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Problem 1.
Making use of the complerteness relation of the eigenfunctions in the symmetric gauge,∑

m,n

ψn,m(r′)ψ∗n,m(r) = δ(2)(r − r′) (1)

where n and m are the eigenvalues corresponding to the Landau level oscillator (â†â) and the
angular momentum (b̂†b̂), show the LLL projection of the δ-function is
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Problem 2.
Show that the Hamiltonian (1.73)
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in the limit ∆x→ 0 reproduces
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in the Landau gauge. Calculate the spectrum of (3) for the case α = 0, i.e. without magnetic field.

Problem 3.
Consider a quantum Hall system with parabolic confinement (A(r) = B
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Show that (5) can be written as

Ĥ =
~Ω

2

(
−∇2 +

r2

4
+ L̂z

)
− Ω− ωc

2
L̂z, (6)

where Ω2 = ω2
c + 4ω2

0. ωc is the cyclotron frequency and L̂z the angular momentum operator
in z-direction. What happens in the absence of the parabolic confinement ω0 → 0? From this
consideration determine the spectrum and the eigenfunctions of (5).


