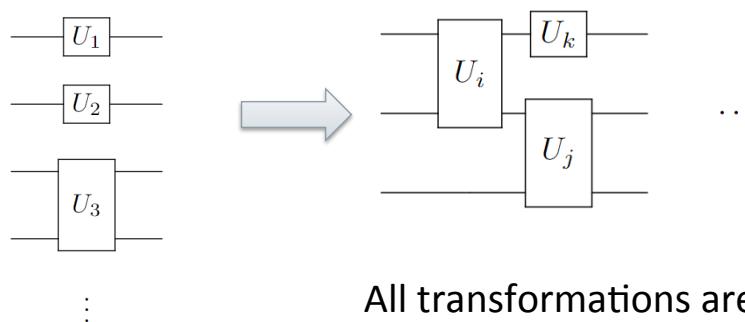


# Measurement-based quantum computation

Andrei Skalkin


Hauptseminar  
Physics Department  
TU Kaiserslautern

02.02.23

## Outline

- **Introduction**
- **MBQC principles**
- **Cluster states**
- **Experimental results**
- **Conclusion**

## Circuit model



## Reminder

Controlled Z (CZ)



$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$

Hadamard (H)



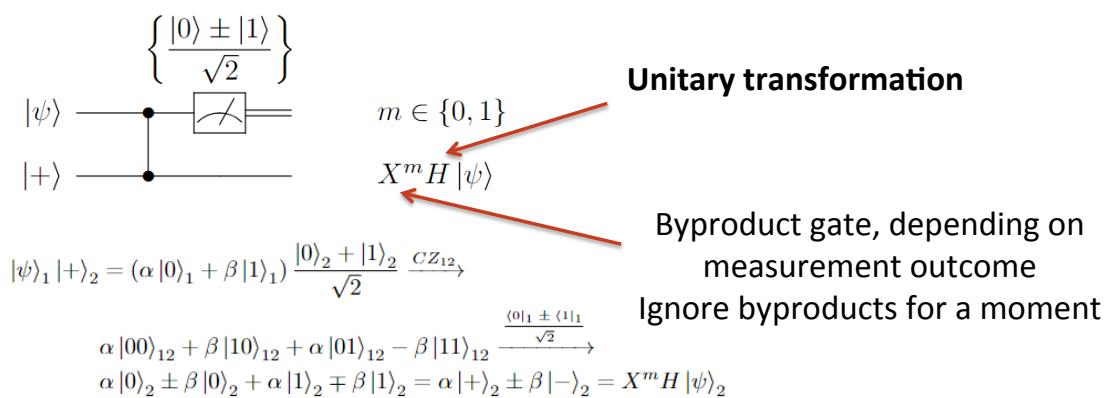
$$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$H |0\rangle = \frac{|0\rangle + |1\rangle}{\sqrt{2}} = |+\rangle$$

[[https://en.wikipedia.org/wiki/Quantum\\_logic\\_gate](https://en.wikipedia.org/wiki/Quantum_logic_gate)]

## R. Raussendorf and H. Briegel proposal

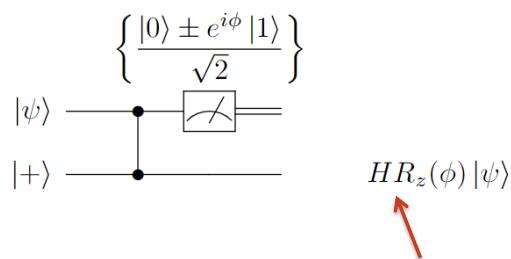
**Universal quantum computing is possible by performing only single qubit measurements on a large entangled state**


How possible?

[A One-Way Quantum Computer, Robert Raussendorf and Hans J. Briegel, Phys. Rev. Lett. (2001)]

02.02.23

5

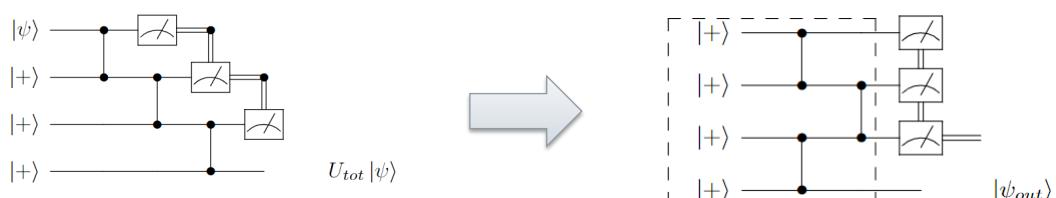

## Measurements mimic unitaries



02.02.23

6

## Change measurement angle




Unitary transformation, depending on measurement basis

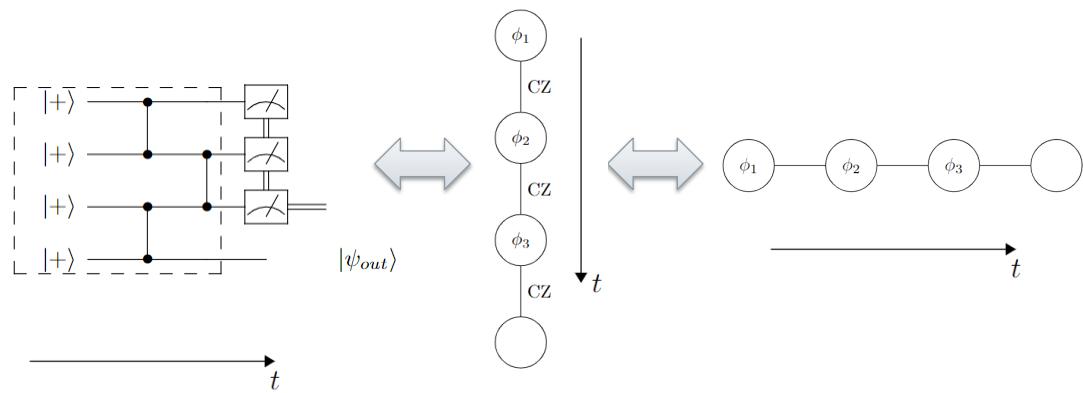
02.02.23

7

## Arbitrary rotation



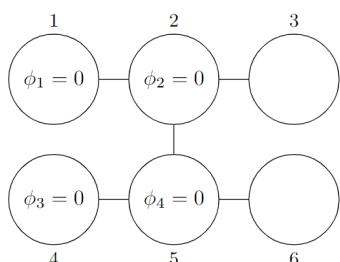
$$U_{tot} = HR_z(\phi_3)HR_z(\phi_2)HR_z(\phi_1) = HR_z(\phi_3)R_x(\phi_2)R_z(\phi_1)$$


3 independent Euler angles give any Bloch sphere rotation

- Initial state does not matter
- Preparation is uniform and uses fixed unitaries

02.02.23

8


## Cluster state notation



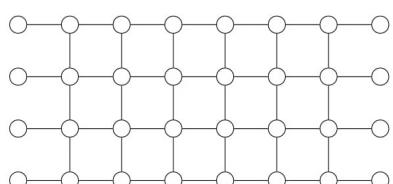
02.02.23

9

## CNOT gate



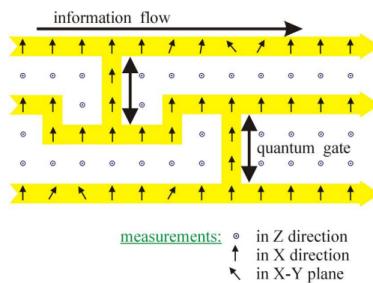
- All measurements can be done simultaneously
- $U = H_6 H_3 CNOT_{3,6}$


02.02.23

10

## MBQC sequence

- **Prepare resource state -> Cluster state**
- **Measure qubits in a proper sequence and bases**
- **Adjust basis for the next round -> Feedforward**


## Cluster states



Regular structure - graph G  
Prepare each qubit on vertex in plus state  
Apply CZ according to the edges in G

## Computation

- Z basis measurement removes a qubit from lattice
- XY plane measurements perform transformation and transport



02.02.23

13

## Byproduct gates

- In general byproducts are X and Z gates
- Measurements outcomes are random

02.02.23

14

# Feedforward

Pull byproducts out:

$$\begin{aligned}
 U_R(\xi, \eta, \zeta) \sigma_z^s \sigma_x^{s'} &= \sigma_z^s \sigma_x^s U_R((-1)^s \xi, (-1)^{s'} \eta, (-1)^s \zeta), \\
 \text{CNOT}(c, t) \sigma_z^{(t)s_t} \sigma_z^{(c)s_c} \sigma_x^{(t)s'_t} \sigma_x^{(c)s'_c} &= \sigma_z^{(t)s_t} \sigma_z^{(c)s_c+s_t} \sigma_x^{(t)s'_c+s'_t} \sigma_x^{(c)s'_c} \text{CNOT}(c, t)
 \end{aligned}$$

Measurement angles should be adjusted!

# Feedforward

- Feedforward imposes time-ordering -> Measurement rounds
- Classical data - vector of  $2n$  bits to store data about extra X and Z gates

## Universality

Universal set of gates available

Purely random measurement outcomes do not destroy the determinicity

Concatenation possible

Only specific clusters are suitable for universal computing, for example 2D rectangular

## Significance (theory)

Useful tool for analysis:

- circuits
- entanglement
- stabilizer formalism
- correction codes
- parallelization

# Significance (experiment)

Large clusters with high fidelity and generation rate required.

Generation of cluster states can be implemented more efficiently than circuit approach:

- Cold atoms in optical lattices -> Apply CZ gates in parallel
- Photons -> Probabilistic gates may lead to growth of cluster on average

02.02.23

19

# Clusters of photon qubits

articles

## Experimental one-way quantum computing

P. Walther<sup>1</sup>, K. J. Resch<sup>1</sup>, T. Rudolph<sup>2</sup>, E. Schenck<sup>1,\*</sup>, H. Weinfurter<sup>3,4</sup>, V. Vedral<sup>1,5,6</sup>, M. Aspelmeyer<sup>1</sup> & A. Zeilinger<sup>1,7</sup>

<sup>1</sup>Institute of Experimental Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria

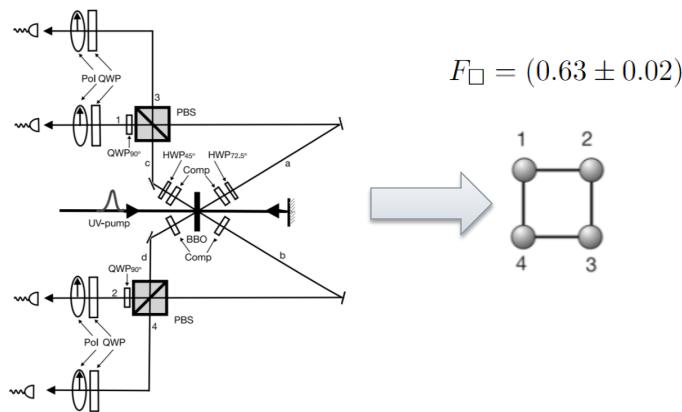
<sup>2</sup>QOLS, Blackett Laboratory, Imperial College London, London SW7 2BW, UK

<sup>3</sup>Department of Physics, Ludwig Maximilians University, D-80799 Munich, Germany

<sup>4</sup>Max Planck Institute for Quantum Optics, D-85741 Garching, Germany

<sup>5</sup>The Erwin Schrödinger Institute for Mathematical Physics, Boltzmanngasse 9, 1090 Vienna, Austria

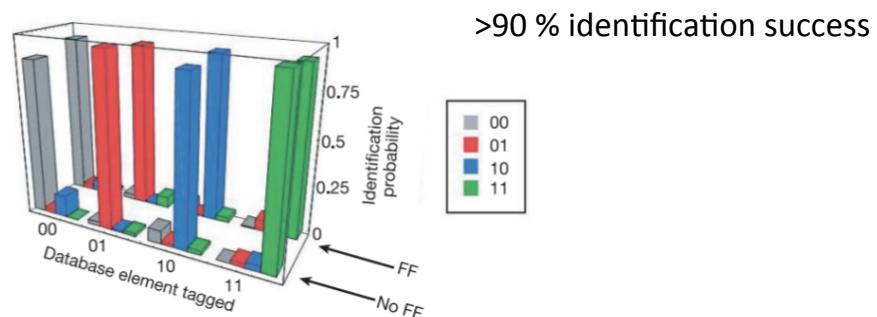
<sup>6</sup>The School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK


<sup>7</sup>IQOQI, Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, Boltzmanngasse 3, 1090 Vienna, Austria

\* Permanent address: Ecole normale supérieure, 45, rue d'Ulm, 75005 Paris, France

02.02.23

20


# Setup



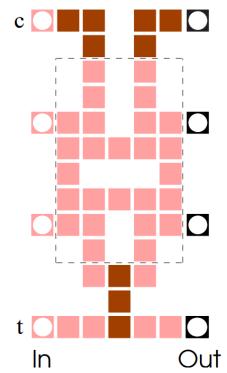
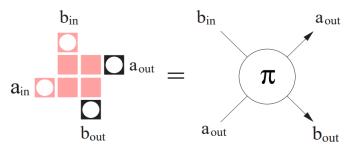
02.02.23

21

# Grover's algorithm



02.02.23



22

## Summary

- New approach to quantum computing
  - Resource does not depend on the algorithm
  - Insight on the role of entanglement
- Applicable to all physical platforms, but large cluster states are still a challenge

## Thank you!

## Bonus: CNOT between distant qubits

