

Problem 11.

Show that a spin 1/2 particle in a magnetic field is odd under TR whereas spin-orbit coupling is even under TR.

Problem 12.

Show by explicit calculation that the time reversal operator for a single spin 1/2 particle,

$$\hat{T} = e^{-i\sigma^y\pi/2}K = -Ki\sigma^y \quad (1)$$

gives $\hat{T}^2 = -1$. Generalize this now to two spin 1/2 particles. How does the TR operator look like in first quantization? Show that now $\hat{T}^2 = 1$.

Problem 13.

Show that the tight binding Hamiltonian of Graphene (eq.(4)-(6)) for $t_a = t_b = t_c = 1$,

$$\hat{\mathcal{H}} = \sum_{\mathbf{k}} \hat{c}_{\mathbf{k}}^\dagger h(\mathbf{k}) \hat{c}_{\mathbf{k}} \quad (2)$$

with

$$h(\mathbf{k}) = \begin{pmatrix} 0 & -t_a e^{i\mathbf{k}\cdot\mathbf{a}_1} - t_b e^{i\mathbf{k}\cdot\mathbf{a}_2} - t_c \\ -t_a e^{-i\mathbf{k}\cdot\mathbf{a}_1} - t_b e^{-i\mathbf{k}\cdot\mathbf{a}_2} - t_c & 0 \end{pmatrix} \quad (3)$$

indeed leads to Dirac cones around \mathbf{K}, \mathbf{K}' , i.e. for

$$\mathbf{k} = \mathbf{K} + \boldsymbol{\kappa}, \quad \mathbf{k} = \mathbf{K}' + \boldsymbol{\kappa} \quad (4)$$

with $|\boldsymbol{\kappa}| \ll |\mathbf{K}|, |\mathbf{K}'|$. Here $\mathbf{K} = \frac{2\pi}{3} (1, 1/\sqrt{3})$ and $\mathbf{K}' = \frac{2\pi}{3} (1, -1/\sqrt{3})$.

Problem 14.

Find the transformation properties of the Hamiltonian

$$\hat{\mathcal{H}} = \sum_{\mathbf{k}} \hat{c}_{\mathbf{k}}^\dagger h(\mathbf{k}) \hat{c}_{\mathbf{k}} \quad (5)$$

with

$$h(k) = \sin(k_x)\sigma_x + \sin(k_y)\sigma_y + m\sigma_z \quad (6)$$

under TR.