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6. Exercise

Task 18.

The Hamiltonian of the relativistic electron-positron field interacting with the quantized radi-
ation field in an external central potential V (r) is given by
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Show that this transforms in non-relativistic limit to
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wher Ŝ = 1
2�̂�� is the spin operator and �̂ is a second-component spinor field.

Task 19.

Neglecting the spin in Eq. (1), yields the non-relativistic Hamiltonian
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Let |↵i = |ai|0i and |�i = |bi|1k,�i be eigenstates of Ĥ0. Show in lowest order perturbation theory
that the transition probability per unit time for the spontaneous emission is given by:
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where d

ba

is the dipole matrix element of the transition |bi ! |ai.

Task 20.

Let f(x) be a real function which has a Fourier representation, i.e.

f(x) =

Z
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Show that:
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(Hint: Use Cauchy’s integral theorem for integration in complex plane) From (2) the following
relation can be deduced:
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