Quantum Hall physics and topological states of matter - an introduction
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Problem 1.

Making use of the complerteness relation of the eigenfunctions in the symmetric gauge,
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where n and m are the eigenvalues corresponding to the Landau level oscillator (a'a) and the
angular momentum (b'h), show the LLL projection of the d-function is
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Problem 2.
Show that the Hamiltonian (1.73)
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in the limit Az — 0 reproduces
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in the Landau gauge. Calculate the spectrum of (3) for the case a = 0, i.e. without magnetic field.

Problem 3.
Consider a quantum Hall system with parabolic confinement (A(r) = £ (-y, z,0)),
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Show that (5) can be written as
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where Q% = w2 + 4w?. w, is the cyclotron frequency and L. the angular momentum operator
in z-direction. What happens in the absence of the parabolic confinement wy — 07 From this
consideration determine the spectrum and the eigenfunctions of (5).



