

6. Exercise

Task 18.

The Hamiltonian of the relativistic electron-positron field interacting with the quantized radiation field in an external central potential $V(r)$ is given by

$$\hat{H} = \int d^3r \hat{\Psi}^\dagger \left[\boldsymbol{\alpha} \cdot \left(\frac{1}{i} \nabla - e \hat{\mathbf{A}} \right) + \beta m + V(r) \right] \hat{\Psi} + \hat{H}_{elm}.$$

Show that this transforms in non-relativistic limit to

$$\hat{H} = \int d^3r \hat{\Phi}^\dagger \left[\frac{1}{2m} \left(\frac{1}{i} \nabla - e \hat{\mathbf{A}} \right)^2 - \frac{e}{m} \hat{\mathbf{S}} \cdot \hat{\mathbf{B}} + V(r) \right] \hat{\Phi} + \hat{H}_{elm}, \quad (1)$$

where $\hat{\mathbf{S}} = \frac{1}{2} \hat{\boldsymbol{\sigma}}$ is the spin operator and $\hat{\Phi}$ is a second-component spinor field.

Task 19.

Neglecting the spin in Eq. (1), yields the non-relativistic Hamiltonian

$$\begin{aligned} \hat{H}_0 &= \hat{H}_{elm} + \int d^3r \hat{\Psi}^\dagger \left[-\frac{1}{2m} \nabla^2 + V(r) \right] \hat{\Psi}, \\ \hat{H}_I &= \int d^3r \hat{\Psi}^\dagger \left[-\frac{i}{m} \nabla \cdot \hat{\mathbf{A}} + \frac{e^2}{2m} \hat{\mathbf{A}}^2 \right] \hat{\Psi}, \\ \hat{H} &= \hat{H}_0 + \hat{H}_I. \end{aligned}$$

Let $|\alpha\rangle = |a\rangle|0\rangle$ and $|\beta\rangle = |b\rangle|1_{\mathbf{k},\lambda}\rangle$ be eigenstates of \hat{H}_0 . Show in lowest order perturbation theory that the transition probability per unit time for the spontaneous emission is given by:

$$\Delta W_{ba} = \sum_{\{1_{\mathbf{k},\lambda}\}} \Delta W_{\beta\alpha} = \frac{\omega_{ba}^3}{3\pi} |\mathbf{d}_{ba}|^2,$$

where \mathbf{d}_{ba} is the dipole matrix element of the transition $|b\rangle \rightarrow |a\rangle$.

Task 20.

Let $f(x)$ be a real function which has a Fourier representation, i.e.

$$f(x) = \int dk \tilde{f}(k) e^{ikx}.$$

Show that:

$$\lim_{\epsilon \rightarrow 0} \int_{-\infty}^{\infty} dx \frac{f(x)}{x_0 - x + i\epsilon} = -i\pi f(x_0) + \mathcal{P} \int_{-\infty}^{\infty} dx \frac{f(x)}{x_0 - x} \quad (2)$$

(Hint: Use Cauchy's integral theorem for integration in complex plane) From (2) the following relation can be deduced:

$$\lim_{\epsilon \rightarrow 0} \frac{1}{x_0 - x + i\epsilon} = -i\pi \delta(x - x_0) + \mathcal{P} \frac{1}{x_0 - x}.$$