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1 Motivation

Seit der Entdeckung des Quantenparallelismus zum Lösen komplexer Pro-
blem (z.B. Faktorisierung großer Produkte aus zwei Primzahlen), ist es von
größtem Interesse geeignete Quanten-Informationsträger, die sog. Qubits, zu
finden und geschickt zu implementieren. Wie bereits für die klassische Infor-
mationstheorie bekannt und für die Quanten-Information nochmals bestätigt,
reicht es dabei völlig 2-Bit Operationen und dementsprechend zwei 2-Zustand-
Qubits zu verwenden. In einer groben Einteilung kann man dabei von 2 Ka-
tegorien ausgehen:

• Flying Qubits: Wie der Name schon sagt, dienen sie dem Transport
von Information. Daher sollten sie schnell und robust gegenüber der
Umwelt sein. Offensichtlich bestens dafür geeignet sind Photonen. Die
Schwachstelle dieser Qubits liegt allerdings in der Realisierung von 2-
Bit-Gattern, da der Wirkungsquerschnitt von Photonen mit Photonen
in der Größenordnung ∼ λ2 liegt:

σph−ph ∝ λ2 (1)

• Stationary Qubits: Stationary Qubits sollen dazu dienen lokal Ma-
nipulationen an einzelnen Qubits vornehmen zu können, da dies oft
einfacher ist, als bei bewegten Qubits. Als solche können zum Beispiel
neutrale Atome, Moleküle oder Ionen dienen. Man kann diese in hinrei-
chender Art und Weise an einem Punkt halten und so gut manipulieren,
z.B. mittels Laser oder Magnetfeldern. Ein weiterer Vorteil von Ato-
men ist, dass sie sich sehr gut zur Realisierung von 2-Bit Operationen
eignen, da man zwei Qubits in zwei unterschiedlichen Niveaus eines
Atoms speichern kann und auf diese Weise gut verarbeiten kann. Der
große Nachteil dieser Qubit-Träger ist ihre Masse, da sie dadurch nur
schlecht als Flying Qubits eingesetzt werden können.

Es liegt nun auf der Hand beide Arten von Qubits miteinander zu verknüpfen
um von den Vorteilen beider Gebrauch machen zu können und die gegensei-
tigen Nachteile auszugleichen. Man kann sich in einem einfachen Modell zwei
Atome mit jeweils einem Qubit vorstellen und deren informationstheoretische
Wechselwirkung mittels Photonen realisieren.

Dieses Modell wirft allerdings direkt eine neue Herausforderung auf: es
muss garantiert werden, dass ein Qubit aus einem Atom deterministisch
durch genau ein Photon auf das andere Atom übergeht. Das wirft die Frage
nach deterministischen Einphotonenquellen auf, um kontrollierte Kommuni-
kation zu gewährleisten.
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Um nun der Frage nachzugehen wie wir photonische und atomare Qubits
miteinander verknüpfen können, werden wir uns in einem ersten Schritt mit
der zugrundeliegenden Quantenmechanik der Cavity Quantenelektrodyna-
mik (CQED) befassen. Der Resonator wird dazu benötigt um gezielt eine
einzelne Mode des elektromagnetische Feldes mit einem Übergang des Atoms
in einer bestimmten Art und Weise zu koppeln. Dadurch können kohärente
Übergange zwischen photonischen und atomaren Anteilen des Qubits reali-
siert werden.
In einem zweiten Schritt werden wir uns dann damit befassen wie wir mittels
unserer bis dahin erworbenen Kenntnisse eine spezielle 2-Bit Operation, die
sog. controlled-qubit-Funktion, realisieren können.
Haben wir dies, so ist es klar, dass wir uns im dritten Teil mit der Frage der
Konstruktion einfacher Quantennetzwerke beschäftigen werden. Diese wer-
den dafür gebraucht beliebige Informationen in einem Netzwerk austauschen
und bearbeiten zu können.
Als letzten Teil werden wir uns schließlich noch mit einem bestimmten Ver-
fahren, dem STIRAP-Verfahren, zur deterministischen Realisierung von Ein-
photonenquellen beschäftigen, welches unabdingbar ist um Quantennetzwer-
ke realisieren zu können.

Ein weiteres Kriterium unter dem wir die folgenden Modelle betrachten
werden, beruht auf zwei von DiVincenzo vorgeschlagenen Eigenschaften, wel-
che ein zur Quanteninformationsverarbeitung verwendbares System besitzen
muss:

• Skalierbarkeit: Ein System muss skalierbar sein, d.h. es muss ohne
große Schwierigkeiten möglich sein, weitere Qubits hinzuzufügen um
schlussendlich beliebig große Quantenrechner bauen zu können.

• Identifikation einzelner Qubits: Um gezielte Manipulation gewähr-
leisten zu können muss es mögliche sein, jedes einzelne Qubit identi-
fizieren zu können. Dies ist analog zur Unterscheidung der Positionen
von 0 und 1 in der klassischen Informationsverarbeitung.

Ausführlicheres zu diesen Eigenschaften findet man auch in [5].
Die CQED bietet den notwendigen physikalischen Rahmen und erfüllt die

obigen Kriterien in einer hinreichenden Weise: (i) es ist eine gezielte Kopplung
von Photonen an Atome möglich, (ii) die Skalierbarkeit ist gewährleistet, da
man ohne weiteres einen weiteren Resonator hinzufügen kann, und schließlich
ist (iii) auch die Identifikation gewährleistet, da die Resonatoren klassische
Objekte und somit per se unterscheidbar sind.
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2 Quantenmechanik der Cavity Quantenelek-

trodynamik

2.1 2-Niveau-Systeme im Resonator und strong-coupling

Die Quantenmechanik der CQED beschäftigt sich mit der Wechselwirkung
von Photonen, also dem quantisierten elektromagnetischen Feld, mit einzel-
nen Übergängen in einem Atom.

Abb. (1) zeigt das einfachste

Abbildung 1: einfachstes Resonatormodell
mit Zerfallskanälen

Modell, welches sinnvollerwei-
se angenommen werden kann.
Es enthält einen Resonator be-
stehend aus zwei Spiegeln mit
Reflexivitäten R = 1 bzw.
R < 1. Die angeregte Reso-
natormode kann über letzte-
ren mit einer Zerfallsrate κ zer-

fallen. Im Resonator selbst befindet sich ein einzelnes 2-Niveau Atom mit den
internen Zuständen |a〉 und |b〉, welche innerhalb des Resonators über die
Kopplungskonstante g miteinander verknüpft sind. |a〉 kann mit einer Rate
γ spontan zerfallen. Die hellgrau hinterlegte Fläche innerhalb des Resonators
soll das Modenvolumen V darstellen.

Um nun die Kopplungskonstante g berechnen zu können, muss das elek-
tromagnetische Feld quantisiert werden, da man nur mit einzelnen Photonen
wechselwirken wird. Das quantisierte elektromagnetische Feld einer einzelnen
Mode ist gegeben durch (siehe [8]):

Ê =

√
~ω

2ε0V

(
â + â†

)
· f (~r) (2)

Hierbei ist ω die der Mode zugehörige Kreisfrequenz und V das soeben ge-
nannte Modenvolumen. Die Operatoren â und â† bezeichnen die Vernichtung
bzw. Erzeugung einer Mode der Frequenz ω, also sozusagen eines einzelnen
Photons. Zuletzt steht f (~r) für die Wellenfunktion der Mode. Der Vorfaktor√

~ω
2ε0V

ist also das elektrische Feld pro einzelnem Photon.

Um nun die Wechselwirkung zwischen Photon und Atom zu beschreiben,
geht man vom Prinzip minimaler Kopplung aus und findet in erster Ordung
die Dipolwechselwirkung:

H = −d̂ · Ê (3)
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Der Dipoloperator d̂ kann dabei nun mittels ”Entwicklung der 1” geschrieben
werden als

d̂ = dab |a〉 〈b| + dba |b〉 〈a| (4)

Nimmt man nun o.B.d.A an, dass ℘ ≡ dab = dba und setzt Gl. (2) und
(4) in Gl. (3) ein, so findet man in der rotating-wave-approximation (RWA)
folgenden Ausdruck für die Dipolwechselwirkung:

H = −d̂ · Ê RWA−→ ~g (|a〉 〈b| â + h.a.) (5)

Aus Gl.(5) lässt sich nun g ablesen:

g = ℘

√
ω

2~ε0V
. (6)

Man erkennt, dass die Kopplung dem Modenvolumen umgekehrt proportio-
nal ist. Man ist daher daran interessiert möglichst kleine Resonatoren zu
konstruieren um eine möglichst große Kopplung zu erhalten. Dies liegt an
den besonderen Eigenschaften des sog. strong-coupling regimes. Man unter-
scheidet zwei Grenzfälle für g (siehe auch [6, Kap.10]):

• g2 � κγ: weak-coupling regime
Gilt o.B.d.A. g � γ so folgt daraus direkt, dass Tγ � Tg, wobei nun
T die charakteristische Zeit der entsprechenden Dynamik ist. Dies gilt,
da Tx = 1

x
. Man erkennt hieran, dass die Dynamik der Kopplung viel

langsamer als der Zerfall des oberen Laserniveaus geschieht, und somit
inkohärente Prozesse die größte Wahrscheinlichkeit haben.

• g2 � κγ: strong-coupling regime
Mit dem selben Argument wie oben lässt sich nun zeigen, dass Tg �
Tγ,κ ist. D.h., die gekoppelte kohärente Dynamik verläuft viel schneller,
als der Zerfall durch spontane Emission oder entweichen aus dem Reso-
nator. Da die gekoppelte Dynamik kohärent ist, ist sie unitär und somit
reversibel. In diesem Bereich kann man also unitäre Dynamik zwischen
Atom und Resonator beobachten. Ein Photon wird sozusagen schneller
emittiert und wieder absorbiert, als es aus dem Resonator entweichen
kann.

Man erkennt sofort, dass im Bereich des strong-coupling völlig neue Ef-
fekte auftreten werden. Jedoch besteht eine der großen Herausforderungen
darin, dieses Regime überhaupt erst zu erreichen. Um eine Vorstellung da-
von zu bekommen, wie herausfordernd diese Aufgabe ist, kann man sich den
Zusammenhang zwischen g2 und (κ · γ), der Einfachheit halber, in einem
Fabry-Perot-Resonator anschauen:
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Abbildung 2: Fabry-Perot-Resonator

Der hier betrachtete Fabry-Perot-Resonator (siehe Abb.2) besteht aus
zwei planparallelen Spiegeln mit Reflexivitäten R1 = 1 und R2 = R < 1
im Abstand L. Das Modenvolumen lässt sich bestimmen zu V = A · L.
Die Resonatorverlustrate κ ist bestimmt durch die ”Verlustzeit” des Resona-
tors und lässt sich ausdrücken durch κ = (1−R) c

2L
, wobei c

2L
die rezipro-

ke Umlaufzeit eines einzelnen Photons im Resonator ist. Die Verlustrate γ
des spontanen Zerfalls kann mittels des Einstein-A-Koeffizienten ausgedrückt
werden:

γ = ℘2 ω3

3π2c3~ε0

. (7)

Nach Gl.(6) gilt:

g2 = ℘2 ω

2~ε0A · L
(8)

wobei hier das Modenvolumen bereits durch A ·L ersetzt wurde. Ersetzt man
nun L und ℘2 in Gl. (8) mit Hilfe der Gleichungen für κ und γ, so erhält man
nach einigen Umformungen:

g2 =
2

4π

λ2

A

1

1−R
κγ. (9)

Im strong-coupling-regime soll gelten g2 � κγ. Dies kann wie folgt realisiert
werden:

• A � λ2

Dieser Grenzfall ist im optischen Lichtwellenbereich nicht möglich, da
dies eine Fokusierung des Modenvolumenquerschnitts auf weniger als
eine Quadratwellenlänge erfodern würde. Jedoch liegt schon bei gur
fokusierten Lasern die Größe der Strahltaille bei mehreren 10-100 Wel-
lenlängen.
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• 1
1−R

� 1
Dieser Grenzfall erfordert (1− R) → 0. D.h. die Reflexivität des Aus-
koppelspiegels muss sehr nah bei 1 liegen. Die große Herausforderung
liegt also nun darin Resonatoren zu konstruieren, deren Reflexivitäten
möglichst nah bei 1 liegen. Man spricht daher von high-Q-cavities, da
der Q-Faktor

(
Q ≡ ω

∆ω

)
sehr groß werden muss. ∆ω wird hierbei be-

stimmt durch den freien Spektralbereich des Resonators, welcher sehr
klein werden muss. (Siehe dazu auch [6, Kap.10].)

2.2 Aus zwei mach drei Niveaus und STIRAP

In der Quanteninformationverarbeitung möchte man möglichst alle inkohären-
ten Zerfallsquellen ausschalten. Eine Zerfallsquelle, der spontane Zerfall γ,
lässt sich dadurch vermeiden, das man nicht das vorgeschlagene 2-Niveau-
System aus dem vorigen Abschnitt verwendet, sondern ein leicht komplizier-
tes 3-Niveau-System (siehe Abb. 3) zugrunde legt.

Das vorgeschlagene 3-Niveau-Λ-System be-

Abbildung 3: 3-Niveau-
System

steht nun also aus drei Niveaus |a〉, |b〉, welche
(meta)stabil sind und |c〉, welches mit einer
Rate γ spontan zerfallen kann. Die Nivaus |b〉
und |c〉 sind über die quantisierte Resonator-
mode mit der Kopplungskonstante g mitein-
ander verknüpft. Die Niveaus |a〉 und |c〉 sind
über ein klassisches Feld E mit Rabifrequenz
Ω = ℘acE

~ miteinander gekoppelt. Ein Über-
gang zwischen den Niveaus |a〉 und |b〉 soll ver-
boten sein. Es liegt nun auf der Hand das Qubit als Kohärenz zwischen |a〉
und |b〉 zu definieren. Dieses kann somit nicht mehr spontan inkohärent zer-
fallen und ein möglicher Zerfallskanal ist eliminiert.
Ein weiterer Vorteil dieses Systems liegt darin, dass man über das zusätzli-
che klassische Feld E eine weitere Einflussmöglichkeit auf das System hat. E
wird daher auch Kontrollfeld genannt. Die Einflußnahme kann z.B. über dy-
namische (ac-)Stark-Shifts erfolgen, welche die Energie der Niveaus |a〉 und
|c〉 verschiebt und somit also auch einen Einfluß auf die Kopplung |b〉 ↔ |c〉
hat.

Ein besonders schöner Effekt, welcher bei dem vorgeschlagenen System
auftritt, ist der STIRAP - Stimulated Raman Adiabatic Passage. Mit Hilfe
dieses Prozesses kann man 100% der Population aus Niveau |a〉 in Niveau |b〉
transferieren, was in einem 2-Niveau-System nicht möglich ist, da dies mit
maximal 50% begrenzt ist.
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Der Hamiltonoperator des 3-Niveau-Systems lautet im Wechselwirkung-
bild (siehe [3]):

H = −~
2

 0 Ω 0
Ω∗ 2∆ 2g
0 2g∗ 0

 (10)

Dabei ist ∆ die gemeinsame Verstimmung von Kontrollfeld und Resonator-
mode vom oberen Niveau |c〉. Die zu dieser Matrix zugehörige Basis lautet
{|a〉 , |c〉 , |b〉}. Bei Vernachlässigung der Zeitabhängigkeit kann der Zustand
des Systems |Ψ〉 ausgedrückt werden als Superposition der Basiszustände:∣∣a+

〉
= cos ϕ sin ϑ |a〉 − sin ϕ |c〉 + cos ϕ cos ϑ |b〉 (11a)∣∣a−〉
= sin ϕ sin ϑ |a〉 + cos ϕ |c〉 + sin ϕ cos ϑ |b〉 (11b)∣∣a0

〉
= cos ϑ |a〉 − sin ϑ |b〉 (11c)

Die auftretenden Winkel heißen Mischungswinkel und sind wie folgt definiert:

tan ϑ =
Ω

2g
(12a)

tan ϕ =

√
4g2 + Ω2√

4g2 + Ω2 + ∆2 −∆
(12b)

Ändert man nun das Kontrollfeld Ω als Funktion der Zeit so ändern sich die
Eigenzustände ebenfalls in der Zeit, da sich die zugehörigen Mischungswinkel
ändern.
Besonders auffällig ist das Verhalten des Zustandes |a0〉. Dieser enthält keine
Beimischungen des instabilen, angeregten Zustandes |c〉 und wird daher auch
”dark-eigenstate” genannt. Befindet sich das System anfangs in Zustand |a〉
so wird durch Anlegen des Kontrollfeldes auf eine bestimmte Art und Weise
die gesamte Population von |a〉 nach |b〉 verschoben. Dies gilt allerdings nur
solange, wie der Prozeß adiabatisch abläuft. Dieser Prozess ist unitär und
damit reversibel, d.h. man kann beliebig die Population zwischen |a〉 und |b〉
hin- und herschieben, ohne dabei Gefahr zu laufen, dass das System zerfällt,
da es ja keine Beimischung des Niveaus |c〉 enthält. Darüberhinaus ist man
nicht auf maximal 50% der Population beim Transfer beschränkt.

Wir haben in diesem Abschnitt nun die Grundlagen für die folgenden
Abschnitte gelegt und können uns jetzt der Realisierung von controlled-
qubit-Operationen zuwenden. Dabei wird uns wiederum ein ”dark-state” be-
gegnen, welcher ähnlich Eigenschaften wie der soeben vorgestellte aufweisen
wird. Man wird auch im danach Folgenden erkennen, dass sich die in diesem
Abschnitt vorgestellten Prinzipien stets wiederholen werden und somit sehr
grundlegend sind für die Quanteninformationsverarbeitung mit Resonatoren.
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3 Realisierung von C-Operationen

Zur Verarbeitung von Information ist es notwendig 2-Bit-Gatter zu konstru-
ieren, welche abhängig von einem der beiden Bits eine Manipulation des zwei-
ten Bits durchführen. Solche Operationen nennt man in der Quanteninforma-
tion C-Operationen (controlled-qubit-Operationen). Die generelle Struktur
ist dabei die Folgende (εi ∈ {0, 1}):

|ε1〉 |ε2〉 → δε10 |ε1ε2〉 + δε11 |ε1〉 Û |ε2〉 (13)

Abhängig vom Zustand des Qubits |ε1〉 wird das zweite Qubit |ε2〉 nicht
verändert oder einer unitären Transformation Û unterworfen.

Das hier vorgeschlagene Schema aus [1] besteht

Abbildung 4: Schema
zur Realisierung einer
C-Operation

aus zwei Atomen, die jeweils für sich ein einzelnes
2-Zustand-Qubit bilden, und mit klassischen Kon-
trollfeldern Ω1 bzw. Ω2 gesteuert werden (siehe Abb.
4). Es ist augenscheinlich klar, dass das vorliegende
Schema die Forderungen der Skalierbarkeit und ein-
deutigen Identifikation erfüllt. Ein weiterer Vorteil
ist auch, dass eine Operation zwischen beliebigen
Qubits nun möglich wird, da die einzelnen Qubits ja
räumlich voneinander getrennt sind und sich nicht
innerhalb eines einzelnen Atoms befinden.

Die Idee einer C-Operation lässt sich nun in drei Schritte zerlegen:

1. Abbilden der 2 Qubits |ε1〉, |ε2〉 auf ein einzelnes 4-Niveau-System des
Atoms 2, wobei Atom 1 in Zustand |0〉 übergeht.

2. Manipulation der Zustände des Atoms 2 gemäß

|ε1ε2〉 → δε10 |ε1ε2〉 + δε11

∑
ε′
2

|ε1ε
′
2〉 〈ε′2| Û |ε2〉

Die unitäre Transformation Û kann dabei z.B. das Anlegen eines äuße-
ren magnetischen oder elektrischen Feldes sein.

3. Die umgekehrte Abbildung zu Schritt 1 wird angewandt.

Das vorgeschlagene System realisiert die Wechselwirkung zwischen zwei
beliebigen Qubits also dadurch, dass es das eine Qubit auf das andere abbil-
det, was nicht durch räumliche Separation beeinträchtigt wird.
Der Hamiltonoperator des Systems lautet im Wechselwirkungsbild (~ = 1):

HI =
∑
j=1,2

(
Ωj(t)e

−ı̇ωLt

2
|c〉jj〈a| +

g

2
|c〉jj〈b| b̂

)
+ h.a., (14)
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dabei sind Ωj(t) verschiedene klassische Kontrollfelder mit der Frequenz ωL

und b̂ der Vernichter eines Cavity-Photons. Unter den Eigenzuständen dieses
Hamiltonoperators befinden sich wiederum dark-states:

|D0〉 = |b, b, 0〉 ≡ |b〉1 |b〉2 |0〉c (15a)

|D1〉 ∝ Ω1g |b, a, 0〉+ Ω2g |a, b, 0〉 − Ω1Ω2 |b, b, 1〉 (15b)

Dabei bezeichnet |X〉c den Zustand des Resonator, in dem Sinne, dass X
die Anzahl der Photonen in der Resonatormode bezeichnet. Schaut man sich
nun den Zustand |D1〉 an, so stellt man folgendes Grenzverhalten fest:

• Ω2

Ω1
→ 0: |D1〉 → |b, a, 0〉

• Ω1

Ω2
→ 0: |D1〉 → |a, b, 0〉

Es ist also möglich durch geschickte Wahl der Zeitabhängigkeit der beiden
Kontrollfelder die Operation |b, a, 0〉 ↔ |a, b, 0〉 durchzuführen. Präpariert
man nun das System zusätzlich in einer Superposition zwischen |D0〉 und
|D1〉, so kann man beliebige Kohärenzen von Atom 1 auf Atom 2 übertragen:

(A |a〉1 + B |b〉1) |b〉2 |0〉c ↔ |b〉1 (A |a〉2 + B |b〉2) |0〉c . (16)

Dies gilt für beliebige Koeffizienten A, B. Es ist somit möglich ein beliebiges
Qubit, welches ja definiert war als Kohärenz zwischen den Zuständen |a〉i und
|b〉i, zwischen zwei Atomen zu transferieren. Das System weist also, wie zu
Beginn bereits erwähnt, ein STIRAP-ähnliches Verhalten auf: Die Kohärenz
zwischen zwei Atomen lässt sich beliebig hin- un herschieben, ohne Gefahr
zu laufen, dass das System über einen instabilen angeregten Zustand zerfällt.
Einige weitere Vorteile des Systems sind, (i) dass die Wechselwirkungen
während des gesamten Prozeßes resonant sein können und somit keine Pha-
senverschiebungen auftreten, (ii) dass es nicht von Nöten ist genaue Wech-
selwirkungszeiten einzuhalten, solange man sich sicher ist, dass der Prozeß
adiabatisch abläuft, (iii) dass ein Zerfall durch Entweichen eines Photons aus
dem Resonator nur in der kurzen Zeit der Besetung des Zustandes |b, b, 1〉
auftreten kann.

Mit diesem Modell für einen Kohärenztransfer läßt sich nun Schritt 1
des Protokolles ausführen. Da sich nun beide Qubits innerhalb des Atoms 2
befinden, kann man nun, z.B. durch Anlegen äußerer Felder, eine 2-Qubit-
Operation durchühren (entspricht Schritt 2). Nach Manipulation der beiden
Qubits durch dieses 2-Qubit-Gatter, bedient man sich wiederum des Trans-
ferschemas um die Qubits wieder auf die zwei Atome zu verteilen (Schritt
3).
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Wir haben also gesehen, dass es prinzipiell möglich ist, ein System zu rea-
lisieren, welches unitäre 2-Qubit-Operationen zulässt und den Anforderun-
gen an einen Quantencomputer (Skalierbarkeit, Identifizierkeit) standhält.
Jedoch ist dies nur im Grenzfall des strong-coupling-regime möglich, wel-
ches, wie wir gesehen haben, sehr strenge Anforderungen an die physikalische
Wirklichkeit stellt.

Um fortzufahren in der Konstruktion eines Quantencomputers benötigen
wir natürlich Netzwerke, über welche wir die Quanteninformation austau-
schen können. Mit der Verwirklichung eines solchen, wird sich der nächste
Abschnitt befassen. Wir werden dort von der soeben vorgestellten Idee des
Kohärenztransfers zwischen zwei Atomen Gebrauch machen, die sich nun
aber in zwei verschiedenen Resonatoren befinden, welche die Knoten des
Netzwerkes darstellen.

4 Quantennetzwerk

Ein Netzwerk besteht i.A. aus zwei oder mehr Knoten, welche die einkom-
menden Signale verarbeiten und gegebenenfalls weitersenden und den dazu
notwendigen Leitungen. Wir werden hier in der Darstellung einem Vorschlag
aus [2] folgen, wo ein sehr simples Modell für ein Netzwerk vorgeschlagen
wird, welches aus zwei Resonatoren (entsprechen den Knoten) und einer Lei-
tung, die nur Kommunikation in eine Richtung zulässt, besteht (siehe Abb.
5).

Abbildung 5: Modell eines Netzwerkes

Ziel einer Quantentransmission ist es immer, diese mit einer Effizienz von
100% ablaufen zu lassen, also eine ideale Transmission durchzuführen:

(cg |g〉1 + ce |e〉1) |g〉2 ⊗ |0〉1 |0〉2 |vac〉
−→ |g〉1 (cg |g〉2 + ce |e〉2)⊗ |0〉1 |0〉2 |vac〉

(17)

Diese Art des Kohärenztransfers ist uns bereits in Gl. (16) begegnet. Im Un-
terschied zum dem dortigen Kontext, befinden sich hier die Atome jedoch

11



in zwei räumlich getrennten Resonatoren (siehe Abb. 6), und somit treten
hier noch weitere Möglichkeiten der Dekohärenz, wie z.B. die Reflexion des
Lichtpulses am Spiegel des zweiten Resonators (Empfänger), auf. Dieser, in
der Tat dominante Dekohärenzkanal, kann durch Kontrolle des Transmis-
sionprozesses vollständig unterbunden werden:

Nehmen wir an, dass das emitierte Photon als Wellenpaket entlang der
Leitung propagiert. Könnten wir dieses Wellenpaket in der Zeit umkehren
und es in seinen Ausgangsresonator zurückschicken, würde es den vorheri-
gen Zustand des Atoms im Resonator wieder herstellen, vorausgesetzt, wir
würden auch die Laserpulse in der Zeit umkehren. Wenn wir allerdings in
der Lage wären, das Atom in Resonator 1 derart zu manipulieren, dass das
ausgesandte Wellenpaket in der Zeit symmetrisch wäre, so würde dieses im
Empfängerresonator 2 den vorher dargestellten zeitgespiegelten Prozess nach-
ahmen und so den Zustand des Atoms 1 in Atom 2 ”wieder herstellen”. Solche
Photonen heißen zeitsymmetrische Photonen.

Abbildung 6: Modell eines Netzwerkes

Um nun die Quantentransmission zu beschreiben, benutzen wir das Mo-
dell aus dem vorigen Abschnitt, trennen jedoch die Atome und setzen sie in
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separate Kavitäten. Die Dynamik innerhalb der einzelnen Resonatoren lässt
sich jetzt mittels des folgenden Hamiltonoperators beschreiben:

Hi = −δâ†i âi +
g2

∆
â†i âi |b〉ii〈b|+ δωi (t) |a〉ii〈a| − ı̇gi (t)

[
eı̇φi(t) |a〉ii〈b| âi − h.a.

]
.

(18)
Hierbei sind ∆ und δ die Verstimmungen des Lasers von der Anregungs-
frequenz bzw. der Resonatormode, âi ist der Vernichter eines Photons der
Resonatormode. Der erste Term beschreibt Photonen, welche auf Grund der
Verstimmung nicht absorbiert werden, die zwei folgenden Terme beschrei-
ben ac-Stark Verschiebungen der Niveaus |a〉 bzw. |b〉, welche durch die
entsprechenden Felder (Laserfeld, Resonatormode) verursacht werden,wobei

δωi =
Ω2

i

4∆
. Der letzte Term ist die sog. Jaynes-Cummings Wechselwirkung,

welche eine effektive Kopplungskonstante gi (t) = gΩi(t)
2∆

enthält.
Um schließlich noch die Transmission einzuführen, behilft man sich mit

einer phänomenologischen Beschreibung des Zerfalls durch einen komplexen
Hamiltonoperator. Hierbei ist zu beachten, dass dieser nicht mehr hermitesch
ist und sich somit Links- und Rechtseigenvektoren unterscheiden. Die gesamte
Prozessdynamik lässt sich nun berechnen mittels:

Heff (t) = H1 (t) + H2 (t) − ı̇κ
(
â†1â1 + â†2â2 + 2â†2â1

)
. (19)

H1 und H2 stehen dabei für die Dynamik in den entsprechenden Resonatoren
und ı̇κâ†i âi für den Zerfall eines Photons aus dem Resonator i. Zu guter letzt
beschreibt der Term 2ı̇κâ†2â1 einen Transmissionsprozeß: â1 vernichtet ein
Photon in Resoantor 1, welches eben mit der Rate κ zerfällt und â†2 erzeugt
eben dieses Photon in Resonator 2.

Eine ideale Trasmission kann genau dann auftreten, wenn das System
während des gesamten Prozesses in einem dark-state verbleibt, also kein Zer-
fall auftritt. Expandiert man den dark-state |Ψ〉 in die Systembasis so hat er
folgende Struktur:

|Ψc (t)〉 = cb |bb〉 |00〉
+ ca

[
α1 (t) eı̇φ1(t) |ab〉 |00〉+ α2 (t) eı̇φ2(t) |ba〉 |00〉

]
+ ca

[
β1 (t) |bb〉 |10〉+ β2 (t) |bb〉 |01〉

] (20)

Dabei gibt der erste Ket-Vektor jeweils den Zustand des Atoms und der zwei-
te Ket-Vektor den Zustand des Vakuumfeldes, d.h. die Anzahl der Photonen,
im jeweiligen Resonator an. Es ist klar, dass αi proportional zur Besetzungs-
zahl im Zustand |ab〉 bzw. |ba〉 ist, und βi zur Photonenzahl in den einzelnen
Resonatoren. Aus (20) kann man einfach ablesen, welche Bedingungen gelten
müssen um ideale Transmission zu gewährleisten:
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• α1 (−∞) = α2 (+∞) = 1

• φ1 (−∞) = φ2 (+∞) = 0

Mit diesen Bedingungen kann man nun Bewegungsgleichungen finden und
Bedingungen für eine gesamte Lösungsklasse von Pulsen finden. Dies wollen
wir hier nicht im Detail diskutieren und es sei an dieser Stelle auf [2] verwie-
sen. Eine besondere Bedingung ist die oben motivierte symmetrische Puls
Bedingung:

g2 (t) = g1 (−t) ,

welche automatisch

α1 (t) = α2 (−t)

βa (t) = βa (−t)

zur Folge hat. Dabei ist βa = 1√
2
(β2 − β1) proportional zur Besetzungsdiffe-

renz der Photonenzahl in den Resonatoren. Das Zeitverhalten der Lösungen
dieser Klasse ist also völlig symmetrisch. Zur Kontrolle der analytischen Vor-
hersagen, kann man den vollen Hamiltonoperator (19) numerisch behandlen.
Die Ergebnisse sind in Abb.7 zu sehen.

Abbildung 7: numerische Analyse des vollen eff. Hamiltonoperators (19)

Man kann sehr deutlich den Besetzungstransfer von |α1|2 = 1 → |α2|2 =
1 erkennen, wohingegen die Anregung des Vakuumfeldes |βa|2 nur von sehr
kurzer Dauer ist. Die gewählte Zeitabhängigkeit von g1 ist im kleinen Kasten
innerhalb der Abbildung zu sehen.
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Damit ist schließlich gezeigt, dass sich unter bestimmten Bedingungen
eine ideale Transmission realisieren läßt. Die Kommunikation und Wechsel-
wirkung zwischen zwei beliebigen Knoten ist damit gewährleistet. Um dieses
Schema jetzt auch wirklich verwenden zu können benötigen wir noch eine
Komponente: sog. Einphotonenquellen. Damit wollen wir uns im nächsten
Abschnitt beschäftigen.

5 Deterministische Einphotonenquellen

Wie oben bereits erwähnt soll es in diesem Abschnitt um die Generierung
einzelner Photonen gehen. Dabei wird nicht irgendeine Erzeugung gemeint,
sondern eine deterministische und unitäre Produktion abgestrebt, im Unter-
schied zu strahlenden Zerfällen, welche spontan passieren und somit nicht
reversibel sind. Da der Prozeß unitär sein wird, kann man ihn somit auch oh-
ne Probleme umdrehen und so eine deterministische Absorption erzwingen.

In einem ersten Schritt werden wir uns mit einem generellen Schema zur
Erzeugung befassen, dann in einem weiteren Schritt ein Experiment vorstel-
len, welches Einzelphotonenproduktion nachweisen kann und zu guter letzt
wird eine physikalische Realisierung des vorgestellten Prinzips präsentiert.

5.1 Schema der Erzeugung

Zur Erzeugung einzelner Photonen kann man sich des STIRAP-Prozess be-
dienen (siehe Abschnitt 2.2). Modifiziert man das dortige Modell in dem Sin-
ne, dass man zusätzlich zu den atomaren Zuständen auch noch den Zustand
des Vakuumfeldes berücksichtigt, so erhält man das folgende Niveauschema
Abb.8. Eine genauere Behandlung findet man in [3].
Das Zielniveau |g, 1〉 schickt sein Photon sozusagen hinaus in den Resona-
tor. Da bei dem STIRAP-Modell ein Dipolübergang |g〉 ↔ |u〉 verboten war,
braucht man einen zusätzlichen Puls um das System wieder in den Ausgangs-
zustand |u, 0〉 zurückzubringen, damit man wiederum ein neues einzelnes
Photon erzeugen kann. Die Generierung ist in sofern deterministisch, als die
typische Zeitskala des adiabatischen STIRAP-Prozesses viel größer als die
Zerfallszeit des Photons aus dem Resonator ist. D.h. sobald der STIRAP-
Prozess beginnt entweicht das Photon bereits aus dem Resonator.

5.2 Nachweis von Einzelphotonen

Der Nachweis einzelner Photonen stellt sich als äußerst schwierig heraus,
da es zwar möglich ist ein einzelnes solches nachzuweisen aber es mit den
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Abbildung 8: STIRAP-Schema zur Generierung einzelner Photonen

herkömmlichen Detektoren, auf Grund der langen Totzeit, nicht möglich ist
zu unterscheiden, ob es sich um tatsächlich um ein einzelnes oder mehrere
Photonen handelt.

Man behilft sich daher einer Korre-

Abbildung 9: Experiment zur
Korrelationsmessung

lationsmessung (siehe Abb.9). Dazu be-
nutzt man zwei Einzelphotonendetekto-
ren C und D, wobei sich das Signal von
Detektor D mit Hilfe einer Delayline be-
liebig verzögern läßt. Somit kann man
die Korrelation auch in der Zeit messen.
Das aus dem Resonator emittierte Pho-
ton fällt auf einen Strahlteiler und wird
mit einer Wahrscheinlichkeit von 50% auf
Detektor C bzw. D weitergeleitet. Dort
löst es dann ein Signal aus, welches samt
Zeitpunkt registriert wird. Eine Korrelation läßt sich nun durch Auswerten
der folgenden Korrelationsfunktion

g(2) (τ) =
〈PC (t) PD (t− τ)〉
〈PC (t)〉〈PD (t)〉

(21)

feststellen. Physikalisch lässt sich diese Funktion wie folgt verstehen: 〈PC (t) PD (t− τ)〉
ist genau dann 1, wenn zum Zeitpunkt t Detektor C und zum Zeitpunkt t−τ
Detektor D feuern, ansonsten ist es gleich null. Die Erwartungswerte 〈PC (t)〉,
〈PD (t)〉 sind nur zur Normierung der Funktion vorhanden und zählen die An-
zahl der Gesamtereignisse am jeweiligen Detektor. Die Verzögerung τ lässt
sich, wie oben erwähnt, durch die Länge der Delayline variieren.
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Abbildung 10: Ergebnis einer Korrelationsmessung

Es ist nun offensichtlich klar, dass genau dann nur ein Photon erzeugt
wurde, wenn bei τ ≡ 0 die Korrelationsfunktion g(2)(0) ≡ 0 ist, da dann
nur einer der beiden Detektoren gefeuert haben kann. Ein typisches Ergebnis
einer solchen Messung ist in Abb. 10 zu sehen. Den Effekt g(2)(0) ≡ 0 nennt
man auch photon-antibunching. Der Grund für den oszillierenden Charakter
von g(2) liegt darin, dass wenn die Verzögerungszeit τ geschickt gewählt ist,
das erste Photon solange verzögert wird, bis ein zweites generiert wurde,
beide Detektoren schließlich gleichzeitig feuern und somit eine Korrelation
gemessen wird. D.h., der Abstand zwischen zwei Peaks entspricht gerade
der Generationszeit eines einzelnen Photons. Dass die Korrelationsfunktion
im realen Experiment nicht ganz null wird, liegt an zufälligen Koinzidenzen
(detector noise counts), da das Experiment ja über lange Zeiten mitteln muss.

5.3 Realisierung in 85Rb

Um diese Kapitel abzuschließen soll hier noch ein Experiment vorgestellt wer-
den, welches sich der beiden soeben vorgestellten Techniken zur Einzelpho-
tonenerzeugung und -nachweis bedient hat. Die zugehörige Veröffentlichung
findet man unter [4]. Das Experiment wurde mit 85Rb durchgeführt; das re-
levante Niveauschema ist in Abb.11 zu finden. Man erkennt, dass der repum-
ping pulse, welcher das System wieder in den Ausgangszustand zurückführen
soll, gerade den umkehrten Weg pumpt und das System dann durch spon-
tanen Zerfall in seinen Ausgangszustand überführt wird. In Abb.12 findet
man die zu dem Experiment zugehörigen Parameter: Diagramm A stellt die
zeitliche Entwicklung des Pumplasers (blau/durchgezogen) und des Recy-
cling Lasers (grau/gestrichelt) dar. Die Sägezahnspannung wurde gewählt
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Abbildung 11: relevanter Ausschnitt aus dem Niveauschema von 85Rb

Abbildung 12: relevante Daten zum Experiment

um optimale adiabatische Bedingungen zu gewährleisten. In Diagramm B
sind die experimentellen Daten zu sehen, welche man sofort mit den numeri-
schen Erwartungen in Diagramm C vergleichen kann. Man erkennt eine sehr
gute Übereinstimmung zwischen den beiden Graphen. Ein einzelner Peak
des Diagramms entspricht genau einem deterministisch generierten Photon,
und spiegelt die zeitliche Struktur des Photons, also die zeitliche Form des
Wellenpakets, wider. Die Ausdehnung des Wellenpakets entspricht genau der
Lebensdauer des Photons im Resonator, sprich der reziproken Zerfallsrate 1

κ
.

Dies bestätigt die oben erwähnte deterministische Generierung: die charak-
teristische Zeitänderung des adiabatischen Vorganges ist viel größer als die
Zerfallszeit aus dem Resonator.

Dass die Erwartungen keiner δ-Funktion ähnlich sind, liegt sowohl in der
Natur der Quantenmechanik (siehe Unschärferelationen) als auch an der Ei-
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genschaft des STIRAP dark-state:∣∣a0
〉

= cos ϑ |u, 0〉 − sin ϑ |g, 1〉 .

Sobald der Mischungswinkel ϑ nur leicht ungleich null wird, trägt |g, 1〉 zum
dark-state bei, kann daher besetzt werden und somit ein Photon emittieren.

Zu guter letzt bleibt noch zu zeigen, dass es sich auch wirklich um ein-
zelne Photonen handelt, die hier generiert werden. Dies wurde mit einer
Intensitätskorrelationsmessung nachgewiesen. Abb.13 zeigt die experimen-
telle Auswertung. Zum Zeitpunkt ∆t = 0 erkennt man das charakteristische

Abbildung 13: Nachweis der Einzelphotonennatur über g(2)

photon-antibunching, welches, genauso wie der oszillierende Charakter, für
die Erzeugung einzelner Photonen spricht. Es handelt sich also wirklich um
eine Einzelphotonenerzeugung.

6 Zusammenfassung

Zum Abschluß läßt sich also zusammenfassen, dass sich die CQED hervorra-
gend eignet um einen Quantencomputer zu realisieren. Die Herausforderung
dabei ist das Erreichen des strong-coupling-regime g2 � κγ. Ist dies geschafft,
so kann man mit STIRAP-ähnlichen Prozessen beliebig Kohärenzen zwischen
Atomen austauschen um so 2-Bit-Gatter zu realisieren, oder um determini-
stisch einzelne Photonen zu erzeugen um damit Kommunikation betrieben zu
können. Dabei erlaubt der doch äußerlich sehr einfache Aufbau (ein Resona-
tor und ein Atom) Quantencomputer beliebiger Größe bauen zu können und
einzelne Qubits identifizieren zu können. Damit sind grundlegende Anforde-
rungen (Skalierbarkeit und Identifikation) an einen Quantenrechner erfüllt.
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Es bleibt also abzuwarten, ob bald neue Methoden und Ideen entwickelt
werden um high-Q-cavities im optischen herstellen zu können und wir dann
klassische Kryptographie wie RSA völlig ersetzen müssen.

Wir müssen unbedingt Raum für Zweifel lassen, sonst gibt es
keinen Fortschritt, kein Dazulernen. Man kann nichts Neues
herausfinden, wenn man nicht vorher eine Frage stellt. Und
um zu fragen, bedarf es des Zweifelns.

(Richard P. Feynman)
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