

3. Exercise

Task 8. Bose/Fermi commutation rules

Show that the commutation rules of the single-particle operators

$$\hat{\mathbf{p}} = \int d^3\mathbf{x} \hat{\psi}^\dagger(x) \left(-\frac{\hbar}{i} \nabla \right) \hat{\psi}(x)$$

and

$$\hat{\mathbf{x}} = \int d^3\mathbf{x} \hat{\psi}^\dagger(x) \mathbf{x} \hat{\psi}(x)$$

apply independently of whether Bose or Fermi commutation rules are valid for $\hat{\psi}$.

Task 9. Quantization of the electromagnetic field

In Coulomb gauge, the operator of the transverse vector potential in the volume L^3 with periodic boundary conditions can be decomposed into normal modes as follows:

$$\hat{\mathbf{A}}_\perp(\mathbf{r}, t) = \sum_n \sum_{\alpha=1}^2 \sqrt{\frac{\hbar}{2c|k_n|L^3}} (\mathbf{e}_{n\alpha} e^{i\mathbf{k}_n \mathbf{r} - i\omega_n t} \hat{a}_{n\alpha} + \text{h.a.}), \quad (1)$$

where $\mathbf{k}_n = (k_{n1}, k_{n2}, k_{n3})$, $k_{ni} = \frac{2\pi n_i}{L}$, $n_i = 0, \pm 1, \pm 2, \dots$ and $\omega_n = c|\mathbf{k}_n|$.

Show that the commutation relations of the creation and annihilation operators

$$[\hat{a}_{n\alpha}, \hat{a}_{m\beta}] = 0 \quad [\hat{a}_{n\alpha}, \hat{a}_{m\beta}^\dagger] = \delta_{nm} \delta_{\alpha\beta} \quad (2)$$

are equivalent to the canonical commutation relations

$$[\hat{A}_\perp^k(\mathbf{r}, t), \hat{E}_\perp^l(\mathbf{r}', t)] = -i\hbar \delta_\perp^{kl}(\mathbf{r} - \mathbf{r}'). \quad (3)$$

Task 10.

The Hamiltonian operator of the Hermitian Klein-Gordon fields is $(\dot{\hat{\phi}} = \hat{\pi})$

$$\hat{H} = \frac{1}{2} \int dV \left(\dot{\hat{\phi}}^2 + (\nabla \hat{\phi})^2 + m^2 \hat{\phi}^2 \right).$$

Show that the following commutation relations hold

$$[\hat{\phi}(x), \hat{H}] = i\hat{\pi}(x), \quad (4)$$

$$[\hat{\pi}(x), \hat{H}] = -i(m^2 - \nabla^2) \hat{\phi}(x). \quad (5)$$

In what way do these equations imply the Klein-Gordon equation for $\hat{\phi}$?

Task 11.

Consider the quantized Schrödinger field with 2-particle interaction, i.e.,

$$\hat{H} = \int d^3 \vec{r} \hat{\Psi}^\dagger(\vec{r}) \left[-\frac{1}{2m} \Delta \right] \hat{\Psi}(\vec{r}) + \int d^3 \vec{r}' \int d^3 \vec{r}'' \hat{\Psi}^\dagger(\vec{r}') \hat{\Psi}^\dagger(\vec{r}'') V(\vec{r}' - \vec{r}'') \hat{\Psi}(\vec{r}') \hat{\Psi}(\vec{r}'').$$

Derive equations of motion for the one- and two-particle wave functions using the Heisenberg equations for the field $\hat{\Psi}$

$$\begin{aligned}\Phi(\vec{r}, t) &= \langle 0 | \hat{\Psi}(\vec{r}, t) | \varphi \rangle \\ \Phi(\vec{r}_1, \vec{r}_2, t) &= \langle 0 | \hat{\Psi}(\vec{r}_1, t) \hat{\Psi}(\vec{r}_2, t) | \varphi \rangle.\end{aligned}$$