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0. Motivation
SQUIDs sind Quantenbits im Festkörperverbund, was sie recht robust macht. Außerdem sind die dadurch relativ leicht in elektrische Schaltungen einzubauen. Zu ihrer Manipulation stehen weit entwickelte und zuverlässige Mess- und Kontrolltechniken zur Verfügung. Der wahrscheinlich größte Vorteil der SQUIDs ist, dass sie sehr schnelle Operationen durchführen können. Außerdem sind sie recht störungsunanfällig, was zu einer langen Phasenkohärenz führt. Es gibt im Wesentlichen 2 Realisierungen von SQUIDs: Zum einen das Charge-Qubit, dass die Ladung als Quantenfreiheitsgrad benutzt. Zum Anderen das Flux-Qubit, dass den magnetischen Fluss im SQUID nutzt. Beide Realisierungen bestehen im Wesentlichen aus Supraleitern und Josephson-Kontakten, die wir in den folgenden 2 Abschnitten zunächst betrachten wollen.  

1. Supraleitung
Unter dem Begriff Supraleitung versteht man, dass der elektrische Widerstand eines Materials für eine Temperatur unterhalb eines kritischen Wertes 
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 unmessbar klein wird. Er wurde bereits auf 
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 bestimmt. Das komplette Verschwinden des elektrischen Widerstandes lässt sich jedoch aus messtechnischen Gründen nicht nachweisen. Die Messung funktioniert über einen magnetisch induzierten Kreisstrom in einem supraleitenden Ring. Aus der Abklinggeschwindigkeit des Stromes im Supraleiter lässt sich sein Widerstand bestimmen. Auf diese Art und Weise wurden schon Kreisströme von bis zu 2 Jahren beobachtet. Als Erster beobachtete der Niederländische Physiker Onnes die Supraleitung im Jahr 1911 an Quecksilber. Dieses besitzt eine kritische Temperatur
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. Dies geschah im gleichen Labor, in dem 1908 das erste flüssige Helium erzeugt wurde. So ist es nicht verwunderlich, dass gerade diese Gruppe das Mittel zur Hand hatte um ein Metall soweit herunterzukühlen. Später ist die Eigenschaft der Supraleitung noch bei vielen weiteren Stoffen nachgewiesen worden. Einige Stoffe jedoch ließen sich dagegen nicht in diesen Zustand bringen.

Bei der Untersuchung dieses Effektes erkannte man, dass sich die Kristallstruktur nicht ändert. Es stellte sich dagegen bald heraus, dass die Elektronen für das verschwinden des Widerstandes verantwortlich sind. Außerdem ändert sich die Wärmekapazität des Stoffes sprunghaft. Im Bereich der Supraleitung nimmt die Wärmekapazität mit sinkender Temperatur exponentiell ab. Diese Beobachtungen ließen die Erkenntnis zu, dass es sich bei der Supraleitung um einen Phasenübergang der Elektronenflüssigkeit handelt. Wie das genau funktioniert, beschreibt die BCS-Theorie, die wir im Folgenden grob anreißen wollen.

1.1. BCS-Theorie

Die BCS-Theorie ist nach den Physikern Bardeen, Cooper & Schriefer benannt. Sie wurde im Jahr 1957 veröffentlicht und beschreibt die Supraleitung im Rahmen einer Vielteilchentheorie. Dass die Entwicklung dieser Theorie fast ein halbes Jahrhundert hat auf sich warten lassen, lag vor allem daran, dass die Quantenmechanik zunächst zu einer Vielteilchentheorie erweitert werden musste. Die Theorie beschreibt, grob gesagt, wie Elektronen eine attraktive WW zwischen sich eingehen und somit zu den so genannten Cooperpaaren koppeln. Diese können eine Bose-Einstein-Kondensation eingehen, was schlussendlich zur Supraleitung führt.

1.2. Cooper Paare

Die Kopplung zweier Elektronen funktioniert über virtuelle Phononen (virtuelle Gitterschwingungen).

 
[image: image4]
Man kann sich das folgendermaßen vorstellen: Ein vorausfliegendes Elektron zieht die positiv geladenen Netzebenen zu sich. Dadurch entsteht eine erhöhte positive Ladungsträgerkonzentration zwischen den Netzebenen. Ein nachlaufendes Elektron sieht dieses attraktive Potential und koppelt somit an das erste Elektron. Diese Bild erklärt zwar grob wie eine WW über virtuelle Phononen funktioniert, weißt aber auch einige Mängel auf: Die Elektronen haben z.B. entgegengesetzte Impulse, was dieses Bild nicht klar macht. 

Diese WW wirkt selbstverständlich einer Coulomb-Abstoßung entgegen. Da die CP aber in der Regel eine innere Ausdehnung von bis zu 100nm haben, hat das elektrische Feld fast keinen Einfluss. Der dominante Anteil ist die attraktive Phononenwechselwirkung. Ein solches Cooper-Paar besteht immer aus 2 Elektronen mit entgegengesetztem Spin: 
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Das Cooperpaar ist also ein Spin-0-Teilchen und somit ein Boson. Für Bosonen gilt die Einschränkung des Pauli-Prinzips nicht. Sie können für Temperaturen
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 in den sogenannten BCS-Grundzustand übergehen. Für T(0 gehen sie dann in eine Bose-Einstein-Kondensation über.

1.3. Energiespektrum

CP sind also energetisch weit günstiger wie Elektronen, da sie bei der Umwandlung an Kopplungsenergie gewinnen und vor allem in beliebiger Anzahl in den Grundzustand können. Folglich tut sich eine Energielücke Δ zwischen den Cooperpaaren im BCS-Grundzustand und den Elektronen in den angeregten Zuständen auf.  (siehe Bild)


[image: image7]
Zum Aufbrechen eines Cooperpaares ist also die Energie notwendig um 2 Elektronen aus dem Grundzustand zu befördern ( also 2Δ!!

Steigt jedoch die Temperatur, treten vermehrt Gitterschwingungen auf, die selbstverständlich die phononische WW im CP stören und damit das Cooperpaar letztendlich auch aufbrechen. Die Energielücke Δ ist somit von der Temperatur abhängig und geht für T(TC  gegen 0. Folglich haben wir für T ≥ Tc keine CP. Der Stromfluss nimmt zwar keinen Einfluss auf den BCS-Grundzustand und die Energielücke, jedoch erhöht dieser die kinetische Energie der CP. Wird diese kinetische Energie größer als die doppelte Energielücke, so brechen die Cooperpaare ebenfalls auf. Man hat also nur Supraleitung bis zu einer kritischen Stromstärke: 
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1.4.Leitfähigkeit
Das CP spürt also nur WW die einen großen Energieübertrag haben, sodass die Energielücke überwunden werden kann. Ansonsten läuft das CP widerstandsfrei durch das Material. Es treten also im Grund nur 3 Fälle auf:
1. Fall (T ≥ Tc): Die Energielücke ist aufgrund der erhöhten Temperatur komplett verschwunden. Phononen brechen die Kopplung der Elektronen auf, sodass keine CP mehr existieren können ( keine Supraleitung!!
2. Fall (T<Tc; j>jc): Die Energielücke Δ existiert. Jedoch ist die kinetische Energie der CP größer, sodass auch hier keine CP existieren können.(keine Supraleitung!!
3. Fall (T<Tc; j<jc): Hier existiert die Energielücke Δ ebenfalls. Zusätzlich reicht die kinetische Energie der CP nicht aus, um dieselben aufzubrechen. ( Supraleitung !
In dieser Betrachtung der Supraleitung haben wir uns nur auf den verschwindenden elektrischen Widerstand konzentriert. Warum ein Supraleiter beispielsweise nicht von magnetischen Feldern durchflossen wird (Meissner-Ochsenfeld-Effekt) interessiert uns hier nicht, da wir das in der weiteren Betrachtung nicht brauchen. Auch das Phänomen der Hochtemperatursupraleitung haben wir hier nicht erwähnt, da es zum Verständnis des Folgenden nicht zwingend notwendig ist.
2. Josephson-Effekte

Die Josephson-Effekte beruhen auf dem von Brian D. Josephson (geb. 1940 in Cardiff/Wales) 1962 (damals „noch“ Doktorand) gefundenen theoretischen Beweis, dass Cooper-Paare tunneln können. Dafür erhielt er dann auch 1973 den Physik-Nobelpreis. Damit Cooper-Paare tunneln können, muss jedoch die Aufenthaltswahr-scheinlichkeit in der Barriere (häufig Oxidschichten oder Normalleiter), über die zwei Supraleiter verbunden sind, gering sein, d. h. die Barriere muss sehr dünn sein: Barrierendicke < 10nm. 

[image: image9]
Die Barriere bezeichnet man im Allgemeinen als Josephson-Kontakt und die oben abgebildete Anordnung als Tunneldiode. 
2.1. Quantenmechanische Herleitung
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Für die Herleitung betrachten wir die folgende Beschaltung der Tunneldiode.

Hierbei wird von außen eine Spannung Uext über einen Widerstand R, und somit ein 
Strom I an die Tunnel-Diode angelegt. Die über der Diode abfallende Spannung 
bezeichnen wir mit U.

Zur einfacheren Herleitung nehmen wir an, dass die Temperatur sehr klein ist und 

somit nur Cooper-Paare im BCS-Grundzustand für die quantenmechanische Betrachtung von Bedeutung sind. Somit können wir für die Schrödinger-Gleichungen in den beiden Supraleitern ansetzen:
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[image: image11.wmf]2
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 sind dabei die Gesamtwellenfunktionen der Cooper-Paare in dem jeweiligen Supraleiter und T ist die Kopplungskonstante. (Für T=0, keine Kopplung, ergeben sich, wie erwartet, die Schrödinger-Gleichungen für zwei unabhängige Supraleiter.) Setzt man nun voraus, dass auf beiden Seiten das gleiche Material als Supraleiter verwendet wird, so kann man 
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 ansetzen, wobei q=2e, und erhält somit: 
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Für die BCS-Wellenfunktionen kann man folgenden Ansatz machen:
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mit nci ≡ Anzahl der Cooper-Paare im Supraleiter i.
Und erhält durch Einsetzen in die erste Schrödinger-Gleichung nach aufspalten in Real- und Imaginärteil die folgenden zwei Gleichungen:
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Analog erhält man aus der zweiten Schrödinger-Gleichung zwei weitere Gleichungen
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Multipliziert man nun die erste der vier Gleichungen mit 
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 und die zweite mit 
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 und subtrahiert diese dann voneinander, so erhält man (analoges Verfahren mit den Gleichungen 3 & 4):
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Ebenso lässt sich eine Beziehung für die zeitliche Änderung der Phasen herleiten:
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Und durch Subtraktion dieser Gleichungen voneinander erhält man (unter Annahme einer symmetrischen Annordnung, d. h. nc1 = nc2 = nc) nun insgesamt:
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Da der Strom 
[image: image22.wmf]1
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 durch die Tunneldiode unabhängig von U ist gibt es Lösungen des Gleichungssystem mit I > 0A für U = 0V. (( 2.2)
Außerdem ist zu beachten, dass n konstant ist, da die fehlenden (überschüssigen) Cooper-Paare von außen nachgeliefert (abgezogen) werden.

2.2. Josephson-Gleichstrom-Effekt
Der Josephson-Gleichstrom-Effekt tritt für U = 0V auf. Den in diesem Fall kann aufgrund der Gleichungen ein Gleichstrom fließen, da für U = 0V die Phasendifferenz konstant ist und somit auch 
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 konstant ist ( Gleichstrom. 

Außerdem ist von außen eine Gleichspannung angelegt die einen Gleichstrom durch den Widerstand verursacht, wodurch auch der Strom durch die Tunneldiode bestimmt ist; die Stromrichtung bestimmt hierbei die Phasendifferenz zwischen den BCS-Zuständen.

Der Gleichstrom durch die Tunneldiode steigt solange mit Uext an solange der Strom 
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 kleiner als der aus den Gleichungen folgende Maximalstrom 
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  ist. Wird dieser Wert überschritten so bricht der Gleichstrom zusammen und es fällt eine Spannung U > 0V über der Tunneldiode ab.
2.3 Josephson-Wechselstrom-Effekt
Da der Strom durch die Tunneldiode beschränkt ist, darf bei einer Erhöhung der Spannung über den Maximalwert hinaus, diese nicht mehr komplett über dem Widerstand abfallen ( U > 0V.
In diesem Fall tritt nun der Josephson-Wechselstrom-Effekt auf. Denn durch die über der Tunneldiode abfallende Spannung darf nach den hergeleiteten Gleichungen nur noch ein Wechselstrom und kein Gleichstrom mehr fließen. Dadurch darf über dem Widerstand auch keine Gleichspannung mehr abfallen, so dass diese dann komplett an der Tunneldiode abfällt.
Da es sich um eine Gleichspannung handelt kann man über die zweite der hergeleiteten Gleichungen integrieren und erhält somit: 
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Einsetzen in die erste Gleichung liefert dann den Wechselstrom:
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Dieser oszilliert mit einer sehr hohen Frequenz um 0A.

2.4. Überblick

Anhand eines U-I-Diagramms kann man noch einmal einen Überblick über die Effekte gewinnen. Das dazu folgende U-I-Diagramm wurde mit einer Tunneldiode aus Blei als Supraleiter und Bleioxid als Tunnelbarriere aufgenommen.


[image: image28]
In diesem Diagramm kann man drei Bereiche unterscheiden. Der erste Bereich zeigt einen bei U = 0V ansteigenden Gleichstrom der bei einem Maximalwert endet. Dieser Bereich entspricht dem Josephson-Gleichstrom-Effekt. Danach bricht der Strom zusammen und man erhält den zweiten Bereich, in dem der Tunnelgleichstrom bei 0A bleibt, während die Diodenspannung weiter ansteigt. Dieser Bereich entspricht dem Josephson-Wechselstrom-Effekt. Der dritte Bereich (ab U ≈ 2,6mV) entspricht einer normalen Diodencharakteristik, da ab hier Cooper-Paare aufbrechen und freie Elektronen entstehen, die tunneln können. (D. h. hier bricht die Supraleitung zusammen.)
2.5. Anwendung

Zur Anwendung kommt der Josephson-Gleichstrom-Effekt in der folgenden Anordnung.

[image: image29.jpg]Tunnelbarriere
Supraleiter a
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In dieser Anordnung wird der Strom durch die Anordnung aufgeteilt in zwei Ströme Ia und Ib, wobei über den Josephson-Kontakt a der Strom Ia fließt und über b der Strom Ib. Bei abgeschaltetem Magnetfeld gilt: 
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 die Phasensprünge an den jeweiligen Josephson-Kontakten sind.
Wird ein Magnetfeld B eingeschaltet, so bestimmt dessen Vektorpotential A die Phasendifferenz zwischen den Punkten I und II. Für diese gilt: 
für den Weg über a: 
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 bzw. über b: 
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Da diese gleich sein müssen, kann man die beiden Gleichungen voneinander subtrahieren und erhält somit: 
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D. h. die Phasendifferenz über diesen Ring kann durch den von außen angelegten magnetischen Fluss gesteuert werden. 

Setzt man nun 
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[image: image36.wmf]0
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 willkürlich definiert), so ergibt sich für den Gesamtstrom:
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( Der Strom variiert mit dem die Schleife durchdringenden Fluss.

[image: image38.jpg]Josephson-Strom (willk. Einh.)
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Hierbei liegen zwei Maxima genau um Ф0 auseinander.

[Dieses Phänomen ist ähnlich der Interferenz von zwei kohärenten Lichtstrahlen, die über zwei verschiedene Wege a und b zur Interferenz gebracht werden.]
Solche Anordnungen werden deshalb als extrem empfindliche Magnetometer verwendet. 

[Mit diesen konnten sogar Magnetfelder, die mit Hirnströmen verbunden sind, nachgewiesen werden.]
3. Charge-Qubits
Der einfachste Aufbau eines Charge-Qubit ist der Folgende: 


[image: image39]
Dieser besteht aus einer Supraleitenden Box, die auf der unteren Seite einen negativen Ladungsüberschuss von n zusätzlichen CP hat. Getrennt werden die beiden Hälften des Supraleiters durch einen Josephson-Kontakt mit der Kapazität CJ und der Kopplungsenergie EJ. Unterhalb liegt eine externe Kontrollspannung Vg an, die durch die Kapazität Cg angekoppelt ist. Die Aufladungsenergie, d.h. die Energie, die man braucht um die Ladung eines Elektrons auf SL-Box mit den n CP zu bringen, ist:  
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   . Für ein CP bräuchte man somit die Energie 4EC.

Weiterhin nehmen wir an, dass die Energielücke Δ die größte Energie im Problem ist. Wie im vorherigen Abschnitt erklärt wurde stellen wir somit sicher, dass keine Elektronen durch den Josephson-Kontakt tunneln können. Ausschließlich CP können tunneln. Es tritt also entweder ein Gleichstrom- oder ein Wechselstromeffekt auf.

3.1. Qubits???

Der Hamiltonoperator des Systems, der die CP-Anzahl auf der Supraleitenden Box, beschreibt ist: 
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.  Hierbei ist 4EC die Aufladungsenergie eines CP. n ist die Anzahl der CP auf der SL-Box. ng ist von der angelegten externen Spannung abhängig ( 
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 ) und verschiebt somit den Gleichgewichtszustand der Ladungsanzahl. Θ (die quantenmechanisch konjugierte Größe zur Teilchenzahl n) ist die Phasendifferenz der beiden BCS-Wellenfunktionen der beiden supraleitenden Abschnitte, die durch den Josephson-Kontakt getrennt sind. Formal beschreibt der 1.Teil des Hamiltonoperators einen Potentialoperator
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Wie man sieht kommutiert nur der Potentialanteil 
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CP-Anzahl n. Der zweite Teil 
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 kommutiert nicht. Wir wollen jedoch später n als entscheidenden, den Qubit-Zustand definierenden, Parameter erhalten. Deshalb sollte dieser im Regelfall eine Erhaltungsgröße sein, also mit dem Hamiltonoperator kommutieren. Um das zu erreichen nehmen wir an, dass 
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 gilt. n sollte nun also eine Erhaltungsgröße sein. Es bietet sich jetzt also an den Hamiltonoperator in die Basis 
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Man erkennt nun nochmals deutlich, dass der erste Teil des Hamiltonoperators die Erhaltung der Größe n beschreibt, wogegen der zweite Teil den Zustandswechsel herbeiführt. Ignoriert man den zweiten Teil des Hamiltonians lässt sich weiter erkennen, dass die Energie für ein festes n quadratisch mit ng ansteigt. Je nach der Wahl der externen Spannung / ng ist also ein anderer Zustand 
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 der energetisch attraktivste. Wählt man ng jedoch halbzahlig haben 2 Zustände die gleiche niedrigste Energie. 
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. Um das genauer zu betrachten wählen wir nun ng = ½. Dann haben 
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 (Spin Up) die gleiche Energie. Wir beobachten also eine energetische Entartung der beiden Zustände. In der Atomphysik spalten sich die m-entarteten Zustände unter Einfluss eines Magnetfeldes auf (Zeeman-Effekt). Analog dazu stört hier der kinetische Energieterm 
[image: image54.wmf]T

ˆ

 im Hamiltonoperator unser System. Analog bekommen wir in der Nähe des Entartungspunktes ng = ½ eine Energieaufspaltung.
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Das bedeutet natürlich, das für ng = ½ die Störung 
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nicht mehr zu ignorieren ist. Das wiederum bedeutet dann auch, dass hier n keine Erhaltungsgröße ist. Die Zustände Spin Up und Spin Down können hier wechseln. Hier ist der Zustand eine Superposition der beiden Ladungszustände. 

Nur für ng außerhalb des Entartungspunktes (bei 
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) ist die Störung 
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 jedoch zu vernachlässigen und hier ist n auch eine gute Erhaltungsgröße. Hier behält unser System seinen Ladungszustand bei. ( Wir haben hier ein Qubit!!!

Jetzt schreiben wir den Hamiltonoperator in eine Spin-½-Notation um:
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Auch hier findet sich unsere bisherige Interpretation des Hamiltonoperators selbstverständlich wieder: Für ng außerhalb des Entartungspunktes (
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1

¹

g

n

) dominiert der erste Term (
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). Dieser beschreibt wieder die Erhaltung des Ladungszustandes, wobei er den Zuständen Spin Up und Spin Down verschiedene Energien zuweißt. Nur für ng = ½, also im Entartungspunkt, hat 
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 Einfluss auf das System. Hier wird nämlich
[image: image64.wmf]0

=

z

B

. Deshalb dominiert hier der zweite Term des Hamiltonoperators. Dieser beschreibt die Zustandswechsel, was durch den Spinoperator 
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deutlich wird.

Bisher hatten wir, in den Zuständen
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, nur Eigenzustände für den Aufladungsterm des Hamiltonoperators gefunden. Der gesamte Hamiltonoperator vermischt diese Zustände jedoch, wenn man in die Nähe des Entartungspunktes kommt. Dieser Umstand legt die Frage nahe, ob es auch Eigenfunktionen des Gesamthamiltonoperators gibt. Diese Zustände sollten mit dem Gesamthamiltonoperator vertauschen und sollten außerhalb des Entartungspunktes in die alten Zustände Spin Up und Spin Down übergehen. Diese Zustände lauten:

[image: image152.wmf](

)

(

)

N

Î

+

=

D

-

­

N

Î

=

D

-

¯

k

 

),

1

2

(

für 

 

k

 

,

2

für 

 

0

1

0

1

k

t

E

E

k

t

E

E

p

p

h

h


[image: image153.wmf](

)

(

)

+

+

-

=

¯

=

D

-

D

-

h

h

t

iE

t

iE

e

e

U

t

1

0

a

y

  

                                                             wobei  

Außerhalb des Entartungspunktes gilt
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. Der Winkel η geht für diesen Fall gegen 0. Hier gilt für die Zustände: 
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 !!! Im Entartungspunkt treten Superpositionen der Ladungszustände auf.

In dieser Darstellung hat der Hamiltonoperator die Form: 
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ist dabei die Zustandserhaltende Pauli-Matrix in der Basis der neuen Zustände. Daran sieht man, dass die Zustände 
[image: image72.wmf]+

 und 
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 vom Hamiltonoperator nicht ver-mischt werden. Sie sind also echte Eigenfunktionen des Gesamthamiltonoperators.
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Das obere Niveau ist der 
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 Zustand. Es liegt, wie der Hamiltonoperator schon vorhersagt, energetisch höher, wie der
[image: image76.wmf]-

Zustand.

3.2.Manipulation von Zuständen
Das Qubit sollte auch 1-Bit Operationen durchführen können, also den Ladungs-Quantenzustand des Systems kontrolliert verändern können. Das funktioniert über den Kontrollparameter Vg, der den Wert von ng bestimmt. Ist  ng außerhalb des Entartungspunktes, so sind unsere Zustände
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stabil. Regelt man nun den Kontrollparameter ng für die Zeitdauer von Δt in den Entartungspunkt, so tritt eine Drehung des Spins auf. Danach kann man ng wieder weg auf dem Entartungspunkt holen und hat nun einen veränderten Zustand des Qubits vorliegen. Die Zeitdauer Δt sollte nicht zu lang sein, dass sich der Quantenzustand auch ändern kann(siehe Adiabatisches Theorem). Die Drehung des Spins kann in einer 2x2-Drehmatrix in der komplexen Ebene beschrieben werden. Sie lautet:
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Auf diese Art und Weise kann man gezielte Manipulationen eines 1-Bit Zustandes durchführen. (siehe Experiment von Nakamura)
3.3. Variable Josephson-Kopplung
Um später mehrere Qubits koppeln zu können, ist es unverzichtbar den Aufbau des Charge-Qubits etwas zu verändern. Wir brauchen einen Aufbau der es erlaubt, die Kopplung über den Josephson-Kontakt extern kontrollierbar zu machen. Das erlaubt der folgende Aufbau:


[image: image80]
Wie man erkennt ist aus dem einen Josephson-Kontakt zwei geworden, die in einem supraleitenden Ring angeordnet sind. Die beiden Kontakte seien in der weiteren Betrachtung der Einfachheit wegen identisch. Außerdem wollen wir im Weiteren die ohnehin geringe Selbstinduktivität des Aufbaus ignorieren, um die Gleichungen übersichtlicher zu halten. Die Steuerung der Kopplung erfolgt nun über den extern kontrollierten magnetischen Fluss Φx. Der Hamiltonoperator des System ändert sich nun zu:  
[image: image81.wmf](

)

(

)

Q

÷

÷

ø

ö

ç

ç

è

æ

F

F

-

-

=

cos

cos

2

4

0

0

2

x

J

g

C

E

n

n

E

H

p

. 

Dabei ist Φ0 das magnetische Flussquant
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. (Der magnetische Fluss, der durch einen supraleitenden Ring erzeugt wird, ist immer ein Vielfaches dieses Flussquants. Das liegt daran, dass die Phase einer über den ganzen Festkörper-Ring gezogenen BCS-Wellenfunktion quantisiert sein muss, um nach einem ganzen Umlauf mit sich selbst in Phase zu sein.) 

Bisher konnten wir also nur 
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 extern durch die Kontrollspannung regeln. 
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 war bisher eine konstante Größe. Jetzt können wir auch Bx kontrollieren: 
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.  Man kann also mit Φx direkt die Kopplungsstärke bestimmen.

Für das nächste Kapitel benötigen wir den Spezialfall, dass man Bx und Bz beide sehr nahe bei Null sind. Dadurch kann man die Zeitentwicklung des Quantensystems nahezu komplett einfrieren. Dies gelingt beispielsweise für die Einstellung: 
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3.4. Kopplung von mehreren Charge-Qubits

Wie bereits erwähnt ist unser Ziel die theoretische Realisierung einer 2-Bit Operation. Dies kann nur gelingen, wenn wir mehrere (N Stück) Charge-Qubits miteinander koppeln. Die Kopplung funktioniert im folgenden Aufbau über einen LC-Schwingkreis.
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Der Schwingkreis hat eine Frequenz von
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 die Gesamtkapazität eines Charge-Qubits gemeint ist.

Wie im vorherigen Abschnitt beschrieben kann man nun mit  Φx und Vg die Zeitentwicklung aller Qubits bis auf 2 einfrieren. Diese sind nun die einzigen, die miteinander Wechselwirken können und somit eine 2-Bit Operation ausführen können.

Im Folgenden betrachten wir den Fall, dass 
[image: image91.wmf]ch

J

LC

E

E

d

w

,

>>

h

 die größte Energie ist. Der Grund dafür ist folgender: Wechselt ein Charge-Qubit seinen Zustand, gibt also z. B. ein Cooperpaar ab, so regt es den LC-Schwingkreis (harmonischen Oszillator) an. Dabei sollte jedoch nur der Grundzustand des harmonischen Oszillators angeregt werden. Würde man höhere Niveaus besetzen, könnten diese ihre Energie auch Schubweise wieder an die Charge-Qubits abgeben. Das würde zu einem unvorhersehbaren Verhalten des Aufbaus führen. Wir wollen aber, dass die ganze Anregungsenergie auf einmal wieder an die Qubits abgegeben wird und dort eine Anregung/Zustandswechsel herbeigeführt wird. Deshalb muss die Anregungsenergie des harmonischen Oszillators größer sein, als die Kopplungsenergie und die Aufladungsenergie des Qubits. 

Der Hamiltonoperator für die WW 2-er Qubits sieht nun folgendermaßen aus:

[image: image154.wmf]4

3

4

2

1

CQs

er 

-

2

WW 

2

1

2

1

k

y

i

y

L

k

J

i

J

k

x

k

J

i

x

i

J

E

E

E

E

E

H

s

s

s

s

-

-

-

=


                                                                                       wobei 
[image: image92.wmf]L

C

C

E

qb

J

L

2

2

0

2

p

F

÷

÷

ø

ö

ç

ç

è

æ

=


Die ersten beide Terme beschreiben wieder die 1-Bit Operationen in den Qubits i und k. Diese sind schon in den bisherigen Hamiltonoperatoren aufgetaucht. Der in diesem Zusammenhang interessante Beitrag ist der dritte Term, der die Kopplung zwischen den beiden Qubits beschreibt. 

Die Wirkung der Paulimatrizen 
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auf die Spinzustände ist folgendermaßen:


[image: image94.wmf];

;

;

;

k

i

k

i

k

y

i

y

k

i

k

i

k

y

i

y

k

i

k

i

k

y

i

y

k

i

k

i

k

y

i

y

­

­

-

=

¯

¯

¯

¯

-

=

­

­

¯

­

=

­

¯

­

¯

=

¯

­

s

s

s

s

s

s

s

s


Die energetisch bevorzugten Wechselwirkungen sind also das Austauschen von Cooperpaaren. Ungünstig dagegen sind Prozesse bei denen beide Qubits jeweils ein Cooperpaar gewinnen oder verlieren, was auch unserer Vorstellung der Qubit-Kopplung entspricht.
Bemerkungen:

· Ein Problem ist, dass gleichzeitig nur eine 1 oder 2-Bit Operation durchgeführt werden kann. Das schränkt die Geschwindigkeit unseres Systems erheblich ein.  Ein anderer, weit aufwendigerer, Aufbau erlaubt jedoch genau das. Dieser Aufbau nennt sich „Switchable SQUID“; wird hier jedoch nicht weiter erläutert.

· Experimentell stellt sich heraus, dass 2-Bit Operationen immer bedeutend langsamer sind wie 1-Bit Operationen. Das kann ein Problem geben, was im letzten Kapitel genauer erläutert wird.

· Der Aufbau erlaubt einen vollständigen Satz von 1 und 2 Bit Operationen

· In der Herleitung hatten wir vorausgesetzt, dass die Energie des LC-Schwingkreises die größte Energie ist. Es gilt aber 
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.Die Energie nimmt also mit der Anzahl der in den Aufbau eingebundenen Qubits ab. Somit ist die Gesamtzahl der Qubits begrenzt.

3.5. Experiment von Nakamura
Jetzt haben wir den theoretischen Aufbau der Charge-Qubits erläutert. Die experimentelle Umsetzung ist leider noch nicht allzu weit fortgeschritten. Das bisher spektakulärste Experiment ist von Nakamura aus dem Jahr 1999 und beschäftigt sich mit der Manipulation von einzelnen Charge-Qubits:


[image: image96]
Prinzipiell funktioniert das Experiment folgenderweise:

Zunächst wird ng außerhalb des Entartungspunktes postiert. Nach entsprechend langer Zeit relaxiert der Zustand des Qubits in den 
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 Zustand. Dieser ist eine Superposition der Eigenzustände 
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 und
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. Dann wird ng für die Zeitdauer Δt auf den Entartungspunkt eingestellt. Wie vorhin erläutert tritt eine Spinrotation ein:
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Nachdem ng wieder aus dem Entartungspunkt geregelt wurde, lassen sich bestimmte Ladungszustände (Superpositionen aus 
[image: image100.wmf]¯

 und
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) beobachten. Beispielsweise lassen sich die reinen Ladungszustände  
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 und 
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 mit folgender Bedingung an Δt erzeugen:

Beide Fälle konnte Nakamura erfolgreich messen und damit auch die Superposition von Ladungszuständen nachweisen!
4. Flux-Qubits
Flux-Qubits sind supraleitende Ringstrukturen, die durch einen oder mehrere Josephson-Kontakte unterbrochen sind. Bei diesen wird der Fall EJ >> EC betrachtet, sodass der magnetische Fluss zum Quantenfreiheitsgrad wird. 

Im Folgenden werden anhand von Beispielen die Eigenschaften solcher Flux-Qubits diskutiert.

4.1. Josephson-Flux-Qubits

Das einfachste Beispiel für einen Josephson-Flux-Qubit ist der so genannte 
rf-SQUID.
[image: image157.jpg]isolierende Barriere

Z Z
Supraleiter 7
%




Dieser besteht aus einem supraleitenden Ring, der durch einen Josephson-Kontakt unterbrochen ist.

Für diesen SQUID erhält man, wenn man mit Фx den von außen angelegten magnetischen Fluss, mit Ф den magnetischen Fluss in der Schleife und mit 
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 die Ladung bezeichnet, den folgenden Hamiltonoperator.
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An diesem kann man erkennen, dass der magnetische Fluss Ф mit den ersten beiden Termen des Hamiltonoperators vertauscht, aber nicht mit dem letzten Term. Da wir aber hier den Fall EJ >> EC betrachten, kann der letzte Term des Hamiltonoperators vernachlässigt werden, sodass Ф somit eine gute Quantenzahl ist.
Ist nun L groß, so dass 
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, dann bilden die ersten beiden Terme des Hamiltonoperators ein Doppelmuldenpotential um 
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[image: image109]
(rot: erster Term des Hamiltonoperators, blau: zweiter Term des Hamiltonoperators, schwarz: Summe der beiden Terme)

Aufgrund der tiefen Temperaturen, die für unsere Supraleiter notwendig sind, sind nur die niedrigsten beiden Energieniveaus besetzt. Damit aber auch keine Anregungen in höhere Niveaus möglich sind, muss für die Anregungsenergie ∆E01 und den Abstand der beiden niedrigsten Niveaus ∆E, ∆E01 >> ∆E gefordert werden. Da 
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 erhält man 
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 erfüllt ist. (genaue Rechnung ergibt noch den Faktor 4π².) Außerdem muss 
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 gelten, damit die Niveaus 
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 ähnliche Energie haben; für 
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 haben die Niveaus sogar gleiche Energie. [Damit gibt es nur noch zwei wahrscheinliche Flusszustände und man erhält somit ein Qubit.]
Somit lässt sich der Hamiltonoperator wieder, ähnlich wie bei den Charge-Qubits, umschreiben in die Form: 
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 den Abstand der beiden Energieniveaus und 
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 die Höhe der Tunnelbarriere beschreibt.
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Bz ist hierbei durch Фx steuerbar. Um auch Bx zu steuern, kann man EJ veränderbar machen. Dies kann dadurch erreicht werden, dass man den Josephson-Kontakt durch einen dc-SQUID ersetzt.
Ein dc-SQUID ist ein supraleitender Ring unterbrochen durch zwei Josephson-Kontakte.

Der dc-SQUID ist durch den Fluss 
[image: image119.wmf]x
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 steuerbar (vgl. 2.5). Dadurch ist dann auch EJ und somit Bx steuerbar.
( Alle 1-bit Operationen sind somit wie bei den Charge-Qubits möglich.

Die Manipulationen passieren hierbei durch plötzliches Umschalten von 
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 und/oder 
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 für eine endliche Zeit ∆t.

4.2. Delft-Design eines Flux-Qubits
Da man makroskopisch die Quantenkohärenz nicht beobachten konnte, versuchte man die Ursache dafür zu finden und die Flux-Qubits zu verbessern.

Als Problem des einfachen, bereits vorgestellten Flux-Qubits wurde die Forderung 
[image: image122.wmf]1
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 ausgemacht. Denn diese kann nur erfüllt werden, wenn der kritischer Strom des Josephson-Kontakts oder die Induktivität L der Schleife sehr groß ist. Hat der Josephson-Kontakt jedoch einen hohen kritischen Strom, so muss er ein hohes CJ besitzen, welches ein Tunneln unterdrückt. Da dies aber nicht sein darf, muss die Schleife ein großes L besitzen, d. h. die Schleife muss groß sein. Ist dies aber der Fall, so ist der SQUID sehr anfällig für Störungen von aus ( Dekohärenz.
Die Delft-Gruppe um Van der Waal machte als Verbesserungsvorschlag statt einen, drei oder vier Josephson-Kontakte in den supraleitenden Ring einzubauen.
Hier wird der Fall von drei Josephson-Kontakten betrachtet. (Die Betrachtung mit vier Josephson-Kontakten erfolgt ganz analog.)

 
[image: image123] Dabei haben zwei Kontakte die gleiche Josephson-Energie.
Für die Phasendifferenzen über den Josephson-Kontakten gilt 
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 bzw. mit 
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 (damit der zweite Term des Hamiltonoperators vernachlässigbar ist) gilt 
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. Unter diesen Nebenbedingungen bilden die Josephson-Kontakte ein Potential der Form 
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. Dieses ist für ein passendes Verhältnis 
[image: image128.wmf]J
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 ein Doppelmuldenpotential für jedes 2π x 2π Quadrat von (φ1, φ2). Somit gibt es wieder zwei wahrscheinliche Zustände, sodass das Delft-Design wieder einen qubit darstellt. Dabei ist das optimale Verhältnis 
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. Für dieses sieht das Potential wie folgt aus.

[image: image130](Hier ist U nach oben aufgetragen und (φ1, φ2) in der Ebene [die flach nach hinten geht].)
Da bei diesem Design sich die beiden qubit-Zustände hauptsächlich durch die Phasendifferenz unterscheiden, ist der Flussunterschied zwischen diesen beiden Zuständen sehr gering. Außerdem kann die Schleife wieder klein (also mit kleinem L) gebaut werden, sodass insgesamt die Störanfälligkeit des Designs deutlich geringer ist als bei dem davor vorgestelltem Design. 

( Die Dekohärenzeffekte konnten somit geschwächt werden.
Damit dieses Design aber brauchbar ist, muss das optimale Verhältnis 
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 eingestellt werden können. Dazu reicht es, wenn sich
[image: image132.wmf]J
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 einstellen lässt. Dies kann analog zum rf-SQUID durch Einbau eines dc-SQUIDs erreicht werden.

[image: image133]
Somit ist 
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 steuerbar durch 
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 und damit sind wieder alle 1-bit Operationen wie vorher möglich.

4.3. Quiet Qubits*
Die bisherigen Anordnungen haben folgende Nachteile:

1) Sie sind anfällig für äußere Einflüsse, da die 2 Basisflusszustände verschiedene Flusskonfiguration haben
2) Der äußere Fluss muss stabil 
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 sein 
( Die qubits haben magnetische Wechselwirkungen mit der Umgebung. Dadurch sind außerdem unerwünschte Wechselwirkungen zwischen den qubits möglich.
Um dies zu verbessern, hat man so genannte Quiet Qubits entwickelt. Die Idee auf der sie beruhen, ist, dass die 2 Basiszustände sich nur noch in ihrer Distribution, d.h. nur in Flüssen innerhalb der Josephson-Kontakte bzw. in ihrer Phase unterscheiden. Außerdem soll die äußere Schleife keinen Strom mehr führen.
( Magnetische Wechselwirkungen mit der Umgebung sinken stark ab und die Kohärenzzeit steigt somit an.
Ein Beispiel für einen solchen Quiet Qubit ist ein π/2-SQUID: 

[image: image138] Dieser besteht aus 4 gewöhnlichen Josephson-Kontakten und einem π-Kontakt. Dieser bewirkt das gleiche wie das Anlegen von 
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 von außen. Damit unterscheiden sich die beiden niedrigsten Energieniveauzustände nur noch in ihrer Phase (nämlich 
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Trotzdem gibt es noch mikroskopische Stromunterschiede zwischen den beiden Minimazuständen, so dass immer noch eine, wenn auch nur geringe, Wechselwirkung mit der Umgebung möglich ist.

Außerdem ist der Einsatz solcher Quiet Qubits in Speichern nur mit sehr komplexen, extern gesteuerten Schaltern möglich, die sehr teuer und aufwendig zu produzieren sind und das System stören können. Die dafür notwendigen π-Kontakte und ähnliche Bauteile sind außerdem sehr schwierig herzustellen.
( Die experimentelle Umsetzung von Quiet Qubits lässt noch auf sich warten! 
4.4. Kopplung von Flux-Qubits

Zum Ausführen von 2-bit Operationen ist es notwendig zwei oder mehr qubits miteinander zu koppeln. Für Flux-Qubits gibt es hierbei zwei verschiedene Möglichkeiten der Kopplung.

1) Induktive Kopplung:

Diese greift direkt an den Schleifen zur Steuerung von EJ an. Sie erzeugt dabei Wechselwirkungsterme der Form 
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 bei Wechselwirkungsenergien, die proportional 
[image: image142.wmf](
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 der kritische Strom ist und M die gemeinsame Induktivität, sind. Damit ist eine starke Kopplung möglich, jedoch ist es nachteilig, dass das vollständige Ausschalten der Wechselwirkung nur durch sehr komplexe Schalter, die von außen durch Felder gesteuert werden müssen, möglich ist. Diese Schalter beeinflussen somit aber das System und führen somit zu Dekohärenz.
Deshalb wird auch die zweite (noch folgende) Möglichkeit der Kopplung bevorzugt.

2) Kopplung über einen LC-Schwingkreis:

[image: image143] Der LC-Schwingkreis koppelt induktiv an den Schleifen der SQUIDs. (Die gestrichelte Linie deutet hierbei die induktive Kopplung an.)
Die Wechselwirkung dabei wird durch den folgenden Wechselwirkungs-Hamiltonoperator beschrieben.
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 der Flussunterschied zwischen den beiden Minimazuständen des qubit i ist.

Die Wechselwirkung kann über 
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gesteuert werden, d. h. für das Ausschalten ist kein externer Schalter nötig. Somit ist die Beeinflussung des Systems von außen im Vergleich zur induktiven Kopplung reduziert. 
Außerdem sind nun alle 1- und 2-bit Operationen möglich (vgl. 3.4). 
Allerdings ist aber auch wie bei Charge-Qubits die gleichzeitige Manipulation an mehreren Qubit-Paaren nicht möglich. Hinzu kommt das die Kopplungsenergie im Allgemeinen klein ist, beim Delft-Design sogar sehr klein augrund des sehr geringen Flussunterschieds der beiden Minimazustände.
Insgesamt ist diese Kopplungsart also besser als die induktive Kopplung, aber noch verbesserungsbedürftig aufgrund der geringen Kopplungsenergien.

5. Stärken und Schwächen der SQUIDs
5.1. Störungen

Anwendungen benötigen viele kohärente Operationen am SQUID-Zustand, d. h. man braucht also Störungsfreiheit über einen möglichst langen Zeitraum. Den Zeitraum über den man Manipulationen kohärent (also störungsfrei) durchführen kann, bezeichnet man als Kohärenzzeit TK. Diese ist durch folgende Störungsursachen beschränkt.
Störungsursachen:

1) unkontrolliertes Koppeln von Qubits

2) Wechselwirkung mit der Umgebung

3) Ungenauigkeiten bei der Manipulation (z. B. beim Einstellen von Vg, Фx, ∆t)
4) ungewollte Anregung außerhalb der 2 Qubit-Zustände

Außerdem ist anzumerken, dass Charge-Qubits theoretisch etwas störanfälliger als Flux-Qubits sind.
5.2. Operationsgeschwindigkeit

SQUIDs können Operationen in sehr kurzer Zeit durchführen. Die Operationszeiten betragen 
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 für 1-bit Operationen und 
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 für 2-bit Operationen, d. h. 2-bit Operationen sind somit etwa 100-mal langsamer als 1-bit Operationen. Da jedoch die Operationszeiten von den meisten anderen qubits, die in diesem Seminar vorgestellt wurden, nur im μs-Bereich (oder noch langsamer) liegen, eignen sich SQUIDs als extrem schnelle Quantenspeicher bzw. Quantengatter.
Zusätzlich ist es wichtig, dass möglichst viele Operationen kohärent durchgeführt werden können. Dies wird durch 
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 beschrieben. 
Damit ein Quantenrechner überhaupt denkbar ist, muss laut Di Vincenzo 
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 sein. Die hier vorgestellten SQUIDs erreichen 
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 kohärent durchgeführte Manipulation bei 1-bit Operationen. Für 2-bit Operationen kommt N aber nur noch an die untere Grenze des geforderten Bereichs heran, was für die Umsetzung in einem Quantenrechner problematisch ist.
5.3. Experimentelle Realisierung

Der Qubit Charakter sowie die Form des Hamiltonoperators der Aufbauten konnte bei beiden SQUIDs nachgewiesen werden. Die Superpositition der Basiszustände wurde jedoch bis jetzt nur bei Charge-Qubits gemessen. (1997)

Ebenso konnten kohärente Oszillationen der Basiszustände auch nur bei Charge-Qubits gemessen werden (1999 von Nakamura et al [siehe 3.5])

6. Zusammenfassung

Abschließend bleibt zu sagen, dass SQUIDs makroskopische qubits sind, die extrem schnell und gut kontrollierbar sind. Somit sind sie sehr gut in elektrische Schaltkreise integrierbar. Außerdem sind mit ihnen alle 1- und 2-bit Operationen möglich. Deshalb sind sie auch weiterhin in der Forschung von Bedeutung, bei der das nächste große Ziel ist, mittels Kopplung zweier qubits Verschränkung zu erzeugen.
Außerdem wird an beiden Realisierungen, Charge- und Flux-Qubit, weiter gearbeitet werden, da sich noch kein Modell als das Bessere durchsetzen konnte, obwohl man bei Charge-Qubits bereits experimentell mehr erreichen konnte. [Das liegt daran, dass man sich von Flux-Qubits eine große Robustheit erwartet, wenn sie einmal „funktionieren“.]
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