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Zusammenfassung

Neben den anderen Realisierungsmöglichkeiten für einen
Quantencomputer wurde schon früh die Realisierung mit-
tels Photonen und linearer Optik in Betracht gezogen. Dies
hat folgende Gründe: Zum einen werden Photonen kaum
von der Umgebung gestört, das heißt man beobachtet nur
geringe Dekohärenz. Andererseits sind optische Moden (die
Träger der Quanteninformation in der LOQC, siehe Tabel-
le 1) immer und überall verfügbar, müssen also nicht erst
präpariert werden, wie etwa Ionen in einer Falle. Dadurch
besteht Aussicht auf gute Skalierbarkeit, wenn erst einmal
die grundlegenden Gatter zur Verfügung stehen. Darüber
hinaus lassen sich einzelne Photonen leicht manipulieren,
wie wir sehen werden. Allerdings zeigen Photonen in der
linearen Optik keine Wechselwirkung. Wir werden im Fol-
genden sehen, wie wir trotzdem ein zwei qubit Gatter (das
cnot-Gatter nach E. Knill, R. Laflamme und G. J. Mil-
burn [3]) realisieren können. Zum Abschluss werden noch
einige experimentelle Ergebnisse dargestellt.

1 Vorbemerkungen

Um eine Quantencomputer zu realisieren benötigt man fol-
gende Elemente:

• Präparation von Zuständen. Im Fall der linearen Optik
können dies Einphotonenquellen sein, wie sie Johannes
Otterbach bereits in seinem Vortrag vorgestellt hat.
Eine Möglichkeit zur Präparation von verschränkten
Zuständen wurde bereits von Klaus Huthmacher ge-
zeigt.

• Messungen. Dazu werden in der linearen Optik Photo-
detektoren hoher Empfindlichkeit genutzt, die einzel-
ne Photonen detektieren können. Wünschenswert sind
auch Photonenzähler, die ein Photon von zwei Photo-
nen unterscheiden können. Sie sind aber in der Praxis
meist nicht verfügbar.

• Beliebige unitäre Operationen (Gatter) müssen in
Abhängigkeit von den Messergebnissen angewendet
werden können (Steuerung durch klassischen Rechner).

• Diese Gatter müssen deterministisch sein! Bei probabi-
listischen Gattern (das sind solche, bei denen man nur
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Tabelle 1: Codierung optischer qubits in zwei Moden.
qubit-Zustände sollen im Folgenden zur Unterscheidung von
Modenzuständen fett gedruckt dargestellt werden. Die Bezeich-
nungen H und V müssen nicht notwendig für horizontale und
vertikale Polarisation stehen. Der Zustandsraum der Moden ist
sehr viel Größer als der der qubits, so dass etwa Gatterfehler
aus dem qubit-Raum herausführen können.

Zustand der Moden zugeordneter qubit-Zustand
|1〉H |0〉V |0〉
|0〉H |1〉V |1〉
|0〉H |0〉V kein
|2〉H |0〉V kein

mit einer gewissen Wahrscheinlichkeit < 1 eine korrek-
te Gatteroperation erhält, man weiß allerdings genau,
wann dies der Fall war) geht die Wahrscheinlichkeit für
ein versagen des Rechners exponentiell mit der Anzahl
der qubits gegen 0.

Man kann zeigen, dass man alle n-qubit Gatter aus ei-
ner langsamer als exponentiell mit n wachsenden Zahl der
folgenden zusammensetzen kann:

• Alle 1-qubit-Gatter wie etwa das Hadamard Gatter

H =
1√
2

(
1 1
1 −1

)
, H2 = 1 (1)

• Ein 2-qubit-Gatter wie etwa

cnot =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , csig =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


(2)

Dabei genügt wirklich ein 2-qubit Gatter, denn daraus lässt
sich mittels 1-qubit Gattern jedes andere konstruieren. Es
gilt etwa

H2 csig12 H2 = cnot12. (3)

1.1 Gatter in der linearen Optik

Alle 1-qubit Operationen lassen sich aus den Paulimatrizen
zusammensetzen. Drückt man diese mit Hilfe der Erzeuger-
und Vernichter-Operatoren der beiden Moden (siehe Tabel-
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le 1) aus, so erhält man die Schwinger-Darstellung:

σz = a†HaH − a†V aV

1 = a†HaH + a†V aV

σx = a†HaV + a†V aH

σy =
1
i

(
a†HaV − a†V aH

)
(4)

1-qubit Operationen lassen sich mit linearer Optik leicht
deterministisch ausführen (siehe Beispiel des Strahlteilers
unten).

Aufgrund der fehlenden Wechselwirkung zwischen den
Photonen gilt dies für 2-qubit Gatter nicht. Es gilt sogar
folgende
Aussage: Mit linearer Optik lässt sich kein deterministisches
cnot-Gatter bauen.
Beweis: Zunächst stellen wir die Matrix der cnot-Operation
aus Gleichung (2) mit Hilfe der Paulimatrizen dar:

Ucnot =
1
2

(1 + σz)
(1)︸ ︷︷ ︸

=

0@ 1 0
0 0

1A
⊗ 1(2) +

1
2

(1− σz)
(1)︸ ︷︷ ︸

=

0@ 0 0
0 1

1A
⊗ σ(2)

x

(5)
Mithilfe von log(1 + x) =

∑∞
n=1(−1)n+1 xn

n erhält man

= · · · = exp
{

α (1− σz)
(1) (σx − 1)(2)

}
(6)

und durch einsetzen der Schwinger-Darstellung (4)

= exp
{

α
(
a†vav

)(1)
(
a†Hav + a†vaH − 1

)(2)
}

. (7)

Hierin sind Erzeuger bzw. Vernichter in vierter Potenz ent-
halten. Linear optische Elemente sind aber von der Form

exp

− i

~
∑
k,l

a†kVklal

 , Vkl = Vlk, (8)

d.h. Erzeuger bzw. Vernichter treten höchstens quadra-
tisch auf. (Sonst wären etwa Hamilton-Operatoren der Form
a†kalam möglich, d.h. aus zwei Photonen niedriger Energie
wird ein Photon hoher Energie erzeugt, siehe auch Vortrag
von Klaus Huthmacher). Wir erhalten also einen Wider-
spruch.

�

Ein deterministisches 2-qubit-Gatter ist mit linearer Op-
tik also nicht implementierbar! Im Folgenden wollen wir
überlegen, wie man wenigstens ein fast deterministisches
cnot bauen kann, also eines mit beliebig kleiner Fehlschlags-
wahrscheinlichkeit. Dazu werden wir in zwei Schritten vor-
gehen:

• Wie kann man wenigstens ein nicht-deterministisches
cnot konstruieren?

• Wie kann man die Wahrscheinlichkeit für einen Fehl-
schlag beliebig klein machen?

Dabei verfolgen wir einen Vorschlag von E. Knill, R. Laflam-
me und G.J. Milburn [3] (kurz KLM).

Abbildung 1: Der Strahlteiler - bei Transmission erfolgt kein
Phasensprung, ebenso bei Reflexion an der dunkel dargestellten
Seite, bei Reflexion an der hell dargestellten Seite erfolgt ein
Phasensprung um π.

2 qubits und lineare Optik

Bevor wir uns dem Aufbau des KLM-cnot-Gatters widmen
können, müssen wir uns zunächst zwei Bauelemente genauer
anschauen, aus denen es aufgebaut ist: der Strahlteiler und
das NS-“Gatter” (nonlinear sign shift).

2.1 Der Strahlteiler

Bekannt ist die Wirkung eines Strahlteilers (siehe Abbil-
dung (1)) mit 50% Transparenz auf ein klassisches elektri-
sches Feld:(

εH

εV

)
←→ 1√

2

(
εH + εV

εH − εV

)
=

1√
2

(
1 1
1 −1

) (
εH

εV

)
. (9)

Überträgt man dies direkt auf die qubit-Zustände, so erhält
man

|0〉 = |1〉H |0〉V
←→ 1√

2
(|1〉H |0〉V + |0〉H |1〉V ) = 1√

2
(|0〉+ |1〉) , (10)

|1〉 = |0〉H |1〉V
←→ 1√

2
(|1〉H |0〉V − |0〉H |1〉V ) = 1√

2
(|0〉 − |1〉) . (11)

Der Strahlteiler implementiert also gerade die Hadamard-
Transformation. Um die Wirkung auf nicht qubit-Zustände
zu verstehen (die später ebenfalls auftreten werden),
übertragen wir dies ins Heisenberg-Bild, indem wir zunächst
die qubit-Zustände durch Vakuumzustand und Erzeuger-
Operatoren darstellen.

a†H |0〉H |0〉V = |1〉H |0〉V ←→
1√
2

(
b†H + b†V

)
|0〉H |0〉V (12)

⇒ a†H ←→
1√
2

(
b†H + b†V

)
und analog a†V ←→

1√
2

(
b†H − b†V

)
(13)

⇒
(

a†H
a†V

)
=

1√
2

(
1 1
1 −1

) (
b†H
b†V

)
(14)

Man erhält also eine analoge Matrix. Das folgende kleine
Anwendungsbeispiel zeigt eine charakteristische Eigenschaft
des Strahlteilers:

|1〉|1〉 ↔ 1
2

[(
b†H + b†V

) (
b†H − b†V

)]
|0〉|0〉

=
1
2

(|2〉|0〉 − |0〉|2〉) (15)

Fällt von beiden Seiten je ein Photon ein, so verlassen die
beiden Photonen immer gemeinsam den Strahlteiler!
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2.2 Das NS-“Gatter”

Das NS-“Gatter” ist kein Gatter im eigentlichen Sinn, da
es nicht auf qubits wirkt, sondern nur auf eine einzelne Mo-
de. Es soll das Vorzeichen des Zustands umkehren, genau
dann, wenn die Mode genau zwei Photonen enthält, und
sonst nichts tun. Wir beschränken uns auf maximal zwei
Photonen:

α|0〉+ β|1〉+ γ|2〉 7−→ α|0〉+ β|1〉 − γ|2〉 (16)

Das ist nicht mit linearer Optik machbar, was man schnell
durch Widerspruch beweisen kann, und zwar erneut im
Heisenberg-Bild:

|1〉 7→ |1〉 ⇒ a† = b† ⇒ |2〉 7→ |2〉 6= −|2〉 (17)

Während das Hadamard Gatter also offensichtlich leicht de-
terministisch zu implementieren war, benötigen wir an die-
ser Stelle eine nicht-deterministische Implementation.

Abbildung 2: Das nicht-deterministische NS-Gatter. Eingege-
ben werden der unbekannte Zustand |Ψ〉 sowie zwei Ancilla-
moden im Zustand |1〉|0〉. Nur wenn sich die Ancillamoden
auch am Ausgang wieder im Zustand |1〉|0〉 befinden, war die

Operation erfolgreich. Die Reflexivitäten η2 =
`√

2− 1
´2

und
η1 = η2 = 1

(4−2
√

2)
[4] ergeben sich aus der im Text beschriebe-

nen Rechnung.

Der Aufbau (siehe Abbildung 2) funktioniert nur dann,
wenn in der oberen Ancillamode ein, in der unteren kein
Photon detektiert wird. Wir berechnen für jeden der drei
möglichen Eingangszustände die Wahrscheinlichkeitsampli-
tude C für dieses Messergebnis.

|Ψ〉 = |0〉 : C =
√

η1η2η3 +
√

(1− η1)(1− η3) (18)

Der erste Summand berücksichtigt die dreimalige Reflexion
des Ancillaphotons, der zweite die Transmission durch die
Strahlteiler 1 und 3.

|Ψ〉 = |1〉 : C = −√η2C +
√

η1η3(1− η2) (19)

Hier fordern wir die gleiche Amplitude. Der erste Summand
berücksichtigt die Reflexion des Eingangsphotons an Strahl-
teiler 2, wodurch das Ancillaphoton wieder einen Faktor C
wie in (18) beiträgt (gleicher Weg).

|Ψ〉 = |2〉 : −C = −√η2C −
√

η1η3η2(1− η2) (20)

Das Vorgehen ist hier analog, allerdings fordern wir das um-
gekehrte Vorzeichen, damit wir auch die gewünschte NS-
Operation erhalten. Aus (18) bis (20) und der Forderung,
dass C möglichst groß sein soll, erhalten wir die Werte von
η1 bis η3 und C = 1

2 .

Abbildung 3: Das KLM cnot-Gatter [3]

Abbildung 4: Das csig-Gatter

3 Das KLM cnot-Gatter

Laut Gleichung (3) stellt Abbildung 3 genau dann ein cnot-
Gatter dar, wenn Abbildung 4 ein csig-Gatter darstellt. Be-
trachten wir also Abbildung 4 und folgende Fälle:

• control- und target-qubit im Zustand |0〉. Dann befin-
den sich sie Photonen in cH und tH und bemerken das
Gatter somit nicht.

• Nur control- oder target-qubit im Zustand |1〉. Dann
gelangt nur ein Photon zum Strahlteiler B2 und somit
auch nur null oder ein Photon (bzw. eine Überlagerung
dieser Zustände) zum jeweiligen NS-Gatter. Die NS-
Gatter haben also keine Wirkung und B3 macht die
Wirkung von B2 rückgängig.

• control- und target-qubit im Zustand |1〉. Dann gelan-
gen zwei Photonen zu B2, und nach Gleichung (15) ge-
nau zu einem der NS-Gatter zwei Photonen. Dies ergibt
den Vorzeichenwechsel.

Abbildung 3 stellt also ein cnot-Gatter dar, welches aber
nur in C2 · C2 = 1

16 (zwei NS-Gatter) aller Fälle funktio-
niert, und sonst den Eingangszustand zerstört (der Ausgang
ist dann nicht einmal mehr notwendig ein 2-qubit-Zustand,
denn fehlgeschlagene NS-Messungen erhalten nicht notwen-
dig die Photonenzahl der Moden).

4 Teleportation

Um das probabilistische KLM-Gatter nutzbar zu machen,
verwenden wir ein Teleportationsprotokoll [3, 5]. Dazu wol-
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len wir kurz das Prinzip der Quantenteleportation wieder-
holen (siehe auch Vortrag von Klaus Huthmacher).

Abbildung 5: Prinzipieller Aufbau zur Teleportation eines
qubits. B bedeutet die Bell-Messung. Die daraus gewonnene klas-
sische Information dient zur Steuerung der eventuell notwendigen
1-qubit-Operationen X (steht für σx) und Z (steht für σz).

Abbildung 5 zeigt das Prinzip. Input ist das zu teleportie-
rende qubit |α〉 sowie zwei qubits |Φ〉 in einem (an und für
sich beliebigen) Bell-Zustand (zu dessen Präparation mittels
nichtlinearen optischen Effekten siehe Vortrag von Klaus
Huthmacher).

|α〉 = a|1〉+ b|0〉 |Φ〉 =
1√
2

(|1〉|0〉+ |0〉|1〉) (21)

Die ersten beiden der drei qubits werden dann in der Bell-
Basis

1√
2

(|0〉|1〉 ± |1〉|0〉) ,
1√
2

(|0〉|0〉 ± |1〉|1〉) (22)

gemessen. Beachtet man, das sich der Gesamtzustand des
Systems

|α〉|Φ〉 ∼ a (|110〉+ |101〉) + b (|010〉+ |001〉) (23)

(ohne Normierung) schreiben lässt als

|α〉|Φ〉 ∼
(
|01〉+ |10〉

)(
b|0〉+ a|1〉

)
+

(
|01〉 − |10〉

)(
b|0〉 − a|1〉

)
+

(
|11〉+ |00〉

)(
a|0〉+ b|1〉

)
+

(
|11〉 − |00〉

)(
a|0〉 − b|1〉

)
, (24)

so sieht man, dass abhängig vom gemessenen Bell-Zustand
(die alle immer mit gleicher Wahrscheinlichkeit gemessen
werden) das dritte qubit auf einen Zustand projiziert wird,
der sich mit Hilfe des bekannten Messergebnisses und 1-
qubit-Operationen in |α〉 überführen lässt. In unserem Fall
dient die Teleportation aber gar nicht der Übermittlung von
Quanteninformation über größere Entfernungen. Wir wollen
ja “nur” unser cnot verbessern.

Abbildung 6 zeigt zunächst den trivialen Fall. Nach
den Bell-Messungen befinden sich die Ausgangs-qubits
zunächst im Zustand R|α〉|β〉. Die vom Messergebnis
abhängigen 1-qubit-Rotationen R werden rückgängig ge-
macht (−→ |α〉|β〉) und schließlich unser cnot angewendet
(−→ cnot|α〉|β〉).

Ziehen wir also die cnot-Operation vor die Teleportation!
Abbildung 7 entnimmt man zunächst, dass die Reihenfolge
von cnot und Bell-Messung keine Rolle spielen kann, denn
sie wirken auf verschiedene qubits. Nach der Bell-Messung
liegen die Ausgangs-qubits also im Zustand cnot R|α〉|β〉
vor. Man kann nun zeigen, dass für jedes Produkt aus Pauli-
Matrizen R ein zweites R′ existiert, so dass

cnot R|α〉|β〉 = R′ cnot|α〉|β〉. (25)

Abbildung 6: Wie lässt sich das KLM-cnot
(Wahrscheinlichkeits-) gewinnbringend mit der Teleporta-
tion in Verbindung bringen? So offensichtlich nicht.

Abbildung 7: Zieht man die cnot Operation vor die Bell-
Messungen, so kann man den umrahmten Zustand so lange ver-
suchen zu präparieren, bis man Erfolg hat, und erst dann das
Teleportationsprotokoll anwenden. Beachte, dass die verbunde-
nen X- bzw. Z-Gatter keine echtes 2-qubit-Gatter, sondern nur
ein (einfach zu implementierendes) Produkt aus zwei 1-qubit-
Gattern darstellen.

(Alle Operationen, welche Pauli-Gatter in Pauli-Gatter
überführen bilden die Clifford-Gruppe [5] – Hadamard und
cnot gehören dazu.) R′ lässt sich nun wieder eindeutig aus
den Messergebnissen ableiten und man erhält am Ausgang
cnot|α〉|β〉.

Der Vorteil besteht nun darin, dass das cnot so oft ange-
wendet werden kann, bis es erfolgreich war. Der dann erhal-
tene Zustand (in Abbildung 7 umrahmt) kann dann aufbe-
wahrt werden, bis der Eingangszustand |α〉|β〉 ankommt. In
der Praxis könnte man dies durch Delay-Lines realisieren,
also langen aufgewickelten Glasfasern, die je nach Bedarf an
ihren eigenen Anfang oder den Aufbau zur Bell-Messung an-
gekoppelt werden. Mit einer immer funktionierenden Bell-
Messung hätte man so ein deterministisches cnot. Allerdings
schlägt auch die Bell-Messung in linearer Optik mit einer
Wahrscheinlichkeit von P fehl:

• Klaus Huthmacher hat bereits einen einfachen Aufbau
vorgestellt, mit dem man eine in 1

4 der Fälle erfolgreiche
Bell-Messung durchführen kann, d.h. man kann P ≤ 3

4
erreichen.

• D. Bouwmeester, J.W. Pan, K. Mattle, M. Eibl,
H.Weinfurter und A. Zeilinger [6] haben auch experi-
mentell nachgewiesen (Aufbau siehe Abbildung 8), dass
P ≤ 1

2 möglich ist.

• N. Lütkenhaus, J. Calsamiglia und K.-A. Suominen ha-
ben theoretisch gezeigt [7], dass man durch keinen Auf-
bau P = 0 erreichen kann.

Mit einem deterministischen cnot könnt man im übrigen
auch leicht eine deterministische Bell-Messung erreichen,
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Abbildung 8: Aufbau nach [6] zur linear optischen Bell-
Messung. Mithilfe der vier Photodetektoren, können zwei der
vier Bell-Zustände eindeutig identifiziert werden.

denn ein cnot verwandelt die Bell-Zustände in einen leicht
zu vermessende separable Zustände.

Man kann allerdings noch eine Reihe von Verbesserungen
anbringen:

• Durch die Verwendung von n Bell-Paaren zur Telepor-
tation anstelle von einem sinkt die Fehlschlagswahr-
scheinlichkeit der Teleportation (mit Bell-Messungen
wie in Abbildung 8) von 1

2 auf 1
n+1 je zu teleportie-

rendem qubit [8].

• Mit Hilfe der Quantenfehlerkorrektur (QEC; d.h. ein
logisches qubit wird in mehrere physikalische qubits co-
diert, siehe etwa [1, 9]) lässt sich dieser nun kleine Feh-
ler korrigieren, so dass kein all zu großes n notwendig
ist.

• Daneben existieren Möglichkeiten, Bell-Messungen so
durchzuführen, dass der Verlust von Photonen, eine
häufige zusätzliche Fehlerquelle, detektiert wird [3].

5 Ein Experiment

5.1 Der prinzipielle Aufbau

Abbildung 9: Ein alternatives cnot Gatter nach [10]. Es werden
Strahlteiler sowohl mit Transparenz 1

2
als auch 1

3
eingesetzt. Eine

erfolgreiche Operation findet genau dann statt, wenn in beiden
Ausgangs-qubits koinzident ein Photon detektiert wird.

Die experimentelle Umsetzung der LOCQ steckt noch
in den Anfängen. Anstelle des oben beschriebenen Vor-
gehens nach KLM [3] betrachten wir hier einen anderen
Versuchsaufbau. Den Aufbau in Abbildung 9 wollen wir
nicht im Detail auseinander nehmen. Er garantiert aber
eine erfolgreiche cnot-Operation unter der Voraussetzung,

dass kein Photon durch den obersten oder untersten Strahl-
teiler entweicht, und auch nicht ein einzelnes durch den
mittleren in das jeweils andere qubit wechselt. (Die Er-
folgswahrscheinlichkeit liegt bei 1

9 .) Um das sicherzustel-
len, ist eine Koinzidenzmessung von je einem Photon in
beiden qubits notwendig. Dies geschieht bei [10] destruk-
tiv. Um die Photonen weiter verwenden zu können und ein
zu KLM äquivalentes Gatter zu erhalten bräuchte man ein
nicht-destruktives Messverfahren [11] (welches wieder mit
einem deterministischen cnot gut zu machen wäre1).

5.2 Implementation

Abbildung 10: Zur Umwandlung von polarization encoding in
spatial encoding und zurück. Die λ

2
-Platten sind gegenüber bei-

den Polarisationsrichtungen um 45◦ gedreht, um die Polarisation
der Photonen um 90◦ zu drehen.

Bisher wurde spatial encoding für die qubits benutzt, d.h.
die beiden zu einem qubit gehörenden Moden sind räumlich
getrennt aber gleich Polarisiert. In [10] wird polarization
encoding benutzt. Dabei unterscheiden sich die beiden Mo-
den nur durch ihre Polarisation, was sich vor allem bei der
Präparation von Zuständen als Vorteilhaft zeigt. Die Um-
wandlung ist einfach (siehe Abbildung 10).

Abbildung 11: Versuchsaufbau nach [10]. Wie man sich schnell
überlegt, tritt im polarization encoding ein λ

2
-Plättchen an die

Stelle des Strahlteilers. Ein um 22, 5◦ = π
8

gedrehtes λ
2
-Plättchen

ersetzt gerade den 50%-Strahlteiler und implementiert somit die
Hadamard-Transformation.

Man kann sich überlegen, dass der Versuchsaufbau in Ab-
bildung 11 gerade mit Abbildung 9 übereinstimmt. Hier
werden aber doppelbrechende Kristalle eingesetzt, um die
Verschiedenen Polarisationsanteile verschieden abzulenken
und entsprechend Abbildung 9 zu überlagern.

5.3 Ergebnisse

Durch passende Einstellung der Strahlteiler und λ
4 - bzw.

λ
2 -Plättchen vor den Detektoren lassen sich die Aus-
gangszustände (Koinzidenz vorausgesetzt) in beliebiger

1Zitat M. Fleischhauer
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Abbildung 12: Wirkung des cnot auf Zustände in der compu-
tational basis. Angegeben sind die Amplitudenquadrate der ein-
zelnen Komponenten. a) ideales cnot b) Messergebnisse

Basis messen. Die Ergebnisse für die vier verschiede-
nen Basiszustände zeigt Abbildung 12. Man erkennt die
Grundsätzliche Funktionalität, wenn gleich auch noch
erhebliches Rauschen vorhanden ist. Die Zustände mit
control-qubit |0〉 werden besser verarbeitet, da hier die In-
terferenz am mittleren 1

3 -Strahlteiler weg fällt.

Eingang : (|0〉 − |1〉) |1〉 −→
cnot |0〉|1〉 − |1〉|0〉

Abbildung 13: Messergebnisse bei verschränktem Ausgangszu-
stand. Dargestellt ist die Dichtematrix. Beim idealen cnot ist der
Imaginärteil identisch Null.

Eine charakteristische Eigenschaft des cnot ist es, ver-
schränkte Zustände aus separablen zu erzeugen. Um die-
se vollständig zu vermessen wird das Verfahren der Quan-
tentomographie benutzt [10]: Für den immer selben Ein-
gangszustand wird der (als konstant angenommene) Aus-
gangszustand wiederholt in verschiedenen Basen gemessen,
bis schließlich seine gesamte Dichtematrix bekannt ist. Die
Ergebnisse sind von ähnlicher Qualität wie oben zeigen
die Abbildungen 13 und 14. Beide Beispiele wurden mit
dem exakt selben Aufbau gefunden, wodurch gezeigt wer-
den soll, dass die Funktionalität nicht vom Eingangszustand
abhängt. (Klar, denn das cnot soll ja schließlich auf jede
Überlagerung, und somit auf alle Komponenten einer sol-
chen gleichzeitig, wirken.)

6 Fazit

Zunächst haben wir gesehen, dass mittels linearer Optik,
soviel Vorteile sie auch gegenüber anderen Methoden zum
Bau von Quantencomputern haben mag, kein deterministi-
sches 2-qubit-Gatter im eigentlichen Sinne erzeugen lässt.

Stattdessen mussten wir auf ein nicht-deterministisches
cnot zurückgreifen und dieses mittels relativ aufwendigen
Methoden der Teleportation und QEC aufmöbeln.

Zum Schluss durften wir uns davon überzeugen, dass
der experimentelle Fortschritt auch auf diesem Gebiet (wie

Eingang : (|0〉+ |1〉) |0〉 −→
cnot |0〉|0〉+ |1〉|1〉

Abbildung 14: Dichtematrix bei einem anderen verschränkten
Zustand.

in der Quanteninformation allgemein, abgesehen von der
Quantenkryptographie - siehe dazu Vortrag von Sebastian
Kühn) noch recht gering ist.
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