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Quantum phase transitions &

criticality

quantum phase transition

e S S

@ consider ground state of a Hamiltonian

hm o B QSJ I

?qu& =0

1Eo) = |E5”)

Qv

9c

a non-analytic change of ground-state properties at g = g.
® however not generic, since [H,, Ha] = 0

B s

quantum phase transition

g9
®w avoided crossing ® transition gets less smooth # non-analytic behaviour
- smooth change of the more states involved for continuum W
ground-state properties (large number of lattice sites) (infinite lattice)

sy M quantum phase transition w

R P e ey W

)

HIVERSITAT

\ . KRR quantum phase transition

= (967 +6767,,)
z

[9—0 f111-- ]

E(k) ={0, v1+¢2—2g cos(k)}

vanishing excitation gap = quantum critical point
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criticality

® non-analytic behaviour at critical point

vanishing of excitation gap:

diverging correlation length:
log [(6:0;)]

e P i ELOE
% li — 5l

A critical exponent

z dynamical critical exponent

B R A R

Open systems & flux-equilibrium

phase transitions

phase transitions in open systems ?

a optical parametric oscillator

i
Hopo = 5

system size scales

(:zzéﬁ/nn,

m = 2,20, 100,00

e/ewm

W)\MQ»
non-analytic behaviour at threshold for m — oc

criticality ?

m lattice models e ~ e
..... @@@@&

s = diverging correlation length
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two-site problem

e o

m model with single-site reservoirs H= é.ﬁawau + pwEv

Lp =~(+1)(2apa’ ~ pa’a - alap) + vii(2a’ pu ~

aa’p — paa')

+mﬁa§!pnning e W‘?ﬂgq - a'%p - pat?)

® equations of motion
d
3 (@ 13) = 2iJ (aag) — v (a3) — K*

d p—————

...... ? a) = ?:AE 1?&@ 7{alas)

..... A;vaiixﬁ +€mvw v (asaz)

:m:w_m:o:mﬂ invariance = no normal correlations

however: anormal correlations can build up (bosons only)
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= bosons: = fermions:

single-site reservoirs
but phase-sensitive

=e(a; + :S +iea; — m,.UmS

)

,

translational invariant

linear models

linear models
m stationary states = Gaussian states
covariance matrix:
| 9 -
() = 5 ARSS, + Eﬁiv () = 3 :AR wjwy — :;.SLV
m equation of motion of covariance matrix
& \ﬂ o
MJ\Q e XD Yo o )?TXQ e MQ = 0, \.
Xy = o(2H,+ 2Im[M]) Xy = —2iH; + 2Re[M]
Y, = 406 Re[M]o g

r = 4lm[M)]



\ 5 RS translational invariance SUAUTE linear bosonic model

i
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L; = e(a; + a}) + ig(a; — a

J

= stationary state: Ljapunov-Sylvester equation X m«,\c. + 9 X6 = Ya

m matrices are circulant > A,,,, = 4,,_, ~ \a@ a(g) eilm—m)e

symbol functions (2x2 matrices for two types of quadrature / Majoranas)
#(¢), 5(0). (o)

T (—0)7a(8) + FaZal(d) = Juld) simple 2 x 2 matrix equation

= correlation functions = criticality of anomal correlations

R ge
A&,.:.‘.Iv Ande? _ Loogin \naamc H(9) ' = K . . & e kil
2J

sin g| gc = 0,47

linear bosonic model
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SERSLAUTERN
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dynamically unsiable

lattice bosons

w#p  generic property of linear bosonic models!!
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nonlinear boson model

e oo

M. Moos, M. Haning, M.F. in pre

KA

gy
BN

BT particle-number dependent loss

m add nonlinear damping: L= L4 Lo
§17

e [ a et o af8ad. nidus
_ Lap =2 AN Nja;00,\/Te; — G705 — pa;=aj

m mean-field approximation: wu. - 7y

a self-consistent solution: # system size parameter:
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oo = ging + gyfsng 4 27201 5=
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LINERSITAT

WTERN continuous vs., lattice models

@ non-analytic behaviour at infinite system size ng — oo

7i 0, for ~7r<g<0

ng sing, for0<g<n

m correlation length: ey
£ .LI sing, for —w<g<0| o V%%: i
ls =10, forO<g<n | h N

u critical exponent: ® amplitude of critical component

E Haja;.a2)] =~ ncm,au for0<g<m
. 2

lattice fermions

& critical exponents

M. Honing, M. Moos, M.F. PRA 2012
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SR two-site reservoir coupling
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m symbol function (F-Trafo) of correlations:
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correlations
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phase transition with
critical points

Phaseg

critical exponent
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critical vmxvoam:»m

® reservoirs coupling to NV adjescent sites:
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