

Task 24.

Show that

$$\Lambda_+(\mathbf{p}) = \frac{1}{2m} \sum_s u(\mathbf{p}, s) \bar{u}(\mathbf{p}, s),$$

$$\Lambda_-(\mathbf{p}) = -\frac{1}{2m} \sum_s v(\mathbf{p}, s) \bar{v}(\mathbf{p}, s)$$

are projectors to positive and negative energy solutions respectively, i.e. that

$$\Lambda_{\pm}(p) = \frac{m \pm \not{p}}{2m}. \quad (1)$$

Task 25.

Consider electron-proton (ep) and positron-proton ($\bar{e}p$) scattering..

- (a) Draw all Feynman diagrams that contribute to the scattering cross section in second order e (electron charge). Give the reduced scattering matrix elements for each diagram.
- (b) Calculate the difference

$$\sum_{\text{spins}} |\mathcal{M}|_{ep}^2 - \sum_{\text{spins}} |\mathcal{M}|_{\bar{e}p}^2, \quad (2)$$

which determines the difference in the differential scattering cross sections.

- (c) Discuss the result of (b) in terms of the experimental precision required to distinguish the ep from the $\bar{e}p$ scattering.