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Aufgabe 26. Lineare Differentialgleichungen 1. Ordnung (6 Punkte)
Lösen Sie die folgenden linearen Differentialgleichungen 1. Ordnung.

(a) x2y′ + 3xy = 1

(b) y′ + y cos(x) = sin(2x)

Aufgabe 27. Lineare Differentialgleichungen 2. Ordnung: Cauchy-Euler (6 Punkte)
Zeigen Sie, dass die lineare Differentialgleichung zweiter Ordnung

x2 y′′(x) + ax y′(x) + b y(x) = 0 , a, b ∈ R (1)

im Bereich 0 < x <∞ Lösungen vom Typ y(x) = xα besitzt. Bestimmen Sie die möglichen Werte
von α. Welche Bedingung müssen die Koeffizienten a und b erfüllen, damit alle diese α-Werte reell
und voneinander verschieden sind? Geben Sie für diesen Fall eine allgemeine Lösung der Differen-
tialgleichung an und konstruieren Sie damit eine Lösung, die für x = 1 die Anfangsbedingungen
y(1) = y1 und y′(1) = y′1 erfüllt.

Aufgabe 28. Inhomogene lineare Differentialgleichung - 1 (6 Punkte)
Gegeben sei die Differentialgleichung

ẍ(t) + 3ẋ(t) + 2x(t) = 4 sin(t) + 2 cos(t). (2)

(a) Bestimmen Sie die allgemeine Lösung der homogenen Differentialgleichung

ẍ(t) + 3ẋ(t) + 2x(t) = 0. (3)

(b) Bestimmen Sie eine einzelne Lösung der inhomogenen Differentialgleichung (2), mit Hilfe
des Ansatzes

x(t) = A cos(t) +B sin(t), (4)

wobei Sie die Konstanten A und B festlegen müssen.

(c) Geben Sie mit Hilfe von (a) und (b) die allgemeine Lösung der Differentialgleichung (2) an
und bestimmen Sie daraus eine spezielle Lösung, die die Anfangsbedingungen x(0) = 0 und
ẋ(0) = 0 erfüllt.

Bitte wenden!



Aufgabe 29. Inhomogene lineare Differentialgleichung - 2 (6 Punkte)
Gegeben sei die Differentialgleichung

ẍ(t) + ω2x(t) = αt2 (5)

(a) Bestimmen Sie die allgemeine Lösung der homogenen Differentialgleichung

ẍ(t) + ω2x(t) = 0. (6)

(b) Bestimmen Sie eine einzelne Lösung der inhomogenen Differentialgleichung (5), mit Hilfe
eines geeigneten Polynomansatzes

x(t) = A+Bt+ Ct2, (7)

wobei Sie die Konstanten A, B und C festlegen müssen.

(c) Geben Sie die allgemeine Lösung x(t) der Differentialgleichung (5) an, sowie eine spezielle
Lösung, die die Anfangsbedingungen x(0) = ẋ(0) = 0 erfüllt.
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