> = M ¢1>
A| ¢2> = >\‘ ¢2>

n-fache Entartung (89)
Ala) = Al ¢n)

13.6.2 Postulat 3a

Die Messung einer Observablen A mit nicht-entartetem, diskretem Spektrum in
einem Zustand [¢) liefert als Messergebnis einen Eigenwert a,, mit der Wahrschein-
lichkeit

P(an) = |{an [9)[? (90)

wobei |a,) der Eigenvektor zum Eigenwert a,, ist. Der Zustand |¢) geht {iber in den
Eigenzustand |a,,)
Postulat 3a besagt, dass durch Messung der Zustand des Systems verandert wird!

[¥) = lan) Plan) = l{anlu)* (91)

an,

Beispiel:
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bei der Messung der Observablen A (z.B. Ortsmessung), welcher der Operator A
zugeordnet ist, kommt mit einer Wahrscheinlichkeit von:
P(5) der Messwert a,, = 5 (Meter) heraus

13.6.3 Erwartungswert

Der Erwartungswert (A) der Messung einer Observablen A an einem Zustand |¢))
ist der Durchschnittswert, den man erhalten wiirde, wenn man die Messung sehr oft
am gleichen Zustand durchfithren wiirde.

Das heifit an vielen Quantenobjekten im gleichen Zustand, denn wie wir bereits
wissen beeinflusst eine Messung den Zustand, ich kann also nicht die Messung einfach
am selben Quantenobjekt wiederholen.

Definition

(A) = (V| A|¥) (92)

Aus Schule bekannt: Der Erwartungswert ist die Summe der Einzelwerte, gewichtet
mit der jeweiligen Wahrscheinlichkeit:

(A) =>" Plan) an (93)

n

13.7 Schwankungsquadrat

(AA%) = (A~ (4))%) = (A7) — (4)° (94)

13.8 Varianz

AA = \/(AA2) (95)

Diese Groflen geben an, wie stark Messwerte um den Erwartungswert schwanken.
Bei sehr kleiner Schwankung muss man nur wenige male messen und hat schon ein
recht gutes Ergebnis.

225



Zusammenfassungen Quantentheorie Quantenmechanik

13.9 Messung zweier Observablen A, B

Anmerkung: Diese Uberschrift liest sich so, als wiren A, B Observablen. Sie sind
jedoch die Operatoren, die den entsprechenden Observablen a und b zugeordnet
sind.

e Observable: beobachtbare physikalische Grofie
e Operator: beschreibt die Messung der Observablen

Messwahrscheinlichkeiten und Zustdnde nach der Messung hdngen von der Reihen-
folge der Messung ab!

Definition

P(by,, ay) ist die Wahrscheinlichkeit erst a,, , dann b, zu messen.

A |an> = Qn |an>

B by = by, o)

Es gibt 2 Moglichkeiten fiir die Reihenfolge der Messung;:

i)

) 2 |ay) 5 1bm)
an, b’m
P = |{a,|¢)]? Py = | (b | a, |”
ii)
) —2 [byn) L |ay,)
+ .
Py = | (b | )2 Py = | {an | bn |?
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13.10 Dynamik in der Quantenmechanik

13.10.1 Zeitentwicklung der Zustande

Zur Zeit t = t( sei der Zustand |1 (to)) bekannt. Wir wollen nun wissen, wie sich der
Zustand v spater (also t >ty ) verhélt.

Ansatz:
|¢(Tt)> = U(t, to) Wf(fo)) (96)
Zustand Zustand
zur Zeit t zur Zeit tg

A

Ul(t,ty) ist der Zeitentwicklungsoperator

13.10.2 Eigenschaften von U

i) Norm muss wegen der Wahrscheinlichkeitsinterpretation von v erhalten blei-
ben:

!

(@) [9(t)) = (W (to) | ¥ (t))
= U wnitir <= Ut(t,t0) = U (L, to)

ii) Uty to) =1
(Das ist klar, da sich nichts dndert wird, wenn ,die Zeit stillsteht*.)

i) U(t, to) = U (to, t)

All das wird erfiillt von: | U(t, t) = e~ #(t=10)

>
Il
St~

baw. Ul(t,ty) = e k(t=to) mit

13.11 Zeitabhangige Schrodingergleichung

Mit dem Ansatz [¢(t)) = U(t, to) [¢)(to)) kénnen wir diese herleiten:
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d d 5
G0 = LUt t0) | (ko)

d s
= —¢ *h

dt

H(t—to)

A - o 7110 s (1))
[ (t))

SRS

zeitabhéngige Schrodinger Gleichung:

. d A
ih - 0(8) = A1)

13.12 Stationdre Schrodingergleichung

Stationédr bedeutet hier, dass physikalische Groflen zeitunabhangig sind, d.h:

(A = (1) | A (1)) = (A

Der Erwartungswert soll konstant bleiben.

stationare Schrodinger Gleichung

a |¢n> = E, ‘¢n> (97>

Die Kenntnis aller Eigenvektoren |¢,) und Eigenwerte E, erlaubt eine allgemeine
Losung der Schrodingergleichung. Man kann aus der Losung der stationéren Schro-
dinger Gleichung dynamische Probleme l6sen:

Die Eigenvektoren bilden eine vollsténdiges Orthonormalsystem (bzw. konnen mit

dem Gram-Schmidt-Verfahren dazu gemacht werden ): {|¢,)} CNS.
Es gilt: [¢,(t)) = e~ En(i=to) |Pn) (98)

Dies entspricht genau dem Ansatz fiir dynamische Probleme, den wir bei der Ein-
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fithrung des Zeitentwicklungsoperators U gemacht hatten:

() = Ul(t, t) [1(to))

Wegen der Vollstandigkeit gilt das fiir jeden Zustand:
(1)) = 3 e #E0) |g,) (99)

mit ay, = (¢,|1ho), also ist a,, die Projektion des Eigenvektors (¢,| auf den Anfangs-
zustand [1)g).

13.13 ErhaltungsgroBen in der Quantenmechanik
A ist eine Erhaltungsgrofie, wenn sie mit dem Hamiltonoperator H kommutiert:

(A) = (¥(t) | A| ¥(t)) = consty & [H, A] =0

Das gilt auch fiir Funktionen des Operators A :

,4] =0 = S(4)

dt 0

und

Beispielsweise ist bei einem freien Teilchen der Impuls konstant:

P H| = ﬁ,f; —0 (100)

13.14 Einteilchenmechanik in einer raumlichen
Dimension

_2
klassische Hamilton-Funktion: H= % + V(7) (101)
m
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13.14.1 Schrédingergleichung

Ortsraum:

[9) — Y0 = (F ) 7o T o ive (o)
Impulsraum:

() — Dk, 1) = (k| ) P — hk; ¥ —iVg  (103)
od R, .

1h&¢(k,t) =5 (V)(k,t) + V(i VTE Ji(k,t) (104)

Gradient im k-Raum

Orts- und Impulsdarstellung sind iiber die Fouriertransformation miteinander ver-
kntpft.

Fouriertransformation:

(x,t) = /_O:de e *) (2, 1) (105)

b, t) = 2171 [k e, (106)

Der Faktor i kann verschieden verteilt werden.

13.15 Propagatoren; GG

Propagatoren sind spezielle Greensche Funktionen (also Losungen einer DGL.). Dazu
gehoren auch bestimmte Zeitentwicklungsoperatoren:

SG im Impulsraum: hgzﬁ(k; t) = @1;(]{3 t)
P ) Y T 2m ’
~ ~ ink2(t—tq)
Losung: W(k,t) =(k,tg) e 2m
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Im Ortsraum (Riicktransformation):

ihk2 (t—tg)

1 e .
vl t) = o [de Dk, t) & e~ 2m

ihk2 (t—tg)
- 2m

1 00 o0 . .
—/ dk/ dy (x,to) e ™ e e (107)

:27[ —o0

Ziel ist es, den Zustand fiir alle Zeiten bei gegebenen Anfangsbedingungen zu ermit-
teln:

v t) = [~ dy Glayth) vl )

Propagator  Anfangsbed.

Eine Gleichung dieser Form liegt mit (107)) bereits vor. wir erhalten somit den Pro-
pagator eines freien Teilchens:

o ik(z—y) o~ ML)
Glw,y,t.10) = 5 /iwdk eik(e=v) o (108)
13.16 ZerflieBen von Wellenpaketen
Es gilt:
) ) h2t2

Die Breite eines Wellenpaketes im Ortsraum (Genauigkeit der Position) wird mit
t? groBer. Das Teilchen ist dabei nicht selbst ,unscharf* oder gar ,ausgeschmiert
,sondern die Kenntnis iiber seinen méoglichen Ort!

Oy t =

Te A0

>
X

Abbildung 13.1: Auseinanderlaufen des Wellenpakets
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13.17 das unendlich hohe Kastenpotential

unendlicher Potentialtopf:

/ \ V(x):{o O<zx<L (110)

o0 sonst

7 Lo

Schrédingergleichung:

@)+ V(@) da(e) = Ee(a) (111)

2m daz?

Wir betrachten die Bereiche unterschiedlichen Potentials: I, 7] und 11 getrennt:

Bereich I, III:

V(z) =00 (112)
Grr =0 (113)
Das Teilchen kann in die Potentialbarriere nicht eindringen. Das Betragsquadrat
von ¢ ist dort 0 (Wahrscheinlichkeitsdichte) und damit auch ¢.
Bereich II:

Die Schrodingergleichung umstellen liefert:

2mFE

f2) =~ =6 () (114)

E < 0: Die allgemeine Losung ist:

2m|E| 2m|E|$
orr(z) =AeV # 4 BeV # (115)

Es stellt sich heraus, dass diese Losung nicht mit den Randbedingungen vertréglich
ist:

RB: ¢][(O) = (b[[(L) = 0
O:¢]](0) =A+B=A=-B

0=¢r(L)=AeV~F —Ae V™t £ Widerspruch!

Somit existiert keine Losung der SG mit £ < (Minimum von V(z))
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(£ >0}

Damit beim zweifachen Ableiten ein ,,—*“ dazukommt, erhélt die e — Fkt ein ,i “
. [2mE
¢rr(x) o< exp {il 72 a:}
Allgemeine Losung;:
2mFE . 2mFE
érr(x) = A cos ( 2 :L‘) + B sin ( 2 x) (116)
Randbedingungen:

0=¢17(0) = A=0 — der erste Term muss weg, da er bei x = 0 nicht 0 wird

0=y (L) = B sin ( 2mb L)

hQ

omE
:>\/7;:7LG7[ n=1,23.. (117)

Der sin-Term wird alle ganzzahlige 7t zu 0. Die Randbedingungen fithren somit zu
einer Quantisierung der mogliche Energien!

2,22
n = n2m 72 Energiceigenwerte (118)

(Einfach Gleichung (117)) nach F umstellen )

¢n(z) = B sin (mgx) Eigenfunktionen (119)
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n=3

n=2

n =
0 L

Abbildung 13.2: Zustédnde im Potentialtopf

Die Konstante B kann tiber die bisher noch nicht verwendete Normierungsbedingung
bestimmt werden:

L 2
/dx bu(@)P=1= - = B=4/% (120)
0 L

Erinnerung: Die Normierung bedeutet, dass die Wahrscheinlichkeit, dass Teilchen
irgendwo im Topf anzutreffen 1 sein muss.

13.18 Inversion (Paritatsoperator)

Die beim Teilchen im unendlich hohen Kastenpotential gefundenen Wellenfunktio-
nen waren bei steigendem n abwechselnd symmetrisch und antisymmetrisch:

n=2m+1: symmetrisch: ¢,(—z) = ¢, ()  (Siehe Abb. n=1;n=23)
n=2m: anti-symmetrisch: ¢,(—z) = —@,(z) (Siehe Abb. n=2)

Symmetrische Funktionen lassen sich an der y— Achse spiegeln. Der zugehorige Ope-
rator, der diese ,inverse “ Funktion liefert, heifit Paritatsoperator T1

o) = (-2) (121)
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Eigenschaften:

Die Eigenwerte von ITsind A = +1.
Der Paritéitsoperator bewirkt auf symmetrische und antisymmetrische Fkt. folgen-
des:

Oi(—x) =2 Pi(x) = +d4(x) symmetrische Wellenfunktion (122)
¢

|
=
I
|
e
O

antisymmetrische Wellenfunktion (123)

13.19 Allg. Eigenschaften gebundener Zustande in
1D

i) diskrete Eigenfunktionen von A (Hamiltonoperator) kénnen reell gewéhlt wer-
den.
Damit sind die ¢, () in H¢,(x) = E,b,(z) gemeint. Dass diese reell sind, ist
auch im Beweis der folgenden Eigenschaften ii) nétig, da ¢,(z) > 0 vorkommt
und C ja kein geordneter Korper ist.

ii) Es gilt der Knotensatz

Es sei F,, > E,, dann hat ¢,,(x) mindestens eine Nullstelle zwischen zwei
Nullstellen (Knoten) von ¢, (z).

,Beweis durch Beispiel*“: Hier soll uns ein ,Beweis durch Beispiel“ geniigen:
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7

;Knoten AKnoten B

Abbildung 13.3: Beispiel

Offensichtlich hat ¢,,(z) den Knoten C' zwischen den Knoten A und B von ¢,(z),
Anschaulich ist auch FE,, > E, nachvollziehbar da bei ¢,, die Frequenz hoher ist.

13.20 Der endliche Potentialtopf

—Vo; —Lf<ax<i
V(x){ 0 T2 STSS (124)
0; sonst
AV(ZL‘)
Eoy oo, P DI
T2 2 .
T
By oo
-V
I 17 177

Abbildung 13.4: endliches Kastenpotential

Auch beim endlichen Kastenpotential haben wir 3 Bedingungen:

i) Schrodingergleichung:
2
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ii) Normierung:

| letw)kdr =1
iii) Stetigkeit:
Y stetig ;4 stetig (insbesondere an den Kanten — % und %)
13.20.1 gebundene Zustdnde im endlichen Potentialtopf

Wir betrachten die Gebiete gesondert:
Sei E < 0. (klar, sonst hiipft das , Teilchen“ aus dem Topf)

DGL:

n? . 2m
T om /1,,111(95) = E¢rr(x) mit x* = _FE >0 =K%Y
DGL:
n? : 2m
~om T1(@) = Vogrr(z) = E¢rr(x)  mit k% == ﬁ(E + Vo) 1 Yy = —K*Y
h2
= “om 71(x) = (E+Vo)oru(z) Hinweis: ¢ = ¢ (reine Notation )
m

Wir wissen: F < 0 ; aber kann E < —V; sein 7

Dann wire nach obiger Definition ¥* = 0. An Stellen mit ¢ (z) > 0 wire nach
Y = —k%*) die zweite Ableitung positiv [¢"(z) > 0) , d.h. ¢ wire nach links
gekriimmt.

Ist die Funktion also einmal positiv, steigt sie immer stéarker und ist nicht mehr
normierbar !
= gebundene Zustande gibt es nur fiir | -1 < £ < 0|
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