Einweg Quantenrechner
Jan Peter Ohst WS 06/07

Ziel: Realisierung logischer Gatter für Quantenschaltkreise

Der offensichtlichste Weg, einen Quantenrechner zu bauen ist, auf einen Inputzustand 
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F

 nacheinander verschiedene unitäre Transformationen (logische Gatter) anzuwenden.

In der Praxis ist es allerdings sehr schwer, diese Operation zu realisieren, denn die bei dieser Prozedur auftretenden Fehler werden schnell so groß, dass man sie mit normaler Fehlerkorrektur nicht mehr beheben kann.

Wir wollen uns daher im Folgenden mit einem anderen Modell beschäftigen, bei dem während der Rechnung nur noch Messungen ausgeführt werden müssen. 

Hierzu betrachten wir einen verschränkten Clusterzustand, der so präpariert ist, dass er nach der Verschränkung bereits das komplette Programm enthält. Nach der Auswertung der Messungen einzelner Teile des Clusters erhält man dann den Output der Rechnung, und die Verschränkung des Clusters ist aufgehoben.
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Der Clusterzustand

Als Clusterzustand bezeichnen wir ein zwei- oder drei dimensionales Array, bei dem jeder Gitterplatz mit einem Qubit (quantenmechanisches 2- Niveau-System) besetzt ist.

Dieser Zustand sei derart verschränkt, dass er die folgenden Eigenwertgleichungen erfüllt:
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Hierbei kann (a) jedes beliebige Qubit des Clusters sein. Ngbh(a) bezeichnet gerade alle nächsten Nachbarn von (a)

Beispiele:

Für einfache Anordnungen von Qubits lassen sich solche Zustände relativ leicht aufstellen.

Wir verwenden hierfür folgende Zustände:
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Für eine Kette aus zwei Qubits erhält man beispielsweise die Gleichung:
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Für eine Kette aus 3 Qubits erhält man:
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Bei diesen Zuständen lässt sich schnell nachrechnen, dass sie die Eigenwertgleichungen (1) erfüllen, wobei hier alle Eigenwerte +1 sind, d.h. ka= 0 ( a.

Hierbei verwendet man gerade die oben genannten Eigenschaften der gewählten Zustände so wie die Eigenschaften:
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Bemerkung:

Es stellt sich heraus, dass es für komplexere Systeme immer aufwändiger wird, einen expliziten Zustand anzugeben, da die Anzahl der hierfür benötigten Terme exponentiell mit der Anzahl der betrachteten Qubits wächst. Es wird sich allerdings zeigen, dass es für unsere Zwecke ausreichend ist, den Clusterzustand allein durch die Eigenwertgleichungen (1) zu charakterisieren.

Wir werden uns hier der Einfachheit halber nur mit Zuständen befassen, deren Eigenzustände der Eigenwertgleichung alle positiv sind (d.h. ka = 0 (a).

Erzeugung
Nun wollen wir betrachten, wie man einen allgemeinen Clusterzustand erzeugen kann.

Hierzu bringen wir zunächst alle Zustände des Arrays in den Zustand 
[image: image10.wmf]+

. 

Auf diesen Zustand wendet man dann die unitäre Transformation
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an, wobei Sab immer auf benachbarte Atome wirkt und die folgende Form hat:
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Behauptung:

Ein Qubit -Sytem, auf das man diese Transformation angewendet hat, erfüllt die Eigenwertgleichungen (1) mit ka = 0 für alle a.

Beweis:

Es gilt nach Vorraussetzung:
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und
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Jetzt müssen wir den Operator 
[image: image16.wmf]+
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genauer betrachten:
Mit Hilfe der Relationen 
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 EMBED Equation.3  [image: image18.wmf]
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erhält man die Gleichung
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und damit:
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Dies ist genau unsere Eigenwertgleichung







Q.e.d.

Physikalisch realisiert man eine solche unitäre Operation mit Hilfe eines isingartigen Hamiltonian für nächste Nachbar Wechselwirkung. 
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Lässt man diesen Operator eine bestimmte Zeit auf den Zustand wirken, ergibt sich aus der Zeitentwicklung des Operators gerade die gewünschte Form von S.

Quantengatter

Nachdem wir uns nun ausführlich mit der Erzeugung von Clusterzuständen befasst haben wollen wir uns nun mit der Realsierung von logischen Gattern beschäftigen:

Wiederholung:

Zur Implementierung eines Quantenrechers müssen verschiedene Gatter realisiert werden, von denen die wichtigsten hier kurz vorgestellt werden sollen. Wir betrachten hier sowohl Ein-Qubit Gatter, d.h. solche Gatter die nur auf ein einzelnes Qubit wirken und Zwei-Qubit Gatter, die auf zwei Qubits Operieren.

Ein-Qubit Gatter:

Hadamard Gatter:
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(/8 Gatter
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Mit Hilfe dieser beiden Gatter lässt sich jedes beliebige andere Einqubit Gatter beliebig gut approximieren.

Zwei-Qubit Gatter: 

CNOT-Gatter:
Dieses Gatter stellt eine controlled not Operation zwischen zwei Qubits (Controlbit und Targetbit) dar. Je nachdem welchen Wert das Controlbit annimmt, wird auf das Targetbit entweder die Identität oder aber eine NOT- Operation angewandt. 

	Input
	
	Output

	Control
	Target
	
	Control
	Target

	0
	0
	
	0
	0

	0
	1
	
	0
	1

	1
	0
	
	1
	1

	1
	1
	
	1
	0


Realisierung von Gattern mit Hilfe von Clusterzuständen

Um logische Gatter auf einem Cluster zu realisieren, muss dieser eine bestimmte Form haben. 

Außerdem muss man, um den Outputzustand zu erhalten, jedes Qubit des Clusters in einer bestimmten Basis messen.

Der Einfachheit halber nehmen wir an, dass wir noch vor Erzeugung der Verschränkung des Inputs den Inputzustand in unser System bringen können.

Das heißt also, dass wir Gatter immer auf folgende Art und weise erzeugen wollen:

1)
Erzeuge einen Anfangszustand 
[image: image27.wmf]+
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in dem die Inputqubits mit  
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 alle anderen Zustände mit 
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 initialisiert werden.

2)
Erzeuge mit Hilfe der Oben beschrieben Transformation S einen Cluster

3)
Führe an allen Qubits außer den Outputqubits Messungen in den vorgegebenen Basen durch 

Diese Basen ergeben sich aus einem Theorem, mit dem man auch die Richtigkeit der Operationen begründen kann:

THEOREM:

Seien CI die Inputqubits und CO die Outputqubits und sei U ein unitärer Operator.

Erfülle ein Clusterzustand 
[image: image30.wmf]Y

 die Eigenwertgleichungen
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und führt man die Messung des Inputqubits in 
[image: image32.wmf]x
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 Basis aus mit Ergebnis s1({0,1} (Positiver oder negativer Eigenzustand), dann gilt 
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Aus diesem Theorem wird ersichtlich, dass wir jede unitäre Operation nur bis auf ein Nebenprodukt U( ausführen können. Allerdings ist uns dieses bekannt und wir können daher unseren Output korrigieren und dem Nebenproduktoperator entgegen wirken. 

Beispiele:

Einheitsgatter:

Betrachte Kette von 3 Qubits
Messe Qubits (1) und (2) jeweils in 
[image: image35.wmf]x
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 Basis

mit Ergebnissen s1 und s2({0,1}

Behauptung:

Dies Anordnug beschreibt eine Einheitsoperation mit Nebenprodukt 
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Beweis:

Für diesen Clusterzustand gelten die Eigenwertgleichungen:

1) 
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Durch Hintereinanderanwendung von 1) und 2 erhält man hiermit

1’)
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Nach der Messung von Qubit (2) erhält man hieraus Eigenwertgleichungen für den Zustand 
[image: image42.wmf]Y

. Dieser sei der Zustand bei dem die gemessenen Qubits gerade auf ihre Eigenzustände projeziert wurden.
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Durch Einfügen einer Einheitsoperation erhält man somit die Form:
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Diese beiden Gleichungen sind genau die, die wir für das obige Theorem benötigen.

Daraus ergibt sich: 

U = I 
und 
[image: image45.wmf]2
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Q.e.d.

Hadamard Gatter:


Betrachte Kette aus 5 Qubits

Messe Qubit (1) in  
[image: image46.wmf]x

s

 Basis und Qubits (2),...,(4) in 
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Behauptung:

Die hier realisierte Operation ist gerade ein Hadamard Gatter. Man erhält einen Nebenproduktoperator der Form 
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Beweis:

Analog zum Fall des Einheitsgatters wollen wir das Theorem anwenden. Aus den Eigenwertgleichungen für Clusterzustände erhalten wir hier folgende Gleichungen:
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Nach der Messung der Qubits (1),(2) und (3) in 
[image: image50.wmf]y

s

 erhält man dann Gleichungen für den projezierten Zustand 
[image: image51.wmf]Y

:
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 (*)

Betrachtet man ein Hadamard Gatter So gilt für die Operation  H = 
[image: image53.wmf]2
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Somit lässt sich (*) umschreiben in:
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Anwenden des Theorems liefert gerade die Behauptung.









Q.e.d.

CNOT-Gatter:

Für die Realisierung des CNOT-Gatters betrchten wir folgende Anordnung von Qubits:







Hier lässt sich die Funktion auf ähnliche Art beweisen, wie bereits in den oberen Beispielen explizit ausgeführt.

Man erhält als Nebenprodukt:
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11

9

)

9

(

11

9

8

5

4

3

1

)

1

(

14

12

10

8

3

2

)

9

(

6

5

3

2

)

1

(

1

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

z

z

x

x

+

+

=

+

+

+

+

+

+

+

=

+

+

+

+

+

=

+

+

+

=

g

g

g

g


Vollständiges Schema:

Nachdem wir nun gesehen haben, wie man die einzelnen Gatter erzeugen kann, sollen noch einige Bemerkungen zu einem vollständigen Quantencomputer gemacht werden.

Um die erforderliche Struktur eines Clusters zu erzeugen, ist es nicht notwendig, den Cluster direkt in der benötigten Form zu erzeugen. 

Misst man nämlich alle unerwünschten Zustände in der Basis (z, so sind diese nach der Messung nicht mehr mit den restlichen Qubits verschränkt.

Es lässt sich beweisen, dass die übrigen Qubits immer noch die Eigenwertgleichung (1) erfüllen und somit immer noch einen Cluster bilden.

Hierbei ist allerdings zu beachten, dass der restliche Zustand nicht unbedingt die Gleichung 1 mit den selben ka erfüllt.


[image: image58]
Wenn man mehrere Gatter miteinander verschränken möchte, so muss man nicht für jedes Gatter die Verschränkung erneut vornehmen, sondern kann gleich zu Beginn den ganzen Cluster verschränken. Die bei der gesamten Rechung auftretenden U( kann man alle zusammen betrachten, allerdings ändern sich diese Operationen beim Vertauschen mit den Gattern. 
Ergebnis 

Wir haben jetzt ein vollständiges Schema zur Implementierung eines Quantenrechners kennengelernt.

Nach der schwierigen Erzeugung des Clusterzustands besteht die weitere Rechnung nur noch aus Messungen. Es müssen keine komplizierten unitären Operationen auf den Inputzustand angewendet werden.

Da es möglich ist, den Inputzustand nach der Erzeugung des Clusters auf das System zu bringen, kann man erst prüfen, ob der Cluster korrekt implementiert ist, bevor man seine Inputzustände in das System bringt. Dagegen muss bei der „klassischen Methode“ bei auftretenden Fehlern der Inputzustand neu erzeugt werden.
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