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Zusammenfassung

Neben den anderen Realisierungsmoglichkeiten fiir einen
Quantencomputer wurde schon frith die Realisierung mit-
tels Photonen und linearer Optik in Betracht gezogen. Dies
hat folgende Griinde: Zum einen werden Photonen kaum
von der Umgebung gestort, das heiit man beobachtet nur
geringe Dekohiirenz. Andererseits sind optische Moden (die
Triger der Quanteninformation in der LOQC, siehe Tabel-
le 1) immer und iiberall verfiighar, miissen also nicht erst
prapariert werden, wie etwa Ionen in einer Falle. Dadurch
besteht Aussicht auf gute Skalierbarkeit, wenn erst einmal
die grundlegenden Gatter zur Verfiigung stehen. Dariiber
hinaus lassen sich einzelne Photonen leicht manipulieren,
wie wir sehen werden. Allerdings zeigen Photonen in der
linearen Optik keine Wechselwirkung. Wir werden im Fol-
genden sehen, wie wir trotzdem ein zwei qubit Gatter (das
cnot-Gatter nach E. Knill, R. Laflamme und G. J. Mil-
burn [3]) realisieren konnen. Zum Abschluss werden noch
einige experimentelle Ergebnisse dargestellt.

1 Vorbemerkungen

Um eine Quantencomputer zu realisieren ben6tigt man fol-
gende Elemente:

e Priparation von Zustdnden. Im Fall der linearen Optik
konnen dies Einphotonenquellen sein, wie sie Johannes
Otterbach bereits in seinem Vortrag vorgestellt hat.
Eine Moéglichkeit zur Préparation von verschrankten
Zustéinden wurde bereits von Klaus Huthmacher ge-
zeigt.

e Messungen. Dazu werden in der linearen Optik Photo-
detektoren hoher Empfindlichkeit genutzt, die einzel-
ne Photonen detektieren konnen. Wiinschenswert sind
auch Photonenzéhler, die ein Photon von zwei Photo-
nen unterscheiden kénnen. Sie sind aber in der Praxis
meist nicht verfiighar.

e Beliebige unitédre Operationen (Gatter) miissen in
Abhéngigkeit von den Messergebnissen angewendet
werden konnen (Steuerung durch klassischen Rechner).

e Diese Gatter miissen deterministisch sein! Bei probabi-
listischen Gattern (das sind solche, bei denen man nur
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Tabelle 1: Codierung optischer qubits in zwei Moden.
qubit-Zustédnde sollen im Folgenden zur Unterscheidung von
Modenzustidnden fett gedruckt dargestellt werden. Die Bezeich-
nungen H und V miissen nicht notwendig fiir horizontale und
vertikale Polarisation stehen. Der Zustandsraum der Moden ist
sehr viel Grofler als der der qubits, so dass etwa Gatterfehler
aus dem qubit-Raum herausfithren kénnen.

’ Zustand der Moden | zugeordneter qubit-Zustand

[V |0)v 10)
0) i [L)v 1)
‘0>H|0>V kein
‘2>H|O>V kein

mit einer gewissen Wahrscheinlichkeit < 1 eine korrek-
te Gatteroperation erhélt, man weif} allerdings genau,
wann dies der Fall war) geht die Wahrscheinlichkeit fiir
ein versagen des Rechners exponentiell mit der Anzahl
der qubits gegen 0.

Man kann zeigen, dass man alle n-qubit Gatter aus ei-
ner langsamer als exponentiell mit n wachsenden Zahl der

folgenden zusammensetzen kann:

e Alle 1-qubit-Gatter wie etwa das Hadamard Gatter

1 /1 1 s
50 h) e

e Fin 2-qubit-Gatter wie etwa

H= (1)

10 00 100 O
cnot — 01 00 csig = 01 0 O
00 0 1})° 0 01 O
0010 0 0 0 -1

(2)

Dabei geniigt wirklich ein 2-qubit Gatter, denn daraus l4sst
sich mittels 1-qubit Gattern jedes andere konstruieren. Es

gilt etwa
H2 CSi912 H2 = CTlOtlg.

(3)

1.1 Gatter in der linearen Optik

Alle 1-qubit Operationen lassen sich aus den Paulimatrizen
zusammensetzen. Driickt man diese mit Hilfe der Erzeuger-
und Vernichter-Operatoren der beiden Moden (siehe Tabel-



le 1) aus, so erhélt man die Schwinger-Darstellung:

g, = CLTHCLH — a{,av
1 = aTHaH + aJ{,aV
Opr = a}{av + aJ{/aH
1
oy = 5 (aLav - ai/aH) (4)

1-qubit Operationen lassen sich mit linearer Optik leicht
deterministisch ausfiihren (siche Beispiel des Strahlteilers
unten).

Aufgrund der fehlenden Wechselwirkung zwischen den
Photonen gilt dies fiir 2-qubit Gatter nicht. Es gilt sogar
folgende
Aussage: Mit linearer Optik ldsst sich kein deterministisches
cnot-Gatter bauen.

Beweis: Zunéchst stellen wir die Matrix der cnot-Operation
aus Gleichung (2) mit Hilfe der Paulimatrizen dar:

1 1
Ucnot 5(1+02)(1)® 1(2) + 5(1 —O'Z)(l)® 0';2)

Mithilfe von log(1 + z) = >_°° (—1)”"'1% erhdlt man

n=1

()

=...=exp {04 1- O'Z)(l) (0x — 1)(2)} (6)

und durch einsetzen der Schwinger-Darstellung (4)
()
= exp {a (af}av)(l) (aLaU + aZaH — 1) } .

Hierin sind Erzeuger bzw. Vernichter in vierter Potenz ent-
halten. Linear optische Elemente sind aber von der Form

(7)

1
exp _ﬁzazvklal v V=V,
k.l

(®)

d.h. Erzeuger bzw. Vernichter treten hochstens quadra-
tisch auf. (Sonst wéren etwa Hamilton-Operatoren der Form
a}iamm moglich, d.h. aus zwei Photonen niedriger Energie
wird ein Photon hoher Energie erzeugt, siche auch Vortrag
von Klaus Huthmacher). Wir erhalten also einen Wider-
spruch.

O

FEin deterministisches 2-qubit-Gatter ist mit linearer Op-
tik also nicht implementierbar! Im Folgenden wollen wir
iiberlegen, wie man wenigstens ein fast deterministisches
cnot bauen kann, also eines mit beliebig kleiner Fehlschlags-
wahrscheinlichkeit. Dazu werden wir in zwei Schritten vor-
gehen:

e Wie kann man wenigstens ein nicht-deterministisches
cnot konstruieren?

e Wie kann man die Wahrscheinlichkeit fiir einen Fehl-
schlag beliebig klein machen?

Dabei verfolgen wir einen Vorschlag von E. Knill, R. Laflam-
me und G.J. Milburn [3] (kurz KLM).
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Abbildung 1: Der Strahlteiler - bei Transmission erfolgt kein
Phasensprung, ebenso bei Reflexion an der dunkel dargestellten
Seite, bei Reflexion an der hell dargestellten Seite erfolgt ein
Phasensprung um 7.

2 qubits und lineare Optik

Bevor wir uns dem Aufbau des KLM-cnot-Gatters widmen
konnen, miissen wir uns zunéchst zwei Bauelemente genauer
anschauen, aus denen es aufgebaut ist: der Strahlteiler und
das NS-“Gatter” (nonlinear sign shift).

2.1 Der Strahlteiler

Bekannt ist die Wirkung eines Strahlteilers (siche Abbil-
dung (1)) mit 50% Transparenz auf ein klassisches elektri-
sches Feld:

()= # @) -50 DE) o

Ubertriigt man dies direkt auf die qubit-Zustéinde, so erhilt
man

0) = [DulO)v

75 (D ey +10)#[1)v) = & (10) +]1)), (10)
= 10)ult)v
5 (Dul0)y = 0)ull)v) = 75 (10) - [1)). (11)

Der Strahlteiler implementiert also gerade die Hadamard-
Transformation. Um die Wirkung auf nicht qubit-Zustdnde
zu verstehen (die spéter ebenfalls auftreten werden),
iibertragen wir dies ins Heisenberg-Bild, indem wir zunéchst
die qubit-Zustinde durch Vakuumzustand und Erzeuger-
Operatoren darstellen.

00y = [Dalo)y — = (Bl +]) 100ml0)y (12

und analog aJ{, — % (bTH — bTV) (13)
f 1 (1 1) (b
ag\ H
= = 14
)R I 1) B

Man erhélt also eine analoge Matrix. Das folgende kleine
Anwendungsbeispiel zeigt eine charakteristische Eigenschaft
des Strahlteilers:

S (GRS IR DI
1

= 5 (12[0) = 10)[2))

; (15)

Féllt von beiden Seiten je ein Photon ein, so verlassen die
beiden Photonen immer gemeinsam den Strahlteiler!



2.2 Das NS-“Gatter”

Das NS-“Gatter” ist kein Gatter im eigentlichen Sinn, da
es nicht auf qubits wirkt, sondern nur auf eine einzelne Mo-
de. Es soll das Vorzeichen des Zustands umkehren, genau
dann, wenn die Mode genau zwei Photonen enthilt, und
sonst nichts tun. Wir beschrinken uns auf maximal zwei
Photonen:

al0) + BIL) +112) — al0) + BI1) —~2)  (16)
Das ist nicht mit linearer Optik machbar, was man schnell

durch Widerspruch beweisen kann, und zwar erneut im
Heisenberg-Bild:

D=l = =t = 2 -2 A2 17
Waihrend das Hadamard Gatter also offensichtlich leicht de-
terministisch zu implementieren war, benttigen wir an die-

ser Stelle eine nicht-deterministische Implementation.

)
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Abbildung 2: Das nicht-deterministische NS-Gatter. Eingege-
ben werden der unbekannte Zustand |¥) sowie zwei Ancilla-
moden im Zustand |[1)|0). Nur wenn sich die Ancillamoden
auch am Ausgang wieder im Zustand |1)|0) befinden, war die
(\/§ — 1)2 und

[4] ergeben sich aus der im Text beschriebe-

-y

Operation erfolgreich. Die Reflexivititen n, =
_ _ 1
m=7mnz= (1—22)

nen Rechnung.
Der Aufbau (siehe Abbildung 2) funktioniert nur dann,
wenn in der oberen Ancillamode ein, in der unteren kein
Photon detektiert wird. Wir berechnen fiir jeden der drei
moglichen Eingangszustinde die Wahrscheinlichkeitsampli-
tude C fiir dieses Messergebnis.
W) =10): C=ymmns+ /(1 —m)(L-n3) (18)
Der erste Summand beriicksichtigt die dreimalige Reflexion
des Ancillaphotons, der zweite die Transmission durch die
Strahlteiler 1 und 3.
W) = 1) C=—ymC+ imml—m)  (19)
Hier fordern wir die gleiche Amplitude. Der erste Summand
beriicksichtigt die Reflexion des Eingangsphotons an Strahl-
teiler 2, wodurch das Ancillaphoton wieder einen Faktor C
wie in (18) beitrigt (gleicher Weg).
W) =2): —C=—ymC—ymisn(l—mn) (20)
Das Vorgehen ist hier analog, allerdings fordern wir das um-
gekehrte Vorzeichen, damit wir auch die gewiinschte NS-
Operation erhalten. Aus (18) bis (20) und der Forderung,
dass C moglichst grof sein soll, erhalten wir die Werte von
11 bis n3 und C' = %
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Abbildung 3: Das KLM cnot-Gatter [3]
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Abbildung 4: Das csig-Gatter

3 Das KLM cnot-Gatter

Laut Gleichung (3) stellt Abbildung 3 genau dann ein cnot-
Gatter dar, wenn Abbildung 4 ein csig-Gatter darstellt. Be-
trachten wir also Abbildung 4 und folgende Fille:

e control- und target-qubit im Zustand |0). Dann befin-
den sich sie Photonen in ¢y und ¢tz und bemerken das
Gatter somit nicht.

e Nur control- oder target-qubit im Zustand |1). Dann
gelangt nur ein Photon zum Strahlteiler B2 und somit
auch nur null oder ein Photon (bzw. eine Uberlagerung
dieser Zusténde) zum jeweiligen NS-Gatter. Die NS-
Gatter haben also keine Wirkung und B3 macht die
Wirkung von B2 riickgéingig.

e control- und target-qubit im Zustand |1). Dann gelan-
gen zwei Photonen zu B2, und nach Gleichung (15) ge-
nau zu einem der NS-Gatter zwei Photonen. Dies ergibt
den Vorzeichenwechsel.

Abbildung 3 stellt also ein cnot-Gatter dar, welches aber
nur in C? - C? = L (zwei NS-Gatter) aller Fille funktio-
niert, und sonst den Eingangszustand zerstort (der Ausgang
ist dann nicht einmal mehr notwendig ein 2-qubit-Zustand,
denn fehlgeschlagene NS-Messungen erhalten nicht notwen-

dig die Photonenzahl der Moden).

4 Teleportation

Um das probabilistische KLM-Gatter nutzbar zu machen,
verwenden wir ein Teleportationsprotokoll [3, 5]. Dazu wol-



len wir kurz das Prinzip der Quantenteleportation wieder-
holen (siehe auch Vortrag von Klaus Huthmacher).

|0t} ———
e
o :

Abbildung 5: Prinzipieller Aufbau zur Teleportation eines
qubits. B bedeutet die Bell-Messung. Die daraus gewonnene klas-
sische Information dient zur Steuerung der eventuell notwendigen
1-qubit-Operationen X (steht fiir 0,) und Z (steht fiir o).

@)

Abbildung 5 zeigt das Prinzip. Input ist das zu teleportie-
rende qubit |a) sowie zwei qubits |®) in einem (an und fiir
sich beliebigen) Bell-Zustand (zu dessen Préiparation mittels
nichtlinearen optischen Effekten siehe Vortrag von Klaus
Huthmacher).

@) = a[1) +b]0)  |®) =

(I1)10) +10)[1))  (21)

1
V2
Die ersten beiden der drei qubits werden dann in der Bell-
Basis

1 1
— (]0)|1) £ ]1)|0)), —=(]0)|0) &+ |1)|1 22
\/Q(|>|>|>|>) \/5(|>|>\>|>) (22)
gemessen. Beachtet man, das sich der Gesamtzustand des
Systems

|a)|®) ~ a(]110) + [101)) + b(|010) + [001))  (23)
(ohne Normierung) schreiben Lisst als
)@) ~  (101)+[10)) (410) + al1))
(|01> - |10>) <b|0 —al1) )
(|11> + |00>) (a|0 +b[1) )
+(111) = [00)) (alo) —b1)),  (24)

so sieht man, dass abhingig vom gemessenen Bell-Zustand
(die alle immer mit gleicher Wahrscheinlichkeit gemessen
werden) das dritte qubit auf einen Zustand projiziert wird,
der sich mit Hilfe des bekannten Messergebnisses und 1-
qubit-Operationen in |o) iiberfithren lidsst. In unserem Fall
dient die Teleportation aber gar nicht der Ubermittlung von
Quanteninformation iiber grofere Entfernungen. Wir wollen
ja “nur” unser cnot verbessern.

Abbildung 6 zeigt zuniichst den trivialen Fall. Nach
den Bell-Messungen befinden sich die Ausgangs-qubits
zundchst im Zustand R|a)|3). Die vom Messergebnis
abhingigen 1-qubit-Rotationen R werden riickgingig ge-
macht (— |a)|3)) und schlielich unser cnot angewendet
(—> cnotla)|8)).

Ziehen wir also die cnot-Operation vor die Teleportation!
Abbildung 7 entnimmt man zunéchst, dass die Reihenfolge
von cnot und Bell-Messung keine Rolle spielen kann, denn
sie wirken auf verschiedene qubits. Nach der Bell-Messung
liegen die Ausgangs-qubits also im Zustand cnot R|a)|3)
vor. Man kann nun zeigen, dass fiir jedes Produkt aus Pauli-
Matrizen R ein zweites R’ existiert, so dass

cnot R|a)|B) = R cnot|a)|3). (25)
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Abbildung  6:  Wie liasst sich das  KLM-cnot

(Wahrscheinlichkeits-) gewinnbringend mit der
tion in Verbindung bringen? So offensichtlich nicht.

Teleporta-

Abbildung 7: Zieht man die cnot Operation vor die Bell-
Messungen, so kann man den umrahmten Zustand so lange ver-
suchen zu préparieren, bis man Erfolg hat, und erst dann das
Teleportationsprotokoll anwenden. Beachte, dass die verbunde-
nen X- bzw. Z-Gatter keine echtes 2-qubit-Gatter, sondern nur
ein (einfach zu implementierendes) Produkt aus zwei 1-qubit-
Gattern darstellen.

(Alle Operationen, welche Pauli-Gatter in Pauli-Gatter
iiberfithren bilden die Clifford-Gruppe [5] — Hadamard und
cnot gehoren dazu.) R’ ldsst sich nun wieder eindeutig aus
den Messergebnissen ableiten und man erhédlt am Ausgang
cnot|a)| ).

Der Vorteil besteht nun darin, dass das cnot so oft ange-
wendet werden kann, bis es erfolgreich war. Der dann erhal-
tene Zustand (in Abbildung 7 umrahmt) kann dann aufbe-
wahrt werden, bis der Eingangszustand |«)|3) ankommt. In
der Praxis kénnte man dies durch Delay-Lines realisieren,
also langen aufgewickelten Glasfasern, die je nach Bedarf an
ihren eigenen Anfang oder den Aufbau zur Bell-Messung an-
gekoppelt werden. Mit einer immer funktionierenden Bell-
Messung hétte man so ein deterministisches cnot. Allerdings
schldgt auch die Bell-Messung in linearer Optik mit einer
Wahrscheinlichkeit von P fehl:

e Klaus Huthmacher hat bereits einen einfachen Aufbau
vorgestellt, mit dem man eine in i der Fille erfolgreiche
Bell-Messung durchfithren kann, d.h. man kann P < %
erreichen.

e D. Bouwmeester, J.W. Pan, K. Mattle, M. Eibl,
H.Weinfurter und A. Zeilinger [6] haben auch experi-
mentell nachgewiesen (Aufbau siche Abbildung 8), dass
P< % moglich ist.

e N. Liitkenhaus, J. Calsamiglia und K.-A. Suominen ha-
ben theoretisch gezeigt [7], dass man durch keinen Auf-
bau P = 0 erreichen kann.

Mit einem deterministischen cnot konnt man im iibrigen
auch leicht eine deterministische Bell-Messung erreichen,
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Abbildung 8: Aufbau nach [6] zur linear optischen Bell-
Messung. Mithilfe der vier Photodetektoren, kénnen zwei der
vier Bell-Zustinde eindeutig identifiziert werden.

denn ein cnot verwandelt die Bell-Zusténde in einen leicht
zu vermessende separable Zustéande.

Man kann allerdings noch eine Reihe von Verbesserungen
anbringen:

e Durch die Verwendung von n Bell-Paaren zur Telepor-
tation anstelle von einem sinkt die Fehlschlagswahr-
scheinlichkeit der Teleportation (mit Bell-Messungen
wie in Abbildung 8) von § auf %ﬂ je zu teleportie-
rendem qubit [8].

e Mit Hilfe der Quantenfehlerkorrektur (QEC; d.h. ein
logisches qubit wird in mehrere physikalische qubits co-
diert, siehe etwa [1, 9]) ldsst sich dieser nun kleine Feh-
ler korrigieren, so dass kein all zu grofies n notwendig
ist.

e Daneben existieren Moglichkeiten, Bell-Messungen so

durchzufithren, dass der Verlust von Photonen, eine
hiufige zusitzliche Fehlerquelle, detektiert wird [3].

5 Ein Experiment

5.1 Der prinzipielle Aufbau

Abbildung 9: Ein alternatives cnot Gatter nach [10]. Es werden
Strahlteiler sowohl mit Transparenz % als auch % eingesetzt. Eine
erfolgreiche Operation findet genau dann statt, wenn in beiden
Ausgangs-qubits koinzident ein Photon detektiert wird.

Die experimentelle Umsetzung der LOCQ steckt noch
in den Anfingen. Anstelle des oben beschriebenen Vor-
gehens nach KLM [3] betrachten wir hier einen anderen
Versuchsaufbau. Den Aufbau in Abbildung 9 wollen wir
nicht im Detail auseinander nehmen. Er garantiert aber
eine erfolgreiche cnot-Operation unter der Voraussetzung,

dass kein Photon durch den obersten oder untersten Strahl-
teiler entweicht, und auch nicht ein einzelnes durch den
mittleren in das jeweils andere qubit wechselt. (Die Er-
folgswahrscheinlichkeit liegt bei %) Um das sicherzustel-
len, ist eine Koinzidenzmessung von je einem Photon in
beiden qubits notwendig. Dies geschieht bei [10] destruk-
tiv. Um die Photonen weiter verwenden zu kénnen und ein
zu KLM &aquivalentes Gatter zu erhalten briuchte man ein
nicht-destruktives Messverfahren [11] (welches wieder mit
einem deterministischen cnot gut zu machen wire!).

5.2 Implementation

a{0)

-+

Bl

afH)+B|V)
>

45° 45°

Abbildung 10: Zur Umwandlung von polarization encoding in
spatial encoding und zuriick. Die %—Platten sind gegeniiber bei-
den Polarisationsrichtungen um 45° gedreht, um die Polarisation
der Photonen um 90° zu drehen.

Bisher wurde spatial encoding fiir die qubits benutzt, d.h.
die beiden zu einem qubit gehérenden Moden sind raumlich
getrennt aber gleich Polarisiert. In [10] wird polarization
encoding benutzt. Dabei unterscheiden sich die beiden Mo-
den nur durch ihre Polarisation, was sich vor allem bei der
Priparation von Zustdnden als Vorteilhaft zeigt. Die Um-
wandlung ist einfach (siehe Abbildung 10).

“1/3°
(62.57)
()

Automated quantum
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Abbildung 11: Versuchsaufbau nach [10]. Wie man sich schnell
iiberlegt, tritt im polarization encoding ein %—Pléittchen an die
Stelle des Strahlteilers. Ein um 22,5° = % gedrehtes %—Plﬁttchen
ersetzt gerade den 50%-Strahlteiler und implementiert somit die
Hadamard-Transformation.

Man kann sich iiberlegen, dass der Versuchsaufbau in Ab-
bildung 11 gerade mit Abbildung 9 {ibereinstimmt. Hier
werden aber doppelbrechende Kristalle eingesetzt, um die
Verschiedenen Polarisationsanteile verschieden abzulenken
und entsprechend Abbildung 9 zu iiberlagern.

5.3 Ergebnisse

Durch passende Einstellung der Strahlteiler und %— bzw.
%—Pléttchen vor den Detektoren lassen sich die Aus-

gangszustinde (Koinzidenz vorausgesetzt) in beliebiger

17Zitat M. Fleischhauer



Abbildung 12: Wirkung des cnot auf Zustinde in der compu-
tational basis. Angegeben sind die Amplitudenquadrate der ein-
zelnen Komponenten. a) ideales cnot b) Messergebnisse

Basis messen. Die Ergebnisse fiir die vier verschiede-
nen Basiszustéinde zeigt Abbildung 12. Man erkennt die
Grundsétzliche Funktionalitdt, wenn gleich auch noch
erhebliches Rauschen vorhanden ist. Die Zustdnde mit
control-qubit |0) werden besser verarbeitet, da hier die In-
terferenz am mittleren %—Strahlteiler weg fallt.

Imaginary

—
cnot

Eingang:  (|0) —[1))[1) 0)[1) —[1)]0)

Abbildung 13: Messergebnisse bei verschrinktem Ausgangszu-
stand. Dargestellt ist die Dichtematrix. Beim idealen cnot ist der
Imaginérteil identisch Null.

Eine charakteristische Eigenschaft des cnot ist es, ver-
schréankte Zustdnde aus separablen zu erzeugen. Um die-
se vollstandig zu vermessen wird das Verfahren der Quan-
tentomographie benutzt [10]: Fiir den immer selben Ein-
gangszustand wird der (als konstant angenommene) Aus-
gangszustand wiederholt in verschiedenen Basen gemessen,
bis schliefflich seine gesamte Dichtematrix bekannt ist. Die
Ergebnisse sind von #hnlicher Qualitit wie oben zeigen
die Abbildungen 13 und 14. Beide Beispiele wurden mit
dem exakt selben Aufbau gefunden, wodurch gezeigt wer-
den soll, dass die Funktionalitit nicht vom Eingangszustand
abhiéngt. (Klar, denn das cnot soll ja schliefllich auf jede
Uberlagerung, und somit auf alle Komponenten einer sol-
chen gleichzeitig, wirken.)

6 Fazit

Zunichst haben wir gesehen, dass mittels linearer Optik,
soviel Vorteile sie auch gegeniiber anderen Methoden zum
Bau von Quantencomputern haben mag, kein deterministi-
sches 2-qubit-Gatter im eigentlichen Sinne erzeugen lésst.

Stattdessen mussten wir auf ein nicht-deterministisches
cnot zuriickgreifen und dieses mittels relativ aufwendigen
Methoden der Teleportation und QEC aufmébeln.

Zum Schluss durften wir uns davon iiberzeugen, dass
der experimentelle Fortschritt auch auf diesem Gebiet (wie

Imaginary

—_—
cnot

Eingang:  (|0) +[1))|0) 10)[0) +[1)[1)

Abbildung 14: Dichtematrix bei einem anderen verschrinkten
Zustand.

in der Quanteninformation allgemein, abgesehen von der
Quantenkryptographie - siehe dazu Vortrag von Sebastian
Kiihn) noch recht gering ist.
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