

Problem 19.

Show that electric field induced by the Chern-Simons flux attached to the electrons is given by

$$\mathbf{e}_{\text{CS}} = 2p \frac{h}{e^2} (\mathbf{e}_z \times \mathbf{j}) \quad (1)$$

where \mathbf{j} is the current density. For this make use of Faraday's law

$$-\frac{1}{c} \frac{\partial}{\partial t} \mathbf{b}(\mathbf{r}, t) = \nabla \times \mathbf{e}_{\text{CS}} \quad (2)$$

where $\mathbf{b}(\mathbf{r}, t) = -2p\Phi_0\rho(\mathbf{r}, t)\mathbf{e}_z$ is the magnetic field associated to the $2p$ flux quanta per electron, and the continuity equation

$$\nabla \cdot \mathbf{j} + (-e) \frac{\partial \rho}{\partial t} = 0. \quad (3)$$

Problem 20.

Show that all odd-denominator fractions can be related to an integer by repeated application of three operations

(i) composite fermionization

$$\nu \rightarrow \nu^*, \quad (\nu^*)^{-1} = \nu^{-1} - 2p \quad (4)$$

(ii) particle-hole symmetry

$$\nu \rightarrow 1 - \nu \quad (5)$$

(iii) subtraction of full Landau levels

$$\nu \rightarrow \nu - 1 \quad (6)$$

Problem 21.

Many correlation functions in the FQHE can be related to IQH states. Show for $\nu = 1$ (i.e. IQHE) wave functions

(i) $g^{(2)}(r) = 1 - \exp\left(-\frac{r^2}{2\ell^2}\right)$

(ii) $S(q) = 1 - \exp\left(-\frac{q^2}{2\ell^2}\right)$ static structure factor

(iii) interaction energy per particle, assuming Coulomb interaction $V(r) = \frac{e^2}{r}$

$$\frac{E}{N} = -\sqrt{\frac{\pi}{8}} \frac{e^2}{\ell}. \quad (7)$$