
I.Gewo.hn/icheDifterentidgIeichan---

Grundgleichungen d e r Physiks i n d Differentialgleichungen
2-- B . 2 . Neutonsches Gesetz . Jetztw o l l e n w i r u n s
e t w a s systematischer m i t deren Lösung beschäftigen.

Def Gleichung i n d e r eine unbekannte Fe l d . FA )
e i n e r Variablen × a n d Ableitungen b i s z u r
n - t e n Ordnung f
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fal ls n a c h höchster Ableitung auflösbar
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Lösungsfunktion gut w i r d Lösung o d e r Integral
d e r D G L genannt

• Lösung d e r DGL J i n g ;
• allgemeine Lösung v o n D G L n-te r Ordnung
e n t h ä l t n vone inander unabhängigen
Paramete r (Intepationskonstanten)
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unabhängige Parameter w e r d e n Werte
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Sa t z D i e allgemeine Lösungeiner i nhomogenen
l i nea ren Differentialgleichung i s t d i e
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d e r t e n l i nea renD G L u n d e i n e r
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Separation d e r Variablen
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⇒ fdj = GfK D X
×

ling-buy

❤

= f a x t H I
X u

⇒ y = {eng. +GÄHN}
X D

analytischeI I I .y-ny.ee/nESaiitHBxo-
t2uDGL

| D a s i s t e i n e allgemeine C!) Lösung d e r homogenene i n . D G L lordnung-mitdem freien Parameteryo

Beispiel) g' = s i n d I N

D I
= S i n n D X l u g = C + l o s t

y
y = (exploscal



( i is j a = - i wgH l w > 0

In =-iwdtlug-c-iwty-
ce.int

(B) Bestimmung d e rspeziellen Lösung d e r

inhomogeueuDO.beWachten i nhomogene D G L

( * ) g' = f l u g + GEH

homogene Lösung:
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• alternativ kann a u c h d u r c h a n d e r e Methoden
e i n e speziel le Lösung d e r I n homogenen
Gleichung bes t immt werden; z - B . durch "Raten"
o d e r e i n e n geschickten An s a t z :
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V-2lineaveDGL2.0rdna.
atü r physikalische Probleme s i n d l i nea re D a l
2 -Ordnung v o n großem Interesse
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Sale Wenn ga l t u n d gzA ) Lösungen v o n H Hsind
s o i s t e s a u c h jede Superposition

Superpositionsprinzip l i n e a r e DG L

g e k i f f t lösg ⇒ GEH= cydutdyz.lt) löst
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Beweise (Einsehen)
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W Hofe r b z w . WA K O heißt, daß d i e Lösungen

Gala u n d ga l t l i n e a r abhängigsind!

WM = U g .Ag i A ) = g i l t yaH I

⇒ GIFT =}¥¥, ⇒ engenA = l ugzu t kons t

Z w e i Lösungen g . Handy z A ) e i n e r homogenen
l i n e a re n D G L s i n d l i n e a r abhängig, fa l l s
d i e Wronski-Determinant verschwindet.

Andernfallsswids
ielinearunabhäng
E s gilt folgende, a u f d e n ers ten Bl i ck erstaunliche
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Lösung konstruieren
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yµ lösg ⇒ l i n e a r unabhängige Lösung
maß Wronski-Deteminante t o
l i e fen a n e i n em Punkt t o
( d a n n j a a u c h f ü r a l leanderen)
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(B) Lösung d e r i nhomogenen linearen D G L
2 - 0 2 - 7
Betrachten i nhomogene D G L 2 .Ording fü r O r t eines
Massenpunktes a l s F u s t . d e r Ze i t

Ü + a l t ) i t bH I X = F A )

Anfangbedingungen

× I t o ) = X o I Ho) = %

⇒ akg. Lösung = Summe a l lg . homogene
Lösung

( 2 l i n e a r unabhängige!)
+ spezielle lösg d e r ihomog.GL.


