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1 Motivation

Unser Ziel ist die Realisierung eines Quantencomputers. Dieser basiert im Gegensatz zum klassischen
Computer auf den Grundregeln der Quantenmechanik. Auch hier benötigen wir eine kleinste Informa-
tionseinheit, das Qubit (in Anlehnung an die klassischen Bits). Da ein Qubit aber nur sehr wenig Infor-
mation enthalten kann, muss man mehrere davon zusammenschalten. Außerdem braucht man eine Reihe
von Rechenoperationen, ein sog. logisches Gatter. Wir müssen insgesamt eine große Anzahl von Qubits
steuern bzw. manipulieren können.

Praktisch kann man Qubits z.B. mit Hilfe von Atomen realisieren. Aber wie sollen die dann so mitein-
ander wechselwirken, dass die gewünschten Rechenoperationen ausgeführt werden können? Und wie
sollen die Informationen weitergeben werden? Dazu sind Informationsträger notwendig, die mit den
Atomen wechselwirken können. Hier bieten sich Photonen an, denn sie sind schnell, leicht verfügbar
und lassen sich über große Entfernungen senden. Diese müssen dann aber auch so mit den Atomen
wechselwirken können, dass die Information, die sie für unsere Rechenoperationen tragen, vollständig
auf das Atom übertragen werden kann. Außerdem muss man auch aus einem Atom wieder Information
in Form eines solchen Photons gewinnen können, um sie dann weiterzuleiten.

Wir brauchen also eine Technik, mit der wir einzelne Photonen mit einzelnen Anregungen auf Atome
auf Befehl wechselwirken lassen können. Ein Problem dabei ist, dass der Wirkungsquerschnitt eines
einzelnen Photons sehr gering ist (siehe Atom- und Molekül-Physik Vorlesung von H. Hotop). Um dem
entgegenzuwirken gibt es verschiedene Möglichkeiten:

• Man kann das Photon in einen Resonator stecken und oft umlaufen lassen, so dass der Wirkungs-
querschnitt um einen Faktor - der Umlaufzahl - erhöht wird. Hierbei gibt es eine nicht-triviale
Methode, die auf der StiRAP-Technik[1] basiert (siehe auch Vortrag von Johannes Otterbach).

• Oder man verwendet ein optisch dichtes Medium, in dem das Photon auf jeden Fall absorbiert
wird. Hier treten normalerweise dissipative Prozesse (Zerfall des angeregten Zustands) auf, die
dafür sorgen, dass der Quantenzustand des Photons verändert (d.h. zerstört) wird. Wir interessieren
uns für eine Variante dieser Methode, die keine solchen dissipativen Prozesse zulässt.

Wir werden im Folgenden also eine Technik beschreiben, mit der man genau festlegen kann, ob ein
Photon die Atome ungesehen passieren soll oder seine Information (d.h. seinen Quantenzustand) an die
Atome abgibt. Außerdem kann man die Atome auch dazu bringen, das Photon wieder auszusenden.



2 Theorie zum Quantenspeicher

2.1 Elektromagnetisch Induzierte Transparenz

Das am Ende des letzten Abschnitts angesprochene Modell basiert auf der Elektromagnetisch Induzierten
Transparenz (EIT). Hierbei handelt es sich erstmal um ein Verfahren, mit dem ein Medium transparent für
eine sonst absorbierte Strahlung machen kann und dabei auch die Gruppengeschwindigkeit der Strahlung
stark verringert, wie Harris [9] gezeigt hat. Man verändert dabei also die Eigenschaften des Mediums und
der Strahlung.

Die Idee ist die Folgende:
Sei ein Λ-förmiges Modellsystem (mit nah benachbarten Resonanzen) gegeben:

Abbildung 2.1: 3 Niveau System

Dabei soll |b〉 der Grundzustand sein. Der Übergang von |b〉 − |c〉 soll verboten sein.

Man strahlt zwei Frequenzen ω und Ω ein, die genau den Übergängen |b〉 − |a〉 bzw. |c〉 − |a〉 entspre-
chen. Dabei repräsentiert ω die Photonen des Versuchs-Lasers, die wir manipulieren wollen, das sog.
„Quantenfeld“ und Ω ist ein äußeres, klassisches Feld (z.B. ein elektrisches Feld), das wir auch „Kopp-
lungsfeld“ nennen. Bei entsprechenden Einstellungen kann man durch Einstrahlung des äußeren Feldes
im Medium ein Frequenzfenster erzeugen, in dem das Quantenfeld schwächer als gewöhnlich absorbiert
wird. Das Medium wird somit transparent für die Strahlung des Versuchs-Lasers (siehe Abbildung 2.2).

Abbildung 2.2: Absorption mit äußerem Feld (durchgezogene Linie) und Dispersionskurve (gestrichelt)

Wir sehen also, dass für kleine Abweichungen von der optimalen Frequenz ωab für den Übergang |b〉−|a〉
keine Absorption auftritt, d.h. dass ein schmales Frequenzfenster erzeugt wird. Bedeutend ist, dass in
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diesem Bereich geringer Absorption normale lineare Dispersion vorliegt und die Steigung der Dispersi-
onskurve sehr groß ist, was dann zu Effekten wie ultra-langsamer Gruppengeschwindigkeit führt.

Die Transparenz kann man wie folgt verstehen [9, 6]:
Klassisch findet Absorption statt, wenn die Elektronen im Atom auf den eingestrahlten Frequenzen
schwingen können. Kann man zwei solche Schwingungen mit gleicher Amplitude und entgegengesetz-
ter Phase überlagern, so ist die Resultierende daraus keine Schwingung (destruktive Interferenz). Wenn
das Elektron nicht schwingen kann, so gibt es auch keine Absorption. Quantenmechanisch müssen wir
allerdings mit Wahrscheinlichkeiten arbeiten: Die Wahrscheinlichkeit für eine Besetzung von Zustand
|a〉 ist dann gegeben durch die Wahrscheinlichkeiten der obigen Übergänge |b〉 − |a〉 bzw. |c〉 − |a〉. Da
Zustand |b〉 der Grundzustand ist und Zustand |c〉 am Anfang unbesetzt sein soll, kann die Anregung nur
über die Wege |b〉 − |a〉 und |b〉 − |a〉 − |c〉 − |a〉 laufen (sowie höhere Ordnungen davon). Wenn das
Kopplungsfeld viel stärker als das Versuchsfeld ist, so ist die Wahrscheinlichkeit für den indirekten Weg
ebenso hoch wie die für den direkten. Da beide für resonante Felder unterschiedliches Vorzeichen haben
kommt es zu destruktiver Interferenz zwischen den beiden Wegen und Zustand |a〉 bleibt unbesetzt. Das
Medium kann also die Frequenz ω des Versuchs-Lasers nicht absorbieren und ist transparent für diese.

Wir wollen das Prinzip an einem einfachen Beispiel verdeutlichen:
Gegeben seien atomarer Wasserstoff, ein Laser für Photonen und ein äußeres Gleichstromfeld.

Abbildung 2.3: Wasserstoff-Niveaus ohne Gleichstromfeld (links) bzw. mit Gleichstromfeld (rechts)

Es handelt sich hier eigentlich nicht um den obigen Fall, da dort nicht angenommen wurde, dass sich die
Energieniveaus selbst ändern dürfen, aber wir wollen hier auch nur das Prinzip verdeutlichen.

Ohne äußeres Feld kann das entartete System
nur auf einer (verbreiterten) Linie absorbieren
(wir vernachlässigen hier den Lamb-Shift, s. d.
|2s〉 und |2p〉 energetisch gleich sind). Wenn der
Laser genau auf dieser Frequenz einstrahlt und
das soll nun der Fall sein, dann wird seine Strah-
lung durch das Modellsystem absorbiert (siehe
Abbildung 2.3 links). Wir werden nun durch ei-
ne einfache Manipulation (ein zweites Feld) da-
für sorgen, dass das System diese Strahlung nicht
mehr absorbiert, sondern transparent dafür wird.

Schaltet man aber nun das äußere Feld ein,
so werden die beiden entarteten Niveaus aufge-
spalten. Quantenmechanisch geschieht das durch
zwei verschiedene Superpositionen der einzelnen
Zustände, die dafür sorgen, dass ein Zustand ab-
gesenkt wird und der andere (symmetrisch dazu)
angehoben wird. Lässt man auf dieses neue Sys-
tem nun den Laser mit der selben Frequenz wie
vorher einstrahlen, so liegt diese genau zwischen
den Niveaus und kann nicht mehr absorbiert wer-
den (im Bild rechts).

Wir haben unser Wasserstoff-System also für eine Strahlung transparent gemacht. Dies funktioniert i.A.
(d.h. wenn die Niveaus nicht entartet sind) mit einem zweiten Laser statt dem Gleichstromfeld und wird
Elektromagnetisch Induzierte Transparenz (EIT) genannt. In diesem Fall muss die Anzahl der Photonen
vom Kopplungslaser größer sein als die Anzahl der Atome im Strahlengang des Lasers im Medium. Wir
werden dieses Prinzip jetzt auf unseren Quantenspeicher anwenden.
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2.2 Quantenspeicher

2.2.1 Ausblick

Wir betrachten wieder unser Λ-förmiges Modellsystem:

Abbildung 2.4: 3 Niveau System

Wir wissen bereits, dass durch EIT das Medium für die Frequenz ω des |b〉 − |a〉-Übergangs transpa-
rent gemacht werden kann. Dazu kommt eine lineare Dispersion, die dazu führt, dass die Gruppenge-
schwindigkeit von Photonen stark reduziert wird. Da es sich um einen linearen Prozess handelt, bleibt
der Quantenzustand erhalten. Somit ist ein Medium mit einer solchen langsamen Gruppengeschwindig-
keit bereits ein temporärer Speicher für die eingestrahlten Photonen. Wir werden dann dafür sorgen,
dass die Photonen vollständig abgebremst werden und erhalten schließlich unseren Quantenspeicher.
Zunächst führen wir dafür eine neue Sorte von Quasiteilchen ein, die sog. Dark-State Polaritons. Dabei
handelt es sich um eine Superposition aus den Photonen des Versuchs-Lasers und die durch die Pho-
tonen angeregten Spin-Zustände im Atom (Spin-Wellen). Außerdem werden wir den Mischungswinkel
zwischen diesen beiden Komponenten einführen, der von (der konstanten Atomdichte und) der Stär-
ke des äußeren Feldes abhängt. Durch eine bestimmte Rotation dieses Winkels, wird es dann möglich
sein, aus einem beliebigen Superpositions-Zustand, insbesondere dem reinen Photonen-Zustand, einen
reinen Spin-Wellen-Zustand zu erzeugen. Das entspricht dann dem Übertrag der Information des Pho-
tons auf ein Atom, d.h. der Speicherung des Photons. Nach einer (noch nicht) beliebigen Speicherzeit,
kann man den Winkel zurückdrehen und erhält dann aus dem reinen Spin-Wellen-Zustand wieder einen
reinen Photonen-Zustand. Wir haben damit also eine Methode zum Einfang, zur Speicherung und zur
Wiederherstellung von Photonen gefunden.

2.2.2 Quantenspeicher für Ein-Moden Felder

Wir beginnen unsere Diskussion mit einem einfachen Beispiel:
Betrachte N Λ-förmige Modellsysteme wie in Abbildung 2.4, die, wie zuvor, mit einem Ein-Moden-
Quantenfeld der Frequenz ω und einem äußeren klassischen Feld Ω wechselwirken. Dann wird dieses
System durch den Wechselwirkungs-Hamiltonoperatior beschrieben:

V̂ = ~g

N∑
i=1

âσi
ab + ~Ω(t)e−i∆k z

N∑
i=1

σi
ac + h.a. (2.1)

Dabei ist σi
αβ = |α〉ii〈β| der Operator des i-ten Atoms, durch den man ein Atom vom Zustand |β〉 in den

Zustand |α〉 anregen kann, g ist die Kopplungskonstante zwischen den Atomen und dem Quantenfeld
(Rabi-Frequenz im Vakuum), â ist der Absteigeoperator für ein Photon des Quantenfeldes, das dazu
benötigt wird, die Anregung für den |b〉−|a〉Übergang durchzuführen, νd ist die Frequenz des klassischen
Feldes Ω.
Notation: σαβ = 1

N

∑N
i=1 σi

αβ .
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Wir wollen zunächst ein Gefühl für den Umgang mit den Atom-Operatoren σi
µν bekommen:

• Angenommen, am Anfang sind alle Atome im Grundzustand |b〉

|b〉 = |b1, b2, . . . , bN〉

• Wendet man nun V̂ an, so haben nur die Operatoren σi
ab Einfluss, weil alle Atome i im Zustand |b〉

vorliegen. Jeder dieser Operatoren in der Summe regt nun ein anderes Atom in den Zustand |a〉 an,
während alle anderen Atome im Zustand |b〉 bleiben. Dazu kommt noch ein Normierungsfaktor:

|a〉 =
1√
N

N∑
j=1

|b1, . . . , aj, . . . , bN〉

• Wendet man auf diesen Zustand den Atom-Operator σca =
∑N

i=1 σi
ca an, der die Atome im Zustand

|a〉 in den Zustand |c〉 überführt, so landet man im Zustand:

|c〉 =
1√
N

N∑
j=1

|b1, . . . , cj, . . . , bN〉

• Man könnte natürlich auch statt σi
ca nochmal σi

ab anwenden:

|aa〉 =
1√

2N(N − 1)

N∑
i6=j=1

|b1, . . . , ai, . . . , aj, . . . , bN〉

Jetzt haben wir die Photonen aber noch nicht betrachtet.

• Wenn wir kein Photon gegeben haben, so gibt es nur den Zustand, in dem alle Atome im Grund-
zustand sind und eben kein Photon vorliegt: |b, 0〉

• Wenn wir ein Photon haben, so gibt es einmal den Zustand, in dem alle Atome im Grundzustand
sind und eben das eine Photon vorliegt: |b, 1〉
Und es gibt den Zustand, der durch âσab entsteht, nämlich dadurch, dass ein Atom durch σab

aus dem Grundzustand |b〉 in den Zustand |a〉 übergeht und ein Photon aus dem Strahlungsfeld
absorbiert wird, d.h. (â |b, 1〉 = |b, 0〉); zusammen ergibt das den Zustand: |a, 0〉
Dieser Zustand kann sich durch Anwenden von σca dann noch einmal ändern in: |c, 0〉

Das kann man auch graphisch darstellen:

Abbildung 2.5: Kopplung einfacher Zustände
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Jetzt betrachten wir interessantere Zustände:

|D, n〉 =
n∑

k=0

√
n!

k!(n− k)!
(− sin θ)k(cos θ)n−k|ck, n− k〉 (2.2)

tan θ(t) =
g
√

N

Ω(t)
(2.3)

Wendet man den Hamiltonoperator (2.1) auf diese Zustände an, so erhält man 0.
Der Zustand |a〉ist nicht enthalten, s.d. die Zustände immun gegen spontane Emission sind. Deshalb
nennen wir diese Zustände Dark-States.
Die Existenz dieser Zustände gibt uns eine sehr elegante Möglichkeit, den Übergang zwischen einem
reinem Photonen-Zustand und reinem Spin-Wellen-Zustand zu beschreiben.

• Für einen Mischungswinkel von θ = 0 ist sin(θ) = 0 und damit |D, n〉 ∝ |b, n〉
• Für einen Mischungswinkel von θ = π

2
ist cos(θ) = 0 und damit |D, n〉 ∝ |cn, 0〉

Durch eine Rotation des Winkels von 0 auf π
2

erhält man also aus einem reinen Photonen-Zustand einen
reinen Spin-Wellen-Zustand. Einen Winkel von π

2
erreicht man durch Ω = 0, d.h. durch Abschalten des

äußeren Feldes kann man ein Photon speichern.

2.3 Quantenmechanisches Modell für beliebige Felder

Wir werden nun das Beispiel aus dem letzten Abschnitt verallgemeinern. Dazu betrachten wir wieder
unser Λ-förmiges Modellsystem mit dem Grundzustand |b〉, dem spontan zerfallenden Zustand |a〉und
einem weiteren Zustand |c〉. Wir haben ein Quantenfeld, gegeben durch die elektrische Komponente
Ê(+)und eine Frequenz ν, das die Zustände |b〉und |a〉koppelt, sowie ein klassisches Feld Ω mit Frequenz
νd, das |c〉und |a〉koppelt.

Abbildung 2.6: 3 Niveau System

Der Hamiltonoperator ist:

V̂ = −℘
∑

j

(
σ̂j

ab(t) Ê(+)(zj, t) + h.a
)
− ~

∑
j

(
σ̂j

ac(t) Ω(zj, t) ei(k
‖
dzj−νdt) + h.a

)
Dabei ist ℘ das Diplomatrixelement zwischen den Zuständen |a〉und |b〉, σ̂j

αβ ≡ |αj〉〈βj| ist wieder der
Atom-Operator, der den Zustand |β〉 in den Zustand |α〉 überführt, zj ist die Position des j-ten Atoms,
k
‖
d = ~kd ·~ez = νd

c
cos ϑ = kd cos ϑ ist die Projektion des Wellenvektors des Kontrollfeldes in Richtung

des Quantenfeldes.

Wir spalten die sich schnell ändernden Größen ab und erhalten so langsam veränderliche Größen:

Ê(+)(z, t) =

√
~ν

2ε0V
Ê(z, t) ei ν

c
(z−ct)

σ̂j
µν(t) =σ̃j

µν(t) e−i
ωµν

c
(z−ct)
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Mit diesen neuen Größen Ê und σ̃, der Kopplungskonstanten g = ℘
√

ν
2~ε0V

,

dem Wechselwirkungsvolumen V und ∆k = k
‖
d − kd = νd

c
(cos(ϑ− 1)) wird V̂ zu:

V̂ = −~g
∑

j

(
σ̃j

ab(t) Ê(zj, t) + h.a
)
− ~

∑
j

(
σ̃j

ac(t) Ω(zj, t) ei ∆k zj + h.a
)

Wenn sich die Amplituden auf einem Intervall ∆z mit Nz � 1 Atomen nur sehr wenig ändern, so können
wir in jedem dieser Intervalle die Größe σ̃µν(z, t) = 1

Nz

∑
zj∈Nz

σ̃j
µν(t) - d.h. einen gemittelten Atom-

Operator - einführen und die Summe durch ein Integral nähern:
∑N

j=1 −→
N
L

∫
dz, wobei N die Anzahl

der Atome und L die Länge des Wechselwirkungsgebietes ist. Damit erhalten wir die kontinuierliche
Form des Hamlitonoperators:

V̂ = −~N

L

∫
dz

(
σ̃ab(z, t) g Ê(z, t) + σ̃ac(z, t) Ω(z, t) ei∆k z + h.a.

)
Für den Operator des Quantenfeldes Ê gilt:(

∂

∂t
+ c

∂

∂z

)
Ê(z, t) = igN σ̃ba(z, t) (2.4)

Für die Zeitentwicklung der Atom-Operatoren gelten die sog. Heisenberg-Langevin Gleichungen; u. a. :

˙̃σba =− γbaσ̃ba + igÊ
(
σ̃bb − σ̃aa

)
+ iΩei∆k zσ̃bc + Fba (2.5)

˙̃σbc = iΩ∗e−i∆k zσ̃ba − igÊ σ̃ac (2.6)

Dabei ist γab die Zerfallsrate von σ̃ab und Fab beschreibt das Rauschen.

Um das System aus den Gleichungen (2.4,2.5 und 2.6) zu lösen, müssen wir einige Näherungen machen.
Die Qualität dieser Näherungen werden wir später untersuchen.

2.3.1 Low-Intensity Näherung

Unter der Low-Intensity Näherung verstehen wir die Annahme, dass die Anzahl der Photonen im Quan-
tenfeld viel kleiner als die Anzahl der Atome ist und dass die Rabi-Frequenz des Quantenfeldes kleiner
als die des äußeren Feldes ist; daher auch der Name: low intensity.

Wir führen eine Störungsrechnung in Ê bis zur 1. Ordnung durch und finden:

σ̃aa = 0, σ̃bb = 1, σ̃cc = 0

σ̃ba =− i

Ω∗ ei∆k z ∂

∂t
σ̃bc

Damit wird (2.4) zu: (
∂

∂t
+ c

∂

∂z

)
Ê(z, t) =

gN

Ω∗ ei∆k z ∂

∂t
σ̃bc (2.7)

Und (2.5) kann man nach σ̃bc auflösen:

σ̃bc = −gÊ
Ω

e−i∆k z − i

Ω

(
∂

∂t
+ γba

) (
− i

Ω∗
∂

∂t
σ̃bc

)
+

i

Ω
e−i∆k zFba (2.8)

Da diese Gleichungen immer noch nicht lösbar sind, nähern wir weiter:
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2.3.2 Adiabatische Näherung

Eine adiabatische Näherung geht immer davon aus, dass etwas langsam geschieht. In unserem Fall soll Ω
sich nur langsam ändern. Dann kann man die Zeitskala normieren, d.h. eine Größe t̃ = t

T
einführen. Es

gilt: ∂
∂t

= 1
T

∂
∂t̃

und wir können Gleichung (2.8) in Potenzen von 1
T

darstellen. Für langsame Änderungen
ist dieses T sehr groß und 1

T
sehr klein, s. d. die 0-te Ordnung bereits eine gute Näherung ist:

σ̃bc = −g
Ê
Ω

e−i∆k z (2.9)

Damit können wir auch die Bewegungsgleichung für das Quantenfeld (2.7) vereinfachen:(
∂

∂t
+ c

∂

∂z

)
Ê(z, t) = −g2N

Ω∗
∂

∂t

Ê(z, t)

Ω(t)
(2.10)

2.3.3 Slow-Light

In diesem Abschnitt wollen wir einen Sonderfall behandeln: Angenommen, das äußere Feld sei zeitlich
konstant, d.h. Ω(z, t) = Ω(z). Dann ist auf der rechte Seite von Gleichung (2.10) nur noch Ê zeitabhängig
und kann auf die andere Seite gebracht werden:([

1 +
g2N

|Ω|2

]
∂

∂t
+ c

∂

∂z

)
Ê(z, t) = 0

Und man kann es auf die bekannte Form d
dt

= ∂
∂t

+ ∂z
∂t

∂
∂z

bringen:(
∂

∂t
+ vg

∂

∂z

)
Ê(z, t) = 0 mit vg =

c

1 + g2N

|Ω|2

Für ein zeitlich konstantes Ω 6= 0 bleibt die Gruppengeschwindigkeit konstant und ungleich 0. Sie kann
allerdings sehr klein gewählt werden, s.d. der Puls lange im Medium gespeichert bleibt. Die Speicher-
zeit wird dann hauptsächlich durch Abweichungen von der adiabatischen Näherung (siehe Kapitel 2.3.2)
bestimmt. Außerdem folgt aus der Gleichung , dass sich das Profil des Pulses zeitlich nicht ändert, insbe-
sondere also, dass aus dem Photon keine Spin-Welle wird [8]. Wir werden also nun zeitlich veränderliche
äußere Felder betrachten, um den gewünschten Quantenspeicher zu realisieren.

2.4 Dark-State Polaritons

Sei also ein zeitabhängiges, aber räumlich homogenes und reelles äußeres Feld Ω(t) gegeben. Dann
führen wir neue Felder Ψ(z, t) und Φ(z, t) als Superposition des Quantenfeldes Ê(z, t) und des äußeren
Kontrollfeldes σ̃(z, t) ein:

Ψ̂ = cos θ(t) Ê(z, t)− sin θ(t)
√

N σ̃bc(z, t) ei∆k z

Φ̂ = sin θ(t) Ê(z, t) + cos θ(t)
√

N σ̃bc(z, t) ei∆k z

Der Winkel θ ist weiterhin gegeben durch Gleichung (2.3): tan2 θ(t) = g2N

Ω(t)2
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Wir führen eine Zerlegung in ebene Wellen durch, d.h. Ψ̂(z, t) =
∑

k Ψ̂k(t) eikz, Φ̂(z, t) =
∑

k Φ̂k(t) eikz,
und finden in linearer Näherung:[

Ψ̂k, Ψ̂
+
k′

]
≈

[
Φ̂k, Φ̂

+
k′

]
≈ δk,k′

[
Ψ̂k, Φ̂

+
k′

]
≈ 0

Das sind die von Bosonen bekannten Kommutatorregeln. Wir können unsere beiden neuen Felder also
mit bosonischen Quasiteilchen identifizieren. Wir nennen sie Polaritons.

Die von den Ψ̂†
k erzeugten Zustände |Dk, n〉 = 1√

n!
(Ψ̂†

k)
n|b1, . . . , bN〉|0〉 entsprechen den bereits aus

Kapitel 2.2.2 bekannten Dark-States: |D, n〉 (siehe Gleichung (2.2)). Analog dazu repräsentieren die
bi auch hier die Atome im Grundzustand |b〉und die |0〉 ist wieder das Strahlungsfeld mit 0 Photonen.
Ebenso gilt auch hier: V̂ |Dk, n〉 = 0 Auch der Zustand |a〉ist hier nicht enthalten, s.d. die Zustände
immun gegen spontane Emission sind.
Wir nennen diese Zustände deshalb Dark-State Polaritons

In diesen neuen Variablen wird die Bewegungsgleichung (2.7) in Low-Intensity Näherung zu:(
∂

∂t
+ c cos2θ

∂

∂z

)
Ψ̂ = −θ̇ Φ̂− sin θ cos θ c

∂

∂z
Φ̂ (2.11)

Mit Gleichung (2.8) erhält man außerdem:

Φ̂ =
sin θ

g2N

(
∂

∂t
+ γba

) (
tan θ

∂

∂t

) (
sin θ Ψ̂− cos θ Φ̂

)
+ i

sin θ

g
Fba (2.12)

Neben der Low-Intensity Näherung führen wir analog zu Kapitel 2.3.2 eine Adiabatische Näherung
durch und finden damit: Φ̂ ≈ 0 Damit vereinfacht sich die Bewegungsgleichung zu:(

∂

∂t
+ c cos2θ

∂

∂z

)
Ψ̂(z, t) = 0 (2.13)

Dies ist die Bewegungsgleichung eines Quasiteilchens Ψ̂ mit zeitabhängiger Gruppengeschwindigkeit
vg = c cos2θ(t) im Gegensatz zu einer konstanten Geschwindigkeit, wie wir sie in Kapitel 2.3.3 bei
konstantem äußeren Feld hatten. Wir werden nun zeigen, dass in unserem jetzigen Fall ein Transfer von
einem reinen Photonenzustand zu einem reinen Spin-Wellen-Zustand möglich ist.

Man kann mit Φ̂ ≈ 0 auch leicht nachrechnen, dass gilt:

Ê(z, t) = cos θ(t) Ψ̂(z, t) (2.14)
√

Nσ̃bc =− sin θ(t) Ψ̂(z, t) e−i∆k z (2.15)

Wir erinnern uns nun daran, dass tan θ(t) = g
√

N
Ω(t)

ist. Dann gilt für

• Ω � g
√

N :
tan θ = 0 ⇒ θ = 0 ⇒ sin θ = 0, cos θ = 1, vg = c

und damit Ψ̂(z, t) = Ê(z, t), d.h. das Polariton hat rein photonischen Charakter.

• Ω � g
√

N :
tan θ = inf ⇒ θ = π/2 ⇒ sin θ = 1, cos θ = 0, vg = 0

und damit Ψ̂(z, t) = −
√

Nσ̃bc(z, t)ei∆k z, d.h. das Polariton hat reinen Spin-Wellen Charakter.
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Wie im Fall der Ein-Moden Felder am Ende von Kapitel 2.2.2 können wir auch im Fall allgemeiner
Felder einen Übergang zwischen Photonen und Spin-Wellen durch Rotation des Mischungswinkels θ
von 0 auf π/2 erreichen. Dadurch haben wir die Möglichkeit durch Variation eines äußeren Feldes,
Photonen in Atomen als Spin-Anregungen zu speichern. Durch Zurückdrehen des Mischungswinkels
lässt sich das Photon auch wieder erzeugen.
Da Gleichung (2.13) eine sehr einfache lineare Form hat, sieht man leicht, dass gilt:

Ψ̂(z, t) = Ψ̂

(
z − c

∫ t

0

dτ cos2 θ(τ), 0

)
(2.16)

Das bedeutet, dass sich die räumliche Form des Polaritons nicht mit der Zeit ändert, weil es zu belie-
biger Raumzeit allein durch einen Ort zu Zeit t = 0 dargestellt werden kann. Somit bleibt auch der
Quantenzustand erhalten.

Den kompletten Speicherungsprozess veranschaulicht die folgende Abbildung:

Abbildung 2.7: a) Winkel (gestrichelt) und äußeres Feld (durchgezogene Linie) b) Dark-State Polariton
c) Photonen-Anteil d) Spin-Wellen-Anteil

Wir sehen Folgendes:
Der Verlauf des Feldes und damit des Winkels ist in (a) dargestellt. Zu Beginn ist das Feld eingeschal-
tet mit Wert Ω(0) � g

√
N , wird dann abgeschaltet und nach einiger Zeit wieder eingeschaltet. Nach

tan θ(t) = g
√

N
Ω(t)

ist der Winkel am Anfang sehr klein, wird dann mit sinkendem Feld größer, erreicht bei
abgeschaltetem Feld den Wert π/2 und fällt beim Wiedereinschalten des Feldes auch wieder ab.
Bei starkem äußeren Feld, der Startkonfiguration bei t = 0, bunt dargestellt, ist das Medium, dank EIT,
transparent und ein Photon (rot; in (c) die Kurve bei t = 0) des Versuchs-Lasers kann einlaufen. Der
Quantenzustand des Dark-State Polaritons zu Beginn (blau; in (b) die Kurve bei t = 0) ist also durch
dieses Photon gegeben. Spin-Wellen (grün; unterste Linie in (d)) sind nicht angeregt.
Nun ändert sich das Feld und damit der Winkel. Doch nach Gleichung (2.16) bleibt die Form des Pola-
ritons zu allen Zeiten erhalten. Nur der Ort des Polaritons kann sich ändern. Das tut er auch. Wie man in
(b) erkennen kann, bewegt es sich am Anfang mit der Zeit, bleibt dann aber plötzlich zur Zeit t = 50 an
einer Stelle z = 40 stehen und bewegt sich erst ab t = 100 wieder weiter mit der Zeit. Eine Erklärung
findet man in den übrigen drei Bilder.
Durch Vergrößerung des Winkels zu Beginn sinkt nach Gleichung (2.14) der Photonen-Anteil im Polari-
ton, wie man in (c) kurz vor t = 50 erkennt. Dabei nimmt der Spin-Wellen-Anteil nach Gleichung (2.15)
zu; siehe Abbildung (d). Zur Zeit t = 50 ist das Feld abgeschaltet, der Photonen-Anteil im Polariton
ist auf 0 gesunken und der Spin-Wellen-Anteil ist maximal. Das Photon ist zu einer Spin-Anregung ge-
worden, die sich natürlich nicht bewegen kann. Es ist gespeichert. Nach 50 Zeiteinheiten wird das Feld
wieder eingeschaltet, der Prozess läuft rückwärts ab und das Photon wird wieder emittiert.
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2.4.1 Diskussion der Näherungen und möglicher Probleme

Wir werden nun zeigen, dass unsere Näherungen alle gerechtfertigt waren und auf wenige Bedingungen
für eine Realisierung zurückgeführt werden können:

• Die Anzahl der Photonen im Quantenfeld muss viel kleiner als die Anzahl der Atome sein

• Das äußere Feld muss hinreichend langsam (adiabatisch) variiert werden

• Das Photon muss zu Beginn innerhalb des Frequenzfensters des EIT-Mediums liegen:
∆ωp(0) � ∆ωtr(0)

• “Zwei-Photonen Anregung“ und “gekühlte Atome“, um den Doppler-Effekt zu minimieren

Größe des Frequenzfensters für EIT Wir haben in Kapitel 2.1 gesehen, dass durch EIT ein klei-
nes Frequenzfenster ∆ωtr erzeugt wird, in dem die Strahlung des Versuchs-Lasers schwächer als ge-
wöhnlich absorbiert wird. Dieses Fenster wird mit sinkender Gruppengeschwindigkeit, also mit schwä-
cher werdendem Feld, jedoch immer kleiner. Es gilt:

∆ωtr(t) =
cot2 θ(t)

cot2 θ(0)
∆ωtr(0)

Der Puls muss aber zu allen Zeiten, insbesondere also auch für die mit verschwindender Gruppenge-
schwindigkeit, also abgeschaltetem Feld, innerhalb dieses Fensters bleiben, um nicht absorbiert (d.h.
zerstört) zu werden. Wenn das Fenster schmäler wird, wäre es also wünschenswert, dass auch der Puls
schmäler wird. Aus den Gleichungen (2.14) und (2.16) folgt:

Ê(z, t) =
cos θ(t)

cos θ(0)
Ê

(
z − c

∫ t

0

dτ cos2 θ(τ), 0

)
Damit lässt sich das Spektrum für langsam veränderliche θ (adiabatische Näherung) des Photons aus-
rechnen:

S(z, ω) ≡
∫ ∞

−∞
dτ e−iωτ

〈
Ê†(z, t)Ê(z, t− τ)

〉
=

cos2 θ(t)

cos2 θ(0)
S

(
0,

ω

cos2 θ(t)

)
Und man erhält für die spektrale Breite des Photons:

∆ωp(t) ≈
cos2 θ(t)

cos2 θ(0)
∆ωp(0)

Die nimmt also auch mit der sinkender Gruppengeschwindigkeit ab. Entscheidend ist das Verhältnis:

∆ωp(t)

∆ωtr(t)
=

sin2 θ(t)

sin2 θ(0)

∆ωp(0)

∆ωtr(0)

Es muss kleiner als 1 sein, damit die Breite des Photons kleiner als die Breite des Transparenzfens-
ters ist. Da θ(t) sich auf Grund der adiabatischen Näherung nur langsam ändern darf, ist der Vorfaktor
sin2 θ(t)/ sin2 θ(0) ungefähr 1. Somit kann die Bedingung für alle Zeiten dadurch erfüllt werden, dass
sie zur Startzeit gilt, d.h. wir erhalten als Voraussetzung für die Realisierung des Quantenspeichers:

∆ωp(0) � ∆ωtr(0) (2.17)

Also muss der Puls zu Beginn ’frequenz-mäßig’ schmal sein. Dies lässt sich dadurch realisieren, dass
man den Puls ’zeitlich’ lang macht. Dann muss man aber aufpassen, dass der Puls noch ins Medium
passt.
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Grenzflächeneffekte An den Grenzflächen des EIT-Mediums kommt es zu

1. Reflexionen an der Oberfläche des Mediums und

2. einer Änderung der Gruppengeschwindigkeit beim Eintritt ins Medium

ad (1) Der Brechungsindex des EIT-Mediums ist genau 1 bei der Resonanz und ungefähr 1 innerhalb
des Frequenzfensters, s.d. in allen relevanten Bereichen Reflexionen vernachlässigt werden kön-
nen.

ad (2) Da die Gruppengeschwindigkeit im Medium kleiner ist als die Gruppengeschwindigkeit außer-
halb, wird der Puls beim Eintritt ins Medium räumlich zusammengedrückt (∆l = vg/c∆l0). Da-
durch passen dann auch die langen Pulse ins Medium, die ja für das schmale Frequenzfenster
benötigt werden.

Low-Intensity Näherung Die Low-Intensity Näherung setzt voraus, dass die Anzahl der Photonen
im Quantenfeld klein gegen die Anzahl der Atome ist, und dass die Rabi-Frequenz des Kontrollfeldes
groß gegen die Rabi-Frequenz des Quantenfeldes ist. Während die Bedingung mit der Anzahl der Pho-
tonen leicht realisiert werden kann, muss die Bedingung an die Rabi-Frequenz für das Abschalten des
Kontrollfeldes nachgeprüft werden. Man findet, dass das Verhältnis von Quantenfeld zu Kontrollfeld pro-
portional zur Besetzung von Zustand |c〉 ist: g2N

|Ω|2 ∝ 〈σ̂cc〉 Das heißt aber gerade, dass die Rabi-Frequenz
des Kontrollfeldes genau dann groß gegen die des Quantenfeldes ist, wenn es viel mehr Atome als Pho-
tonen im Quantenfeld gibt und die Atome im Grundzustand starten, weil dann überhaupt nicht genug
Photonen vorhanden sind, um eine große Zahl Atome in den Zustand |c〉anzuregen. Und das heißt, dass
die Low-Intensity Näherung bereits durch eine Bedingungen gerechtfertigt werden kann.

Adiabatische Näherung Wenn wir statt der strikten adiabatischen Näherung (siehe Kapitel 2.3.2),
in der Φ = 0 ist noch eine weitere Ordnung in 1/T mitnehmen, so erhalten wir Korrekturfaktoren.
Diese führen zu:

• nicht-adiabatischer Anregung, gefolgt von spontaner Emission

• Korrekturfaktoren für die Gruppengeschwindigkeit

• Puls-Verbreiterung

Man kann jedoch zeigen, dass alle Korrekturfaktoren vernachlässigbar sind, wenn das Puls-Spektrum
innerhalb des Transmissionsfensters des EIT-Mediums liegt [8]: ∆ωp(0) � ∆ωtr(0)
Auch diese Bedingung ist uns bereits bekannt und kann für optisch dichte Medien realisiert werden.

Bewegung der Atome Wenn sich die Atome im Ensemble bewegen, können sie aus dem Strah-
lengang herauslaufen und der gespeicherte Zustand geht verloren. Außerdem kommt es zum Doppler-
Effekt, der die Energieniveaus verschiebt und dadurch das Absorptionsverhalten des Ensembles unter
EIT-Bedingungen verändert. Die Bewegung kann man durch Verwenden “gekühlter Atome“ behindern.
Um keine Bewegung durch Photonenimpuls anzuregen, kann man zwei Photonen-Anregung benutzen,
s.d. sich der Gesamtimpuls zu 0 addiert. Bei dieser Anordnung gibt es kaum Dopplereffekt.



3 Experimentelle Resultate

3.1 Versuchsanordnung

In Abbildung 3.1 ist der Versuchsaufbau dargestellt:

Abbildung 3.1: a) Versuch - schematisch b) Versuchsaufbau

Wir betrachten dazu, wie immer, unser Λ-förmiges System mit 3 Niveaus. Alle N Atome der Quelle
(source atoms) befinden sich zu Beginn im Grundzustand |g〉.
Dann wird der Write-Laser eingestrahlt. Er bringt mit Raman-Streuung (siehe Kapitel ??) Atome in
angeregte Spin-Zustände |s〉 (Spin-Wellen) und erzeugt Stokes-Photonen. Diese Stokes-Photonen kann
man mit einem Detektor nachweisen und weiss dann, dass eine Spin-Anregung vorliegt.
Nach der Detektion des Photons wird τd Sekunden gewartet und dann wird der Retrieve-Laser einge-
schaltet. Der erzeugt, auch mit Raman-Streuung, einen Anti-Stokes Puls und bringt die Atome wieder
zurück in den Grundzustand. Die Richtung dieser Photonen ist genau entgegengesetzt zu der der zuge-
hörigen Stokes-Photonen, d.h. dass in entgegengesetzte Richtung zum Detektor, der ein Stokes-Photon
detektiert hat, sicher auch ein Anti-Stokes-Photon erzeugt wird. Die Frequenz unterscheidet sich genau
um die des |g〉 − |s〉 Übergangs.
Dieser Anti-Stokes Puls wird über ein Glasfaserkabel auf ein atomares Ensemble (target atoms) geleitet,
das mit Hilfe eines weiteren Lasers (EIT control) durch EIT für die Anti-Stokes-Photonen transparent
gemacht werden kann. Dahinter ist ein weiteres Atom-Ensemble plaziert, dass die Strahlung des EIT-
Lasers absorbiert, damit diese nicht detektiert wird.
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3.2 Ergebnisse

Zunächst werden Messungen ohne das target Ensemble durchgeführt, um sicherzustellen, dass eine Ein-
Photonen Quelle vorhanden ist. Dazu wird die Fluktuation der Photonenzahl im Anti-Stokes Puls un-
ter der Bedingung, dass ein Stokes-Photon detektiert wurde (kurz: g(2)(AS||ns = 1)) in Abhängigkeit
von der Detektions-Wahrscheinlichkeit für Stokes-Photonen pηs gemessen, deren Anzahl ja der Anzahl
der Spin-Anregungen entspricht. Dabei ist ηs die Transmission des Stokes Kanals und p die Raman-
Anregungswahrscheinlichkeit. Dieser Parameter g(2)(AS||ns = 1) ist für ideale Ein-Photonen Quellen
0, für klassische Zustände 1. Wenn man einen Wert kleiner als 1 erhält, kann man davon ausgehen, eine
gute Ein-Photonen Quelle realisiert zu haben.

Die Ergebnisse sind in Abbildung 3.2 dargestellt:

Abbildung 3.2: Photonenzahl Fluktuation

Es konnte also eine ausreichend gute Quelle erzeugt werden.

Nun zum eigentlichen Experiment:
Ein Stokes Photon trifft auf die target Atome. Ohne EIT, also ohne äußeres Feld, würde es absorbiert und
der Quantenzustand zerstört. Mit EIT-Laser kann das Photon in das Medium eindringen (natürlich nur
innerhalb des Frequenzfensters). Wie im Theorieteil begründet können wir es durch ein Dark-State Pola-
riton, d.h. eine Superposition von Photon und Spin-Welle, beschreiben. Die Gruppengeschwindigkeit ist
kleiner als die Vakuumlichtgeschwindigkeit. Dieser Effekt ist sogar recht groß, wie Abbildung 3.3 zeigt:

Abbildung 3.3: Puls ohne target Atome (schwarz) bzw. mit target Atomen und EIT (bunt)
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In der Abbildung ist Photonenzahl im Anti-Stokes-Puls unter der Bedingung, dass ein Stokes-Puls regis-
triert wurde, gegen die Zeit aufgetragen. Mit anderen Worten: Wir sehen einen Puls. Ohne Medium liegt
der Pik (schwarz) deutlich weiter links (t ≈ 165ns) als mit Medium (rot: bei einer Temperatur von 47◦C
liegt er bei t ≈ 205ns). Diese Verzögerung von 40ns entspricht einer Geschwindigkeit im Medium von
ca. 103km/s. Das ist fast 300 mal langsamer als die Vakuumlichtgeschwindigkeit.

Durch Abschalten des äußeren Feldes kann man den Puls sogar stoppen und durch anschließendes Ein-
schalten des Feldes auch wieder herstellen. Dies zeigt die folgende Abbildung:

Abbildung 3.4: gestoppter und nach 0,5µs wiederhergestellter Puls

Wichtig bei der Durchführung dieses Versuchs ist, dass man im Frequenzfenster des EIT-Mediums ist.

Wichtig für uns ist, dass der Versuch durchgeführt wurde und zeigt, dass die theoretischen Konzepte:
Erzeugen, Transmittieren, Verlangsamen, Stoppen, Speichern und Wiederherstellen
eines Ein-Photonen-Pulses praktisch realisierbar sind.
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