

Task 1.

The W^\pm and Z fields of the weak interaction are massive vector fields. These can be described by the so-called Proca Lagrangian density

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \frac{1}{2}m^2A_\mu A^\mu. \quad (1)$$

- (a) Derive the field equations for the A^μ .
- (b) Determine the energy-momentum relation $E = E(\mathbf{p})$ for free Proca fields and explain with this the interpretation of m as mass.
- (c) Show that (1) is not gauge invariant as long as $m \neq 0$. That is, gauge invariance and finite mass are mutually exclusive.

Task 2.

The Lagrangian density of the Schrödinger field is

$$\mathcal{L} = -\frac{i}{2}(\partial_t\Psi^*)\Psi + \frac{i}{2}\Psi^*(\partial_t\Psi) - \frac{1}{2m}\nabla\Psi^*\nabla\Psi. \quad (2)$$

- (a) Show that (2) leads to the Schrödinger equation. Note that Ψ is complex-valued.
- (b) Calculate the generalized momenta π .
- (c) What is the Hamiltonian H ?

Task 3.

Every vector $\mathbf{F}(\mathbf{r})$ can be decomposed into a longitudinal part $\mathbf{F}_\parallel(\mathbf{r})$ and a transverse part $\mathbf{F}_\perp(\mathbf{r})$, where $\nabla \cdot \mathbf{F}_\perp = 0$ and $\nabla \times \mathbf{F}_\parallel = 0$.

- (a) Show that

$$\mathbf{F}_\perp(\mathbf{x}) = \int d^3y \stackrel{\leftrightarrow}{\delta}_\perp(\mathbf{x} - \mathbf{y}) \mathbf{F}(\mathbf{y}), \quad (3)$$

$$\mathbf{F}_\parallel(\mathbf{x}) = \int d^3y \stackrel{\leftrightarrow}{\delta}_\parallel(\mathbf{x} - \mathbf{y}) \mathbf{F}(\mathbf{y}), \quad (4)$$

where

$$\overset{\leftrightarrow}{\delta}_{\parallel}(\mathbf{x}) = -\nabla \otimes \nabla \frac{1}{4\pi|\mathbf{x}|}, \quad (5)$$

and

$$\overset{\leftrightarrow}{\delta}_{\perp}(\mathbf{x}) = \delta(\mathbf{x}) - \overset{\leftrightarrow}{\delta}_{\parallel}(\mathbf{x}). \quad (6)$$

(b) Let $\phi(\mathbf{x})$ and $\pi(\mathbf{x})$ be canonically conjugate vector fields. Show that

$$\left\{ \phi_{\perp}(\mathbf{x}), \pi_{\perp}(\mathbf{y}) \right\} = \overset{\leftrightarrow}{\delta}_{\perp}(\mathbf{x} - \mathbf{y}). \quad (7)$$