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Aufgabe 41. Satz von Stokes (6 Punkte)
Zeigen Sie unter Verwendung des Satzes von Stokes, dass der Flächeninhalt A einer beschränkten,
einfach zusammenhängenden Fläche in der (x, y) Ebene, welche durch eine geschlossene Kurve C
berandet ist, wie folgt berechnet werden kann:

A =
1

2

∮
C

(−y, x, 0)> · d~r =
1

2

∮
C

(xdy − ydx) .

Berechnen Sie damit den Flächeninhalt der Kardioide mit Polardarstellung r = 2a(1 + cosφ),
wobei a > 0 gelte.

Aufgabe 42. Satz von Gauß 1 (6 Punkte)

Gegeben sei ein Vektorfeld ~B = (x2, y2, z2) sowie ein räumlich einfach zusammenhängender Bereich
V : {~r |x2 + y2 ≤ 4, 0 ≤ z ≤ 2}. Zeigen Sie explizit durch Berechnung der Oberflächen- und
Volumenintegrale, dass der Satz von Gauß erfüllt ist, d.h. dass∮

O(V )

d ~A · ~B =

∫
V

div ~B dV.

Aufgabe 43. Satz von Gauß 2 (6 Punkte)

Gegeben sei das Feld ~B(~r) = (0, 0, az) = a~z .

(a) Berechnen Sie den Fluss Φ des Feldes durch die Oberfläche einer Halbkugel

~r 2 = x2 + y2 + z2 = R2 mit z ≥ 0

durch Berechnung des Oberflächenintegrals. Verifizieren Sie dann den Satz von Gauß.

(b) Welchen Wert hat das Kurvenintegral
∮
~B · d~r über eine beliebige geschlossene Kurve und

warum?

Aufgabe 44. Parabolische Koordinaten (6 Punkte)
Parabolische Zylinderkoordinaten (u, v, z) sind ein weiteres Beispiel für lokal orthogonale Koordi-
naten. Sie sind definiert durch:

x =
1

2
(u2 − v2) (1)

y = uv, (2)

z = z, (3)

wobei (x, y, z) kartesische Koordinaten bezeichnen.

Bitte wenden!



(a) Berechnen Sie

bu =

∣∣∣∣∣∣ ∂∂u
xy
z

∣∣∣∣∣∣ und bv =

∣∣∣∣∣∣ ∂∂v
xy
z

∣∣∣∣∣∣
und geben Sie das Längenlement ds2 = (bu)2 du2 + (bv)

2 dv2 + (bz)
2 dz2 und das Volumen-

element dV = bubvbz du dv dz in parabolischen Zylinderkoordinaten an.

(b) Bestimmen Sie die Einheitsvektoren ~eu, ~ev, ~ez und veranschaulichen Sie sich die Koordina-
tenlinien.

(c) Geben Sie den Gradienten, die Divergenz und den Laplace-Operator ∆ = div grad in para-
bolischen Zylinderkoordinaten an.
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