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6. Exercise

Task 18.

The Hamiltonian of the relativistic electron-positron field interacting with the quantized radi-
ation field in an external central potential V' (r) is given by
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Show that this transforms in non-relativistic limit to
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wher S = %& is the spin operator and @ is a second-component spinor field.

Task 19.

Neglecting the spin in Eq. (1), yields the non-relativistic Hamiltonian
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Let |o) = |a)|0) and |B) = [b)|1x.») be eigenstates of Hy. Show in lowest order perturbation theory
that the transition probability per unit time for the spontaneous emission is given by:
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where dy, is the dipole matrix element of the transition [b) — |a).

Task 20.

Let f(x) be a real function which has a Fourier representation, i.e.

f(z) = / Ak (k) e,

Show that: . .
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(Hint: Use Cauchy’s integral theorem for integration in complex plane) From (2) the following
relation can be deduced:
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