

Task 4. (Noether Theorem I)

Consider a field theory with 2 types of Dirac spinors

$$\mathcal{L} = \sum_{l=1}^2 \bar{\Psi}^{(l)} \left[\frac{i}{2} \gamma^\mu \overleftrightarrow{\partial}_\mu - m \right] \Psi^{(l)}.$$

Global phase transformations are performed by the elements of the $SU(2)$

$$U = \exp(-ig\sigma^j\theta_j)$$

where, σ^j are Pauli matrices and θ_j are independent continuous parameters.

Show that according to Noether's Theorem there are 3 conserved currents of the form

$$j_i^\mu = g\bar{\Psi}\gamma^\mu\sigma_i\Psi, \quad i \in \{1, 2, 3\}.$$

Task 5. (Noether Theorem II)

Show that the invariance of a Lagrangian density \mathcal{L} under spatial and temporal translations satisfies the conservation equation

$$\partial_\mu T^{\mu\nu} = 0 \quad (1)$$

with

$$T^{\mu\nu} = \frac{\partial\mathcal{L}}{\partial(\partial_\mu\phi)} \frac{\partial\phi}{\partial x_\nu} - g^{\mu\nu}\mathcal{L} \quad (2)$$

Determine the four conserved Noether charges

$$Q^\nu \equiv \int d^3x T^{0\nu} \quad (3)$$

for the special case of the electromagnetic field.

Task 6. (Free Dirac equation)

Determine the stationary solutions of the free Dirac equation ($\hbar = c = 1$)

$$i\partial_t\Psi = \left(-i\vec{\alpha} \cdot \vec{\nabla} + m\beta \right) \Psi$$

with the ansatz

$$\Psi = \begin{pmatrix} \varphi_0 \\ \chi_0 \end{pmatrix} \exp(i\vec{p} \cdot \vec{r} - iEt).$$

Task 7. (non-relativistic limit and Dirac-Pauli equation)

Consider the Dirac equation

$$i\partial_t \Psi = \left(-i\vec{\alpha} \cdot \vec{\nabla} + m\beta \right) \Psi$$

for the bispinor Ψ . Show that in the non-relativistic limit using the ansatz

$$\Psi(\vec{r}, t) = \begin{pmatrix} \varphi(\vec{r}, t) \\ \chi(\vec{r}, t) \end{pmatrix} \exp(-imt)$$

where ϕ and χ are two-component objects, follows

$$\chi(\vec{r}, t) \simeq \frac{\vec{\sigma} \cdot (-i\vec{\nabla})}{2m} \varphi(\vec{r}, t).$$

i.e. $|\chi| \ll |\phi|$, and

$$i\partial_t \varphi = -\frac{\vec{\nabla}^2}{2m} \varphi.$$

This is precisely the Schrödinger equation for a two-component wave function (Pauli equation).