

Problem 1.

Making use of the completeness relation of the eigenfunctions in the symmetric gauge,

$$\sum_{m,n} \psi_{n,m}(\mathbf{r}') \psi_{n,m}^*(\mathbf{r}) = \delta^{(2)}(\mathbf{r} - \mathbf{r}') \quad (1)$$

where n and m are the eigenvalues corresponding to the Landau level oscillator ($\hat{a}^\dagger \hat{a}$) and the angular momentum ($\hat{b}^\dagger \hat{b}$), show the LLL projection of the δ -function is

$$\delta_p^{(2)}(\mathbf{r} - \mathbf{r}') = \frac{1}{2\pi} \exp \left[\frac{1}{2} z z' - \frac{1}{4} (|z|^2 + |z'|^2) \right]. \quad (2)$$

Problem 2.

Show that the Hamiltonian (1.73)

$$\hat{\mathcal{H}} = -t \sum_{i,j} \left(e^{-2\pi i \alpha j} \hat{a}_{i+1,j}^\dagger \hat{a}_{i,j} + \text{hc} \right) - t \sum_{i,j} \left(\hat{a}_{i,j+1}^\dagger \hat{a}_{i,j} + \text{hc} \right) + 4t \sum_{i,j} \hat{a}_{i,j}^\dagger \hat{a}_{i,j} \quad (3)$$

in the limit $\Delta x \rightarrow 0$ reproduces

$$\hat{\mathcal{H}} = \int d^2 \mathbf{r} \hat{\psi}^\dagger(\mathbf{r}) \frac{1}{2m_0} \left(\frac{\hbar}{i} \nabla + \frac{e}{c} \mathbf{A}(\mathbf{r}) \right)^2 \psi(\mathbf{r}) \quad (4)$$

in the Landau gauge. Calculate the spectrum of (3) for the case $\alpha = 0$, i.e. without magnetic field.

Problem 3.

Consider a quantum Hall system with parabolic confinement ($\mathbf{A}(\mathbf{r}) = \frac{B}{2}(-y, x, 0)$),

$$\hat{\mathcal{H}} = \frac{1}{2m_0} \left(\mathbf{p} + \frac{e}{c} \right)^2 + \frac{1}{2} m_0 \omega_0^2 (x^2 + y^2). \quad (5)$$

Show that (5) can be written as

$$\hat{\mathcal{H}} = \frac{\hbar \Omega}{2} \left(-\nabla^2 + \frac{r^2}{4} + \hat{L}_z \right) - \frac{\Omega - \omega_c}{2} \hat{L}_z, \quad (6)$$

where $\Omega^2 = \omega_c^2 + 4\omega_0^2$. ω_c is the cyclotron frequency and \hat{L}_z the angular momentum operator in z -direction. What happens in the absence of the parabolic confinement $\omega_0 \rightarrow 0$? From this consideration determine the spectrum and the eigenfunctions of (5).