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2. Exercise

Task 4. (Noether Theorem I)

Consider a field theory with 2 types of Dirac spinors
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Global phase transformations are performed by the elements of the SU (2)
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where, �

j
are Pauli matrices and ✓j are independent continuous parameters.

Show that according to Noether’s Theorem there are 3 conserved currents of the form
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Task 5. (Noether Theorem II)

Show that the invariance of a Lagrangian density L under spatial and temporal translations

satisfies the conservation equation
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Determine the four conserved Noether charges
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for the special case of the electromagnetic field.

Task 6. (Free Dirac equation)

Determine the stationary solutions of the free Dirac equation (~ = c = 1)
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with the ansatz
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Task 7. (non-relativistic limit and Dirac-Pauli equation)

Consider the Dirac equationg
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for the bispinor  . Show that in the non-relativistic limit using the ansatz
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where � and � are two-component objects, follows

� (

�!
r , t) '

�!
� ·

⇣
�i�!r

⌘

2m

' (

�!
r , t) .

i.e. |�|⌧ |�|, and

i@t' = �
�!r2

2m

'.

This is precisely the Schrödinger equation for a two-component wave function (Pauli equation).
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