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1 Motivation

Seit der Entdeckung des Quantenparallelismus zum Losen komplexer Pro-
blem (z.B. Faktorisierung grofer Produkte aus zwei Primzahlen), ist es von
grofftem Interesse geeignete Quanten-Informationstrager, die sog. Qubits, zu
finden und geschickt zu implementieren. Wie bereits fiir die klassische Infor-
mationstheorie bekannt und fiir die Quanten-Information nochmals bestétigt,
reicht es dabei vollig 2-Bit Operationen und dementsprechend zwei 2-Zustand-
Qubits zu verwenden. In einer groben Einteilung kann man dabei von 2 Ka-
tegorien ausgehen:

e Flying Qubits: Wie der Name schon sagt, dienen sie dem Transport
von Information. Daher sollten sie schnell und robust gegeniiber der
Umwelt sein. Offensichtlich bestens dafiir geeignet sind Photonen. Die
Schwachstelle dieser Qubits liegt allerdings in der Realisierung von 2-
Bit-Gattern, da der Wirkungsquerschnitt von Photonen mit Photonen
in der Gréflenordnung ~ \? liegt:

O ph—ph X )\2 (1)

e Stationary Qubits: Stationary Qubits sollen dazu dienen lokal Ma-
nipulationen an einzelnen Qubits vornehmen zu konnen, da dies oft
einfacher ist, als bei bewegten Qubits. Als solche kénnen zum Beispiel
neutrale Atome, Molekiile oder Tonen dienen. Man kann diese in hinrei-
chender Art und Weise an einem Punkt halten und so gut manipulieren,
z.B. mittels Laser oder Magnetfeldern. Ein weiterer Vorteil von Ato-
men ist, dass sie sich sehr gut zur Realisierung von 2-Bit Operationen
eignen, da man zwei Qubits in zwei unterschiedlichen Niveaus eines
Atoms speichern kann und auf diese Weise gut verarbeiten kann. Der
grofe Nachteil dieser Qubit-Trager ist ihre Masse, da sie dadurch nur
schlecht als Flying Qubits eingesetzt werden konnen.

Es liegt nun auf der Hand beide Arten von Qubits miteinander zu verkniipfen
um von den Vorteilen beider Gebrauch machen zu kénnen und die gegensei-
tigen Nachteile auszugleichen. Man kann sich in einem einfachen Modell zwei
Atome mit jeweils einem Qubit vorstellen und deren informationstheoretische
Wechselwirkung mittels Photonen realisieren.

Dieses Modell wirft allerdings direkt eine neue Herausforderung auf: es
muss garantiert werden, dass ein Qubit aus einem Atom deterministisch
durch genau ein Photon auf das andere Atom iibergeht. Das wirft die Frage
nach deterministischen Einphotonenquellen auf, um kontrollierte Kommuni-
kation zu gewéhrleisten.



Um nun der Frage nachzugehen wie wir photonische und atomare Qubits
miteinander verkniipfen konnen, werden wir uns in einem ersten Schritt mit
der zugrundeliegenden Quantenmechanik der Cavity Quantenelektrodyna-
mik (CQED) befassen. Der Resonator wird dazu bendtigt um gezielt eine
einzelne Mode des elektromagnetische Feldes mit einem Ubergang des Atoms
in einer bestimmten Art und Weise zu koppeln. Dadurch kénnen kohérente
Ubergange zwischen photonischen und atomaren Anteilen des Qubits reali-
siert werden.

In einem zweiten Schritt werden wir uns dann damit befassen wie wir mittels
unserer bis dahin erworbenen Kenntnisse eine spezielle 2-Bit Operation, die
sog. controlled-qubit-Funktion, realisieren kénnen.

Haben wir dies, so ist es klar, dass wir uns im dritten Teil mit der Frage der
Konstruktion einfacher Quantennetzwerke beschéftigen werden. Diese wer-
den dafiir gebraucht beliebige Informationen in einem Netzwerk austauschen
und bearbeiten zu koénnen.

Als letzten Teil werden wir uns schliefilich noch mit einem bestimmten Ver-
fahren, dem STIRAP-Verfahren, zur deterministischen Realisierung von Ein-
photonenquellen beschéftigen, welches unabdingbar ist um Quantennetzwer-
ke realisieren zu konnen.

Ein weiteres Kriterium unter dem wir die folgenden Modelle betrachten
werden, beruht auf zwei von DiVincenzo vorgeschlagenen Eigenschaften, wel-
che ein zur Quanteninformationsverarbeitung verwendbares System besitzen
muss:

e Skalierbarkeit: Ein System muss skalierbar sein, d.h. es muss ohne
grofle Schwierigkeiten moglich sein, weitere Qubits hinzuzufiigen um
schlussendlich beliebig grofie Quantenrechner bauen zu koénnen.

e Identifikation einzelner Qubits: Um gezielte Manipulation gewéhr-
leisten zu kénnen muss es mogliche sein, jedes einzelne Qubit identi-
fizieren zu konnen. Dies ist analog zur Unterscheidung der Positionen
von 0 und 1 in der klassischen Informationsverarbeitung.

Ausfiihrlicheres zu diesen Eigenschaften findet man auch in [5].

Die CQED bietet den notwendigen physikalischen Rahmen und erfiillt die
obigen Kriterien in einer hinreichenden Weise: (i) es ist eine gezielte Kopplung
von Photonen an Atome moglich, (ii) die Skalierbarkeit ist gewéhrleistet, da
man ohne weiteres einen weiteren Resonator hinzufiigen kann, und schlieSlich
ist (iii) auch die Identifikation gew&hrleistet, da die Resonatoren klassische
Objekte und somit per se unterscheidbar sind.



2 Quantenmechanik der Cavity Quantenelek-
trodynamik

2.1 2-Niveau-Systeme im Resonator und strong-coupling

Die Quantenmechanik der CQED beschaftigt sich mit der Wechselwirkung

von Photonen, also dem quantisierten elektromagnetischen Feld, mit einzel-

nen Ubergéingen in einem Atom.

Abb. (1) zeigt das einfachste

Modell, welches sinnvollerwei-

se angenommen werden kann.

Es enthélt einen Resonator be-
stehend aus zwei Spiegeln mit

Reflexivitdten R = 1 bzw.

R < 1. Die angeregte Reso-

natormode kann iiber letzte-

ren mit einer Zerfallsrate x zer-
fallen. Im Resonator selbst befindet sich ein einzelnes 2-Niveau Atom mit den

internen Zusténden |a) und |b), welche innerhalb des Resonators iiber die

Kopplungskonstante g miteinander verkniipft sind. |a) kann mit einer Rate

~ spontan zerfallen. Die hellgrau hinterlegte Flache innerhalb des Resonators

soll das Modenvolumen V' darstellen.

Um nun die Kopplungskonstante g berechnen zu kénnen, muss das elek-
tromagnetische Feld quantisiert werden, da man nur mit einzelnen Photonen
wechselwirken wird. Das quantisierte elektromagnetische Feld einer einzelnen
Mode ist gegeben durch (siehe [8]):

B = [y (4 ) £ () )

Hierbei ist w die der Mode zugehérige Kreisfrequenz und V' das soeben ge-
nannte Modenvolumen. Die Operatoren G und a' bezeichnen die Vernichtung
bzw. Erzeugung einer Mode der Frequenz w, also sozusagen eines einzelnen
Photons. Zuletzt steht f (7) fiir die Wellenfunktion der Mode. Der Vorfaktor

% ist also das elektrische Feld pro einzelnem Photon.

Um nun die Wechselwirkung zwischen Photon und Atom zu beschreiben,
geht man vom Prinzip minimaler Kopplung aus und findet in erster Ordung
die Dipolwechselwirkung:

’,x/
p Y

Abbildung 1: einfachstes Resonatormodell
mit Zerfallskanilen

A

H=—dE (3)



Der Dipoloperator d kann dabei nun mittels "Entwicklung der 1”7 geschrieben
werden als

d = duy|a) (O] + dy |b) {a] (4)

Nimmt man nun 0.B.d.A an, dass p = dy = dp, und setzt Gl. (2) und
(4) in Gl. (3) ein, so findet man in der rotating-wave-approximation (RWA)
folgenden Ausdruck fiir die Dipolwechselwirkung:

H=—d-E ™ hg(la) (bla + h.a.) (5)

Aus GL.(5) lasst sich nun g ablesen:

[ W

Man erkennt, dass die Kopplung dem Modenvolumen umgekehrt proportio-
nal ist. Man ist daher daran interessiert moglichst kleine Resonatoren zu
konstruieren um eine moglichst grofle Kopplung zu erhalten. Dies liegt an
den besonderen Eigenschaften des sog. strong-coupling regimes. Man unter-
scheidet zwei Grenzfille fiir ¢ (siehe auch [6, Kap.10]):

e g% < Kk7y: weak-coupling regime
Gilt 0.B.d.A. g < 7 so folgt daraus direkt, dass 7', < Tj, wobei nun
T die charakteristische Zeit der entsprechenden Dynamik ist. Dies gilt,
daT, = % Man erkennt hieran, dass die Dynamik der Kopplung viel
langsamer als der Zerfall des oberen Laserniveaus geschieht, und somit
inkohérente Prozesse die grofite Wahrscheinlichkeit haben.

e g% > k7: strong-coupling regime

Mit dem selben Argument wie oben lésst sich nun zeigen, dass T, <
T, .. ist. D.h., die gekoppelte kohdrente Dynamik verlduft viel schneller,
als der Zerfall durch spontane Emission oder entweichen aus dem Reso-
nator. Da die gekoppelte Dynamik kohérent ist, ist sie unitdr und somit
reversibel. In diesem Bereich kann man also unitdre Dynamik zwischen
Atom und Resonator beobachten. Ein Photon wird sozusagen schneller
emittiert und wieder absorbiert, als es aus dem Resonator entweichen
kann.

Man erkennt sofort, dass im Bereich des strong-coupling véllig neue Ef-
fekte auftreten werden. Jedoch besteht eine der grofien Herausforderungen
darin, dieses Regime iiberhaupt erst zu erreichen. Um eine Vorstellung da-
von zu bekommen, wie herausfordernd diese Aufgabe ist, kann man sich den
Zusammenhang zwischen ¢g? und (k - 7), der Einfachheit halber, in einem
Fabry-Perot-Resonator anschauen:



Abbildung 2: Fabry-Perot-Resonator

Der hier betrachtete Fabry-Perot-Resonator (siehe Abb.2) besteht aus
zwei planparallelen Spiegeln mit Reflexivitdten Ry = 1 und Ry, = R < 1
im Abstand L. Das Modenvolumen ldsst sich bestimmen zu V. = A - L.
Die Resonatorverlustrate x ist bestimmt durch die ” Verlustzeit” des Resona-
tors und lasst sich ausdriicken durch & = (1 — R) 57, wobei 57 die rezipro-
ke Umlaufzeit eines einzelnen Photons im Resonator ist. Die Verlustrate
des spontanen Zerfalls kann mittels des Einstein-A-Koeffizienten ausgedriickt

werden: ;

2 v
=P 3r2c3hey (M)
Nach GI1.(6) gilt:
2 2 w
Ty (8)

wobei hier das Modenvolumen bereits durch A- L ersetzt wurde. Ersetzt man
nun L und p? in GI. (8) mit Hilfe der Gleichungen fiir ¥ und v, so erhilt man
nach einigen Umformungen:

, 2N 1
47 A1-R

9 KY. (9)
Im strong-coupling-regime soll gelten g > r~. Dies kann wie folgt realisiert
werden:

o A<\
Dieser Grenzfall ist im optischen Lichtwellenbereich nicht méglich, da
dies eine Fokusierung des Modenvolumenquerschnitts auf weniger als
eine Quadratwellenldnge erfodern wiirde. Jedoch liegt schon bei gur
fokusierten Lasern die Grofle der Strahltaille bei mehreren 10-100 Wel-
lenléngen.



° ﬁ > 1

Dieser Grenzfall erfordert (1 — R) — 0. D.h. die Reflexivitét des Aus-
koppelspiegels muss sehr nah bei 1 liegen. Die grofle Herausforderung
liegt also nun darin Resonatoren zu konstruieren, deren Reflexivitdten
moglichst nah bei 1 liegen. Man spricht daher von high-Q-cavities, da
der Q-Faktor (Q = Ai) sehr grofl werden muss. Aw wird hierbei be-
stimmt durch den freien Spektralbereich des Resonators, welcher sehr
klein werden muss. (Siehe dazu auch [6, Kap.10].)

2.2 Aus zwel mach drei Niveaus und STIRAP

In der Quanteninformationverarbeitung moéchte man moglichst alle inkohéren-
ten Zerfallsquellen ausschalten. Eine Zerfallsquelle, der spontane Zerfall ~,
ldsst sich dadurch vermeiden, das man nicht das vorgeschlagene 2-Niveau-
System aus dem vorigen Abschnitt verwendet, sondern ein leicht komplizier-
tes 3-Niveau-System (siehe Abb. 3) zugrunde legt.

Das vorgeschlagene 3-Niveau-A-System be- _ >
steht nun also aus drei Niveaus |a), |b), welche
(meta)stabil sind und |c¢), welches mit einer
Rate ~ spontan zerfallen kann. Die Nivaus |b)
und |c) sind iiber die quantisierte Resonator- (> —
mode mit der Kopplungskonstante g mitein-

ander verkniipft. Die Niveaus |a) und |c) sind — 2>
tiber ein klassisches Feld E' mit Rabifrequenz
Q = M miteinander gekoppelt. Ein Uber-
gang zw1schen den Niveaus |a) und |b) soll ver-
boten sein. Es liegt nun auf der Hand das Qubit als Kohdrenz zwischen |a)
und |b) zu definieren. Dieses kann somit nicht mehr spontan inkohérent zer-
fallen und ein moglicher Zerfallskanal ist eliminiert.

Ein weiterer Vorteil dieses Systems liegt darin, dass man iiber das zusétzli-
che klassische Feld F eine weitere Einflussmoglichkeit auf das System hat. E
wird daher auch Kontrollfeld genannt. Die EinfluBnahme kann z.B. iiber dy-
namische (ac-)Stark-Shifts erfolgen, welche die Energie der Niveaus |a) und
|c) verschiebt und somit also auch einen Einflufl auf die Kopplung |b) < |c)
hat.

Abbildung  3:  3-Niveau-
System

Ein besonders schoner Effekt, welcher bei dem vorgeschlagenen System
auftritt, ist der STIRAP - Stimulated Raman Adiabatic Passage. Mit Hilfe
dieses Prozesses kann man 100% der Population aus Niveau |a) in Niveau |b)
transferieren, was in einem 2-Niveau-System nicht méglich ist, da dies mit
maximal 50% begrenzt ist.



Der Hamiltonoperator des 3-Niveau-Systems lautet im Wechselwirkung-
bild (siehe [3]):

(0 2 0
Ho=—5 |2 20 2 (10)
0 2¢° 0

Dabei ist A die gemeinsame Verstimmung von Kontrollfeld und Resonator-
mode vom oberen Niveau |c). Die zu dieser Matrix zugehorige Basis lautet
{la),|c),|b)}. Bei Vernachlissigung der Zeitabhéngigkeit kann der Zustand
des Systems |¥) ausgedriickt werden als Superposition der Basiszusténde:

la*) = cospsind|a) — sing|c) + cospcosV |b) (11a)
la™) = singsind|a) + cosglc) + sinpcosd |b) (11Db)
|a’) = cos¥|a) — sind |b) (11c)
Die auftretenden Winkel heiflen Mischungswinkel und sind wie folgt definiert:
Q
tanty = — 12
an 2% (12a)

V4g* + Q2
tanp = g+ (12b)

VA2 + 2+ A2 - A

Andert man nun das Kontrollfeld  als Funktion der Zeit so éndern sich die
Eigenzustédnde ebenfalls in der Zeit, da sich die zugehorigen Mischungswinkel
dndern.

Besonders auffillig ist das Verhalten des Zustandes |a®). Dieser enthilt keine
Beimischungen des instabilen, angeregten Zustandes |¢) und wird daher auch
”dark-eigenstate” genannt. Befindet sich das System anfangs in Zustand |a)
so wird durch Anlegen des Kontrollfeldes auf eine bestimmte Art und Weise
die gesamte Population von |a) nach |b) verschoben. Dies gilt allerdings nur
solange, wie der Prozefl adiabatisch ablduft. Dieser Prozess ist unitdr und
damit reversibel, d.h. man kann beliebig die Population zwischen |a) und |b)
hin- und herschieben, ohne dabei Gefahr zu laufen, dass das System zerfallt,
da es ja keine Beimischung des Niveaus |c¢) enthélt. Dariiberhinaus ist man
nicht auf maximal 50% der Population beim Transfer beschrinkt.

Wir haben in diesem Abschnitt nun die Grundlagen fiir die folgenden
Abschnitte gelegt und kénnen uns jetzt der Realisierung von controlled-
qubit-Operationen zuwenden. Dabei wird uns wiederum ein ”dark-state” be-
gegnen, welcher dhnlich Eigenschaften wie der soeben vorgestellte aufweisen
wird. Man wird auch im danach Folgenden erkennen, dass sich die in diesem
Abschnitt vorgestellten Prinzipien stets wiederholen werden und somit sehr
grundlegend sind fiir die Quanteninformationsverarbeitung mit Resonatoren.
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3 Realisierung von C-Operationen

Zur Verarbeitung von Information ist es notwendig 2-Bit-Gatter zu konstru-
ieren, welche abhéngig von einem der beiden Bits eine Manipulation des zwei-
ten Bits durchfithren. Solche Operationen nennt man in der Quanteninforma-
tion C-Operationen (controlled-qubit-Operationen). Die generelle Struktur
ist dabei die Folgende (¢; € {0,1}):

l€1) le2) — Seo |er€2) + eya Jen) U lea) (13)

Abhéngig vom Zustand des Qubits |e;) wird das zweite Qubit |ez) nicht
verédndert oder einer unitdren Transformation U unterworfen.
Das hier vorgeschlagene Schema aus [1] besteht

atom 1 atom 2
den e aus zwei Atomen, die jeweils fiir sich ein einzelnes
2-Zustand-Qubit bilden, und mit klassischen Kon-
Ul N9 D trollfeldern Q; bzw. Q5 gesteuert werden (siehe Abb.
- | 4). Es ist augenscheinlich klar, dass das vorliegende
N Dm Schema die Forderungen der Skalierbarkeit und ein-

deutigen Identifikation erfiillt. Ein weiterer Vorteil
Abbildung 4: Schema ist auch, dass eine Operation zwischen beliebigen
zur Realisierung einer Qubits nun moglich wird, da die einzelnen Qubits ja
C-Operation raumlich voneinander getrennt sind und sich nicht
innerhalb eines einzelnen Atoms befinden.
Die Idee einer C-Operation léasst sich nun in drei Schritte zerlegen:

1. Abbilden der 2 Qubits |e;), |e2) auf ein einzelnes 4-Niveau-System des
Atoms 2, wobei Atom 1 in Zustand |0) iibergeht.

2. Manipulation der Zustdnde des Atoms 2 geméaf

le162) = 0 ler€ea) + de1 Y lereh) (6| U lea)

€2

Die unitéire Transformation U kann dabei z.B. das Anlegen eines dufle-
ren magnetischen oder elektrischen Feldes sein.

3. Die umgekehrte Abbildung zu Schritt 1 wird angewandst.

Das vorgeschlagene System realisiert die Wechselwirkung zwischen zwei
beliebigen Qubits also dadurch, dass es das eine Qubit auf das andere abbil-
det, was nicht durch rdumliche Separation beeintréachtigt wird.

Der Hamiltonoperator des Systems lautet im Wechselwirkungsbild (A = 1):
Q . (t)e—ith g R
Hi= Y (JT S)slal + 5l blb) + b, (14)

7j=12



dabei sind €;(¢) verschiedene klassische Kontrollfelder mit der Frequenz wy,

und b der Vernichter eines Cavity-Photons. Unter den Eigenzustdnden dieses
Hamiltonoperators befinden sich wiederum dark-states:

Do) = [b,0,0) = [b); |0),]0), (15a)
|D1> X ng ]b,a,0> + Qgg |a,b, 0> — ngg |b, b, 1> (15b)

Dabei bezeichnet |X), den Zustand des Resonator, in dem Sinne, dass X
die Anzahl der Photonen in der Resonatormode bezeichnet. Schaut man sich
nun den Zustand |D;) an, so stellt man folgendes Grenzverhalten fest:

° g—i — 0: |Dy) — |b,a,0)

° % — 0: |Dy) — la,b,0)

Es ist also moglich durch geschickte Wahl der Zeitabhéngigkeit der beiden
Kontrollfelder die Operation |b,a,0) < |a,b,0) durchzufiihren. Prapariert
man nun das System zusétzlich in einer Superposition zwischen |Dg) und

|D1), so kann man beliebige Kohérenzen von Atom 1 auf Atom 2 iibertragen:
(Ala); + Bb);) [b), |0), < [b); (Ala), + Bb),) |0)..- (16)

Dies gilt fiir beliebige Koeffizienten A, B. Es ist somit moglich ein beliebiges
Qubit, welches ja definiert war als Kohérenz zwischen den Zusténden |a), und
|b),, zwischen zwei Atomen zu transferieren. Das System weist also, wie zu
Beginn bereits erwihnt, ein STIRAP-dhnliches Verhalten auf: Die Kohérenz
zwischen zwei Atomen lasst sich beliebig hin- un herschieben, ohne Gefahr
zu laufen, dass das System iiber einen instabilen angeregten Zustand zerféllt.
Einige weitere Vorteile des Systems sind, (i) dass die Wechselwirkungen
wéihrend des gesamten Prozefles resonant sein kénnen und somit keine Pha-
senverschiebungen auftreten, (ii) dass es nicht von Né&ten ist genaue Wech-
selwirkungszeiten einzuhalten, solange man sich sicher ist, dass der Prozefl
adiabatisch ablauft, (iii) dass ein Zerfall durch Entweichen eines Photons aus
dem Resonator nur in der kurzen Zeit der Besetung des Zustandes |b, b, 1)
auftreten kann.

Mit diesem Modell fiir einen Kohérenztransfer 148t sich nun Schritt 1
des Protokolles ausfiihren. Da sich nun beide Qubits innerhalb des Atoms 2
befinden, kann man nun, z.B. durch Anlegen duflerer Felder, eine 2-Qubit-
Operation durchiihren (entspricht Schritt 2). Nach Manipulation der beiden
Qubits durch dieses 2-Qubit-Gatter, bedient man sich wiederum des Trans-
ferschemas um die Qubits wieder auf die zwei Atome zu verteilen (Schritt
3).
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Wir haben also gesehen, dass es prinzipiell moglich ist, ein System zu rea-
lisieren, welches unitiare 2-Qubit-Operationen zuldsst und den Anforderun-
gen an einen Quantencomputer (Skalierbarkeit, Identifizierkeit) standhélt.
Jedoch ist dies nur im Grenzfall des strong-coupling-regime moglich, wel-
ches, wie wir gesehen haben, sehr strenge Anforderungen an die physikalische
Wirklichkeit stellt.

Um fortzufahren in der Konstruktion eines Quantencomputers benotigen
wir natiirlich Netzwerke, iiber welche wir die Quanteninformation austau-
schen konnen. Mit der Verwirklichung eines solchen, wird sich der néchste
Abschnitt befassen. Wir werden dort von der soeben vorgestellten Idee des
Kohérenztransfers zwischen zwei Atomen Gebrauch machen, die sich nun
aber in zwei verschiedenen Resonatoren befinden, welche die Knoten des
Netzwerkes darstellen.

4 Quantennetzwerk

Ein Netzwerk besteht i.A. aus zwei oder mehr Knoten, welche die einkom-
menden Signale verarbeiten und gegebenenfalls weitersenden und den dazu
notwendigen Leitungen. Wir werden hier in der Darstellung einem Vorschlag
aus [2] folgen, wo ein sehr simples Modell fiir ein Netzwerk vorgeschlagen
wird, welches aus zwei Resonatoren (entsprechen den Knoten) und einer Lei-
tung, die nur Kommunikation in eine Richtung zulésst, besteht (siehe Abb.
5).

A A

Abbildung 5: Modell eines Netzwerkes

Ziel einer Quantentransmission ist es immer, diese mit einer Effizienz von
100% ablaufen zu lassen, also eine ideale Transmission durchzufiihren:

(cg19)1 + cele)y) g)y ® 10),|0)5 [vac)

— 19)1 (¢gl9)y + cele)y) @10), |0), [vac)
(17)

Diese Art des Kohérenztransfers ist uns bereits in Gl. (16) begegnet. Im Un-
terschied zum dem dortigen Kontext, befinden sich hier die Atome jedoch
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in zwei rdumlich getrennten Resonatoren (sieche Abb. 6), und somit treten
hier noch weitere Moglichkeiten der Dekohérenz, wie z.B. die Reflexion des
Lichtpulses am Spiegel des zweiten Resonators (Empfinger), auf. Dieser, in
der Tat dominante Dekohédrenzkanal, kann durch Kontrolle des Transmis-
sionprozesses vollstdndig unterbunden werden:

Nehmen wir an, dass das emitierte Photon als Wellenpaket entlang der
Leitung propagiert. Kénnten wir dieses Wellenpaket in der Zeit umkehren
und es in seinen Ausgangsresonator zuriickschicken, wiirde es den vorheri-
gen Zustand des Atoms im Resonator wieder herstellen, vorausgesetzt, wir
wiirden auch die Laserpulse in der Zeit umkehren. Wenn wir allerdings in
der Lage wiren, das Atom in Resonator 1 derart zu manipulieren, dass das
ausgesandte Wellenpaket in der Zeit symmetrisch wére, so wiirde dieses im
Empféngerresonator 2 den vorher dargestellten zeitgespiegelten Prozess nach-
ahmen und so den Zustand des Atoms 1 in Atom 2 ”wieder herstellen”. Solche
Photonen heiflen zeitsymmetrische Photonen.

Cavity 1

['F'>
K

Abbildung 6: Modell eines Netzwerkes

Um nun die Quantentransmission zu beschreiben, benutzen wir das Mo-
dell aus dem vorigen Abschnitt, trennen jedoch die Atome und setzen sie in
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separate Kavitidten. Die Dynamik innerhalb der einzelnen Resonatoren lésst
sich jetzt mittels des folgenden Hamiltonoperators beschreiben:

H; = —dala; + Zajaz [b) i (0] + s (t) [a)ii{al —ig; (¢) [ |a)ii (b a; — h.a.] .

(18)
Hierbei sind A und ¢ die Verstimmungen des Lasers von der Anregungs-
frequenz bzw. der Resonatormode, a; ist der Vernichter eines Photons der
Resonatormode. Der erste Term beschreibt Photonen, welche auf Grund der
Verstimmung nicht absorbiert werden, die zwei folgenden Terme beschrei-
ben ac-Stark Verschiebungen der Niveaus |a) bzw. |b), welche durch die
entsprechenden Felder (Laserfeld, Resonatormode) verursacht werden,wobei

Ww; = %. Der letzte Term ist die sog. Jaynes-Cummings Wechselwirkung,

welche eine effektive Kopplungskonstante g; (t) = % enthélt.

Um schliellich noch die Transmission einzufiithren, behilft man sich mit
einer phinomenologischen Beschreibung des Zerfalls durch einen komplexen
Hamiltonoperator. Hierbei ist zu beachten, dass dieser nicht mehr hermitesch
ist und sich somit Links- und Rechtseigenvektoren unterscheiden. Die gesamte
Prozessdynamik lésst sich nun berechnen mittels:

Hos (1) = Ha (1) + Ha (t) — in (alan + alaz + 2ada ). (19)

‘H1 und Hs stehen dabei fiir die Dynamik in den entsprechenden Resonatoren
und i/@&ldi fiir den Zerfall eines Photons aus dem Resonator i. Zu guter letzt
beschreibt der Term 2imd;d1 einen Transmissionsprozefl: a; vernichtet ein
Photon in Resoantor 1, welches eben mit der Rate s zerfillt und d; erzeugt
eben dieses Photon in Resonator 2.

Eine ideale Trasmission kann genau dann auftreten, wenn das System
wéahrend des gesamten Prozesses in einem dark-state verbleibt, also kein Zer-
fall auftritt. Expandiert man den dark-state |¥) in die Systembasis so hat er
folgende Struktur:

W, (1)) = cp|Bb) |00)
T ca o (£) € [ab) 100) + s (£) €20 [5a) [00)] ()
o+ ca B (2) 0B} [10) + B2 (1) [b) [01) |

Dabei gibt der erste Ket-Vektor jeweils den Zustand des Atoms und der zwei-
te Ket-Vektor den Zustand des Vakuumfeldes, d.h. die Anzahl der Photonen,
im jeweiligen Resonator an. Es ist klar, dass «; proportional zur Besetzungs-
zahl im Zustand |ab) bzw. |ba) ist, und /3; zur Photonenzahl in den einzelnen
Resonatoren. Aus (20) kann man einfach ablesen, welche Bedingungen gelten
miissen um ideale Transmission zu gewéhrleisten:
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o a;(—00) = ag(+o00) =1
o 61(=00) = 6 (+00) = 0

Mit diesen Bedingungen kann man nun Bewegungsgleichungen finden und
Bedingungen fiir eine gesamte Losungsklasse von Pulsen finden. Dies wollen
wir hier nicht im Detail diskutieren und es sei an dieser Stelle auf [2] verwie-
sen. Eine besondere Bedingung ist die oben motivierte symmetrische Puls
Bedingung;:

92 (1) = g1 (—1),

welche automatisch

aq (t) = Oég(

—t
Ba(t) = Ba(—t)

zur Folge hat. Dabei ist G, = \% (B2 — (1) proportional zur Besetzungsdiffe-
renz der Photonenzahl in den Resonatoren. Das Zeitverhalten der Losungen
dieser Klasse ist also véllig symmetrisch. Zur Kontrolle der analytischen Vor-
hersagen, kann man den vollen Hamiltonoperator (19) numerisch behandlen.
Die Ergebnisse sind in Abb.7 zu sehen.

1

Abbildung 7: numerische Analyse des vollen eff. Hamiltonoperators (19)

Man kann sehr deutlich den Besetzungstransfer von o[> = 1 — |as|? =
1 erkennen, wohingegen die Anregung des Vakuumfeldes |3,|? nur von sehr
kurzer Dauer ist. Die gewéhlte Zeitabhéngigkeit von ¢; ist im kleinen Kasten
innerhalb der Abbildung zu sehen.
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Damit ist schliellich gezeigt, dass sich unter bestimmten Bedingungen
eine ideale Transmission realisieren laf3t. Die Kommunikation und Wechsel-
wirkung zwischen zwei beliebigen Knoten ist damit gewéhrleistet. Um dieses
Schema jetzt auch wirklich verwenden zu kénnen bendétigen wir noch eine
Komponente: sog. Einphotonenquellen. Damit wollen wir uns im néchsten
Abschnitt beschéftigen.

5 Deterministische Einphotonenquellen

Wie oben bereits erwihnt soll es in diesem Abschnitt um die Generierung
einzelner Photonen gehen. Dabei wird nicht irgendeine Erzeugung gemeint,
sondern eine deterministische und unitére Produktion abgestrebt, im Unter-
schied zu strahlenden Zerfillen, welche spontan passieren und somit nicht
reversibel sind. Da der Prozefl unitér sein wird, kann man ihn somit auch oh-
ne Probleme umdrehen und so eine deterministische Absorption erzwingen.
In einem ersten Schritt werden wir uns mit einem generellen Schema zur
Erzeugung befassen, dann in einem weiteren Schritt ein Experiment vorstel-
len, welches Einzelphotonenproduktion nachweisen kann und zu guter letzt
wird eine physikalische Realisierung des vorgestellten Prinzips prasentiert.

5.1 Schema der Erzeugung

Zur Erzeugung einzelner Photonen kann man sich des STIRAP-Prozess be-
dienen (siche Abschnitt 2.2). Modifiziert man das dortige Modell in dem Sin-
ne, dass man zusétzlich zu den atomaren Zustdnden auch noch den Zustand
des Vakuumfeldes beriicksichtigt, so erhédlt man das folgende Niveauschema
Abb.8. Eine genauere Behandlung findet man in [3].

Das Zielniveau |g, 1) schickt sein Photon sozusagen hinaus in den Resona-
tor. Da bei dem STIRAP-Modell ein Dipoliibergang |g) < |u) verboten war,
braucht man einen zusétzlichen Puls um das System wieder in den Ausgangs-
zustand |u,0) zuriickzubringen, damit man wiederum ein neues einzelnes
Photon erzeugen kann. Die Generierung ist in sofern deterministisch, als die
typische Zeitskala des adiabatischen STIRAP-Prozesses viel grofler als die
Zerfallszeit des Photons aus dem Resonator ist. D.h. sobald der STTRAP-
Prozess beginnt entweicht das Photon bereits aus dem Resonator.

5.2 Nachweis von Einzelphotonen

Der Nachweis einzelner Photonen stellt sich als duflerst schwierig heraus,
da es zwar moglich ist ein einzelnes solches nachzuweisen aber es mit den

15



le,0>

atom-cavity
coupling g

emission of a
single photon

o g0

energy of the atomic bare states

=
.
nnnn

[u,0>

Abbildung 8: STIRAP-Schema zur Generierung einzelner Photonen

herkémmlichen Detektoren, auf Grund der langen Totzeit, nicht moglich ist
zu unterscheiden, ob es sich um tatséchlich um ein einzelnes oder mehrere
Photonen handelt.

Man behilft sich daher einer Korre-
lationsmessung (siehe Abb.9). Dazu be-

74

nutzt man zwei Einzelphotonendetekto- o B

ren C und D, wobei sich das Signal von %K

Detektor D mit Hilfe einer Delayline be- coity i ) v
liebig verzogern laBt. Somit kann man “‘ (\ - PE phoo

die Korrelation auch in der Zeit messen.
Das aus dem Resonator emittierte Pho-
ton fillt auf einen Strahlteiler und wird
mit einer Wahrscheinlichkeit von 50% auf
Detektor C bzw. D weitergeleitet. Dort
16st es dann ein Signal aus, welches samt

Trigger k‘/ /f’ Q\@
pulses | // &%Q
— R

Abbildung 9: Experiment zur
Korrelationsmessung

Zeitpunkt registriert wird. Eine Korrelation 1d8t sich nun durch Auswerten

der folgenden Korrelationsfunktion

g? (1) =

(Po(t)Pp (t—1))

(21)

(Po (t))(Pp (1))
feststellen. Physikalisch lésst sich diese Funktion wie folgt verstehen: (Pe (t) Pp (t — 7))

ist genau dann 1, wenn zum Zeitpunkt ¢ Detektor C und zum Zeitpunkt ¢t — 7
Detektor D feuern, ansonsten ist es gleich null. Die Erwartungswerte (Pc (t)),
(Pp (t)) sind nur zur Normierung der Funktion vorhanden und zéhlen die An-
zahl der Gesamtereignisse am jeweiligen Detektor. Die Verzogerung 7 ldsst
sich, wie oben erwéhnt, durch die Lange der Delayline variieren.
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Abbildung 10: Ergebnis einer Korrelationsmessung

Es ist nun offensichtlich klar, dass genau dann nur ein Photon erzeugt
wurde, wenn bei 7 = 0 die Korrelationsfunktion ¢®(0) = 0 ist, da dann
nur einer der beiden Detektoren gefeuert haben kann. Ein typisches Ergebnis
einer solchen Messung ist in Abb. 10 zu sehen. Den Effekt ¢(®(0) = 0 nennt
man auch photon-antibunching. Der Grund fiir den oszillierenden Charakter
von ¢ liegt darin, dass wenn die Verzogerungszeit 7 geschickt gewshlt ist,
das erste Photon solange verzogert wird, bis ein zweites generiert wurde,
beide Detektoren schliellich gleichzeitig feuern und somit eine Korrelation
gemessen wird. D.h., der Abstand zwischen zwei Peaks entspricht gerade
der Generationszeit eines einzelnen Photons. Dass die Korrelationsfunktion
im realen Experiment nicht ganz null wird, liegt an zufilligen Koinzidenzen
(detector noise counts), da das Experiment ja iiber lange Zeiten mitteln muss.

5.3 Realisierung in % Rb

Um diese Kapitel abzuschlieflen soll hier noch ein Experiment vorgestellt wer-
den, welches sich der beiden soeben vorgestellten Techniken zur Einzelpho-
tonenerzeugung und -nachweis bedient hat. Die zugehorige Verdffentlichung
findet man unter [4]. Das Experiment wurde mit 8 Rb durchgefiihrt; das re-
levante Niveauschema ist in Abb.11 zu finden. Man erkennt, dass der repum-
ping pulse, welcher das System wieder in den Ausgangszustand zuriickfithren
soll, gerade den umkehrten Weg pumpt und das System dann durch spon-
tanen Zerfall in seinen Ausgangszustand tiberfithrt wird. In Abb.12 findet
man die zu dem Experiment zugehorigen Parameter: Diagramm A stellt die
zeitliche Entwicklung des Pumplasers (blau/durchgezogen) und des Recy-
cling Lasers (grau/gestrichelt) dar. Die Ségezahnspannung wurde gewéhlt
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Abbildung 11: relevanter Ausschnitt aus dem Niveauschema von % Rb
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Abbildung 12: relevante Daten zum Experiment

um optimale adiabatische Bedingungen zu gewéhrleisten. In Diagramm B
sind die experimentellen Daten zu sehen, welche man sofort mit den numeri-
schen Erwartungen in Diagramm C vergleichen kann. Man erkennt eine sehr
gute Ubereinstimmung zwischen den beiden Graphen. Ein einzelner Peak
des Diagramms entspricht genau einem deterministisch generierten Photon,
und spiegelt die zeitliche Struktur des Photons, also die zeitliche Form des
Wellenpakets, wider. Die Ausdehnung des Wellenpakets entspricht genau der
Lebensdauer des Photons im Resonator, sprich der reziproken Zerfallsrate %
Dies bestétigt die oben erwdhnte deterministische Generierung: die charak-
teristische Zeitdnderung des adiabatischen Vorganges ist viel grofler als die
Zerfallszeit aus dem Resonator.

Dass die Erwartungen keiner -Funktion @hnlich sind, liegt sowohl in der
Natur der Quantenmechanik (siehe Unschérferelationen) als auch an der Ei-
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genschaft des STIRAP dark-state:
|a”) = cos |u,0) —sind g, 1).

Sobald der Mischungswinkel ¥ nur leicht ungleich null wird, tragt |g, 1) zum
dark-state bei, kann daher besetzt werden und somit ein Photon emittieren.

Zu guter letzt bleibt noch zu zeigen, dass es sich auch wirklich um ein-
zelne Photonen handelt, die hier generiert werden. Dies wurde mit einer
Intensitétskorrelationsmessung nachgewiesen. Abb.13 zeigt die experimen-
telle Auswertung. Zum Zeitpunkt At = 0 erkennt man das charakteristische

| 9@

Intensity correlation
I
[ |

WA " ‘ N

-30 -20 -10 0 10 20 30
Delay time At (us)

Abbildung 13: Nachweis der Einzelphotonennatur iiber ¢(®

photon-antibunching, welches, genauso wie der oszillierende Charakter, fiir
die Erzeugung einzelner Photonen spricht. Es handelt sich also wirklich um
eine Einzelphotonenerzeugung.

6 Zusammenfassung

Zum Abschluf3 148t sich also zusammenfassen, dass sich die CQED hervorra-
gend eignet um einen Quantencomputer zu realisieren. Die Herausforderung
dabei ist das Erreichen des strong-coupling-regime g > k7. Ist dies geschafft,
so kann man mit STIRAP-&hnlichen Prozessen beliebig Kohdrenzen zwischen
Atomen austauschen um so 2-Bit-Gatter zu realisieren, oder um determini-
stisch einzelne Photonen zu erzeugen um damit Kommunikation betrieben zu
konnen. Dabei erlaubt der doch duflerlich sehr einfache Aufbau (ein Resona-
tor und ein Atom) Quantencomputer beliebiger Grofie bauen zu kénnen und
einzelne Qubits identifizieren zu konnen. Damit sind grundlegende Anforde-
rungen (Skalierbarkeit und Identifikation) an einen Quantenrechner erfiillt.
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wer

Es bleibt also abzuwarten, ob bald neue Methoden und Ideen entwickelt
den um high-Q-cavities im optischen herstellen zu kénnen und wir dann

klassische Kryptographie wie RSA vollig ersetzen miissen.

Wir miissen unbedingt Raum fiir Zweifel lassen, sonst gibt es
keinen Fortschritt, kein Dazulernen. Man kann nichts Neues
herausfinden, wenn man nicht vorher eine Frage stellt. Und
um zu fragen, bedarf es des Zweifelns.

(Richard P. Feynman)
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