

Problem 4. Two level system

In the class the Berry curvature of two level system with

$$\hat{\mathcal{H}} = \mathbf{R} \cdot \hat{\boldsymbol{\sigma}} \quad (1)$$

was calculated via the wave functions. Repeat the same calculation using the Hamiltonian approach (2.45).

Problem 5. Spin in a magnetic field

Consider a spin- S particle in a homogeneous magnetic field,

$$\hat{\mathcal{H}} = \mathbf{B} \cdot \mathbf{S}. \quad (2)$$

Calculate the Berry curvature (Berry field) \mathbf{V}_n and the Berry phase when the magnetic field is slowly rotated around a loop \mathcal{L} . What is the difference between half-integer (fermions) and integer spin particles (bosons)?

Problem 6.

Consider a 2D electron gas in a constant magnetic field perpendicular to the 2D plane. Consider a bulk system, i.e. with no boundaries. Can you find a continuous smooth gauge (Berry connection)?

Problem 7. Anisotropic Harper model

Consider a square lattice with anisotropic hoppings in a homogeneous magnetic field,

$$\hat{\mathcal{H}} = -t_x \sum_{m,n} \left(\hat{c}_{m+1,n}^\dagger \hat{c}_{m,n} + \text{h.c.} \right) - t_y \sum_{m,n} \left(\hat{c}_{m,n+1}^\dagger \hat{c}_{m,n} e^{i2\pi mp/q} + \text{h.c.} \right) \quad (3)$$

(a) What is the Harper equation for this system?

(b) Consider the limit $t_y \rightarrow 0$ and solve for the spectrum. Find general conditions for level crossings.