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Abstract. Based on the fact that an ensemble of moving Rydberg atoms in two counterpropagating laser
beams in the limit of complete dipole blocking is isomorphic to a Jaynes–Cummings model, a scheme
for robust and efficient excitation of atomic Rydberg states is proposed. It is shown that the Doppler
frequency shifts play an important role in atomic population transfer processes. The suggested method can
be employed to detect the symmetric entangled states and paves the way to preparing entangled states with
a single excited atom in a Rydberg state. It is shown that this process is robust with respect to parameter
fluctuations, such as the laser pulse area, the relative spatial offset (the delay) of the laser beams and the
number of atoms.

1 Introduction

Strongly interacting ultracold Rydberg atoms are promis-
ing candidates for creating many-body entangled states
[1–3]. Such states are a resource for quantum-information
processing protocols [4]. In mesoscopic atomic systems the
entangled states, as a rule, become increasingly suscep-
tible to fluctuations of internal and external parameters
especially to the number of atoms N . And therefore an
important practical challenge is the design of robust meth-
ods for generating entangled many-body states in strongly
interacting Rydberg atoms. Several robust approaches
have been proposed based on the stimulated adiabatic pas-
sage methods [5–7] to transfer atoms from their ground
(product) state into Rydberg excited (entangled) states
(see [8,9]). More details about methods relying on adia-
batic processes in ultracold Rydberg gases can be found
e.g. in the review article by Saffman et al. [3]. Both
schemes [8] and [9] (see also [10] and [11]) are based on
the fact that ensembles of Rydberg atoms in resonant laser
fields in the limit of complete dipole blocking [2] are iso-
morphic to a Jaynes–Cummings model [12,13]. A robust
method to generate entangled states has been proposed in
[8] for an ensemble of three-level atoms in Lambda con-
figuration [14] where the Rydberg state |r〉 couple nearly
resonantly by laser fields to two stable states |a〉 and |b〉.
The suggested method, unlike the scheme in [9], works
equally well for even and odd number of atoms. Exact
knowledge of the number of particles is not required, mak-
ing the method robust against atom number fluctuations.
In particular, it was shown in [8] that the symmetric
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entangled state

|bb...br〉S =
1√
N

(|rb · · · b〉+ |br · · · b〉 · · ·+ |b · · · br〉) (1)

can be created from the product ground state |aa · · · a〉.
Here, the subscript “S” indicates symmetrization over all
atoms and makes the state totally symmetric. The studies
in [8], however, indicate that the required laser fields (Rabi

frequencies) scale nearly as
√
N , hence this method can

only be applied to sufficiently small atomic systems. From
the quantum information perspective the state (1) up to
local unitary transformations is, however, equivalent to
the state

|aa...ar〉S =
1√
N

(|ra · · · a〉+ |ar · · · a〉 ...+ |a · · · ar〉) .

(2)
In the present paper, we consider the possibility to cre-
ate this less costly entangled state compare to (1). Since

for very large Rabi frequencies (in order of
√
N) the final

state of the system is (1), it is clear, that a robust tran-
sition from the product state |aa · · · a〉 to the state (2) is
possible only within certain range of Rabi frequencies. The
present paper addresses two questions: first, how to detect
and distinguish experimentally these symmetric states,
and second, is it possible to excite the entangled state
(2) in a robust and scalable way.

In order to answer the first question, we consider the
strongly interacting moving Rydberg atoms crossing two
counterpropagating laser beams. In the center-of-mass
system, the atoms interact nearly resonantly (due to
Doppler shifts) with two laser beams. The proposed model
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is a modified version of the model discussed in [8]. Because,
the symmetric atomic states have different photon recoil
momenta (compared to the initial product state |aa · · · a〉),
a time-of-flight analysis of atoms can be used to detect
and select final symmetric entangled states by measuring
shift (displacement) of the centre of mass of an atomic
cloud with in situ imaging.

The second question concerning the robustness of
creating the state (2) is addressed by using the fact that
an ensemble of Rydberg atoms in the limit of complete
dipole blocking [2] is isomorphic to a Jaynes–Cummings
model. Based on this model, we show that, for fast atoms
(the Doppler shift much larger than the photon recoil
energy) the state (2) can be created by two laser pulses
with peak amplitudes independent of the system size.
Moreover, the present work shows that there exist a
quite wide region of the laser pulse parameters (peak
amplitudes and time delay between pulses) where varying
these parameters has virtually no effect on the final
state (2) of atoms and its momentum. The width of this
region is strongly dependent on the Doppler shift, but
not sensitive to the number of atoms.

2 Model

We consider an atomic beam, crossing with two laser
beams in a volume with diameter w (see Fig. 1). In par-
ticular, we consider an atomic Λ system with three levels
coupled by two counterpropagating optical fields with the
same frequency ω and wave vector k whose parallel prop-
agation axes are spatially shifted. The Rydberg state |r〉
is coupled resonantly by laser fields to two stable states
|a〉 and |b〉. The initial atom velocity in the direction of
the laser beams can be varied by changing the intersection
angle β between atomic and laser beams (see Fig. 1). The
interaction time between atoms and laser fields is assumed
to be shorter than the relaxation times of the system,
so that no incoherent processes (e.g., spontaneous emis-
sion back to states |a〉 and |b〉) occur. We note that this
assumption is reasonable since the radiative lifetime of
the Rydberg states scale with principal quantum number
as n3. For example, in alkali atoms Rydberg states with
principal quantum number 50 . n . 100 have lifetimes
between 30µs and 200µs.

The atoms are described by spin flip operators σ
(n)
µν =

|µ〉n 〈ν| , (µ, ν = a, b, r) and interact via the van der Waals
potential U (r) = C6/r

6 in the Rydberg state |r〉. Where
C6 is the van der Waals coefficient. A key quantity for the
study of interacting Rydberg atoms is the blockade radius
Rb, given by

Rb =

(
C6

~Ω

)1/6

, (3)

where Ω = max (ΩP ,ΩS). ΩP and ΩS are the (real-valued)
Rabi frequencies for the two laser fields. Using Rydberg
states with principal quantum numbers 50 . n . 100, one
can realize blockade radii Rb between 1µm and 15µm. In
the following, we assume that w is smaller than blockade
radius Rb (see Fig. 1).
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Fig. 1. Sketch of the geometry of the interaction between
atoms with two counterpropagating laser fields. Three-level
system with initial population in state a. The atoms have
the same initial momentum p0. The initial atom momentum
in the direction of the laser beams p = p0 cosβ can be var-
ied by changing the intersection angle β between atomic and
laser beams. The interaction time T = wM/ (p0 sinβ) between
atoms and laser beams is much shorter than the relaxation
times of the system.

In the rotating-wave approximation, the Hamiltonian of
the system is given by (~ = 1)

H =
N∑
n

−→p 2
n

2M
+ ΩP

N∑
n

exp (−ikzn)σ(n)
ar (4)

+ΩS

N∑
n

exp (ikzn)σ
(n)
br (5)

+
N∑

n>m

σ(n)
rr σ

(m)
rr U (|−→r n −−→r m|) + h.c. (6)

where −→p n is the momentum of nth atom. The last sum
describes the interaction between atoms in the Rydberg
states. Applying the gauge transformation

G =
N⊗
n

exp
[
ikzn

(
σ(n)
aa − σ

(n)
bb

)]
=

N⊗
n

exp
[
ikznσ

(n)
aa

]
exp

[
−ikznσ(n)

bb

]
=

N⊗
n

[
11−σ(n)

aa

(
1− eikzn

)] [
11−σ(n)

bb

(
1− e−ikzn

)]
=

N⊗
n

[
11−σ(n)

aa − σ
(n)
bb + σ(n)

aa e
ikzn + σ

(n)
bb e

−ikzn
]

=
N⊗
n

[
σ(n)
rr + σ(n)

aa exp (ikzn) + σ
(n)
bb exp (−ikzn)

]
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the above Hamiltonian can be transformed into a more
convenient form

H → G ·H ·G−1

=
N∑
n

−→p 2
n

2M
+

1

M

N∑
n

(−→
k · −→p (n)

)(
σ(n)
aa − σ

(n)
bb

)
− k2

2M

N∑
n

σ(n)
rr + ΩP

N∑
n

σ(n)
ar + ΩS

N∑
n

σ
(n)
br

+
N∑

n>m

U (|−→r n −−→r m|)σ(n)
rr σ

(m)
rr + h.c. (7)

We are interested in the case where all atoms have the
same initial momentum p in the direction of the laser
beams ΩP or ΩS and the system is initially in the prod-
uct state |aa...a〉 = |a〉 ⊗ |a〉 ⊗ ... |a〉. Taking U outside
the summation sign, which corresponds to assuming the
interaction to be the same between any pairs of atoms,
the Hamiltonian (7) takes the form

H = N
p2

2M
+
kp

M

N∑
n

(
σ(n)
aa − σ

(n)
bb

)
− k2

2M

N∑
n

σ(n)
rr

+U0

N∑
n>m

σ(n)
rr σ

(m)
rr + ΩP

N∑
n

σ(n)
ar + ΩS

N∑
n

σ
(n)
br + h.c.

(8)

Typical values for U0 are above 10 MHz when atoms are
separated less than 5µm [3,15]. We see that the energies
of atomic states |a〉 and |b〉 are shifted from the two-
photon resonance by the Doppler detunings kp/M . The
energy of the Rydberg state |r〉 is shifted by the recoil fre-
quency k2/2M . The interaction between the paired atoms
in the Rydberg state also occurs as an energy shift, which
effectively translates into the one-photon detuning.

3 Two-atoms: numerical results

In this section, the physics of the phenomenon of block-
ade is presented in the context of the simplest system: two
interacting Rydberg atoms in two laser fields. We present
the results for the two atoms obtained by numerically
solving the time dependent Schrödinger equation with the
Hamiltonian (8). The pulses have a Gaussian shape

ΩP (t) = αe−( t+τT )
2

, ΩS (t) = αe−( t−τT )
2

, (9)

with equal peak Rabi frequency α and durations T . The
pulses are delayed with respect to each by a time interval
τ > 0.

Figure 2 shows the variation of the transfer efficiency i.e.
the square of the overlap between the final state and the
target state 1√

2
(|ar〉+ |ra〉) for varying delay τ and vary-

ing peak Rabi frequency α for U0 = 60Er and p = 10k. As
can be seen in Figure 2 the population transfer is efficient
over large areas of the laser pulses which is reminiscent of

Fig. 2. Population transfer efficiency to the state
1√
2

(|ar〉+ |ra〉) for varying delay and varying peak Rabi

frequency α for p = 10k, U0 = 60Er.

an adiabatic passage. It also shows a pronounced threshold
peak amplitude for an efficient population transfer to the
state 1√

2
(|ar〉+ |ra〉) starting at α & 30Er. A large region

of high transfer probability is observed for delays centered
approximately at pulse widths. As will be shown below
this robust feature remains the same for more than two
atoms and the underlying physical mechanism is not a
true adiabatic passage process. It will actually be shown
that when fast atoms are localized within a region where
U0 >> α nearly complete population transfer from the
initial state |a . . . a〉 into collective symmetric states with
single Rydberg excitation takes place at a critical value
of α = αc, which does not dependent on the number of
atoms. We present in the following sections explanations
for these remarkable results.

4 Strongly interacting atoms

In this section, following references [8,9], the results for
strongly interacting (the regime of the Rydberg block-
ade) Rydberg atoms are presented. The analysis of the
system can be greatly simplified by employing the isomor-
phism between the dynamics of the Rydberg-blockaded
atomic ensemble and the two mode Jaynes–Cummings
model [12,13]

HJC =
kp

M

(
a†a− b†b

)
− k2

2M
σ†σ−

+ΩP (t)
(
aσ† + a†σ−

)
+ ΩS (t)

(
bσ† + b†σ−

)
,

(10)

where a† and b† are creation operators, with bosonic
commutator relations, for atoms in states |a〉 and |b〉,
respectively. σ† and σ− describe transitions between
atomic states with zero and single Rydberg excitations.
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Fig. 3. Coupling scheme of collective 2-atom states in limit of
dipole blockade. The symbols (k), k = 0, 1, 2, 3, 4 correspond to
the photon recoil momenta.

In (10), the terms containing the constants of motion have
been omitted. It can be easily seen that the total particle
number operator

N = a†a+ b†b+ σ†σ− (11)

commutes with the Hamiltonian (10) so it is a con-
served quantity. Using the following notations for the

states: |aa〉 → 1√
2

(
a†
)2 |0〉 , |ab〉S = 1√

2
(|ab〉+ |ba〉) →

a†b† |0〉 , |bb〉 → 1√
2

(
b†
)2 |0〉 , |ar〉S = 1√

2
(|ar〉+ |ra〉) →

a†σ+ |0〉 and |br〉S = 1√
2

(|br〉+ |rb〉)→ b†σ+ |0〉, the link-

age pattern of two-atom symmetric states described by
the Hamiltonian (10) can be represented pictorially as in
Figure 3.

The superscript of S will be omitted hereafter for ease of
notation. It is worth remarking that these atomic states
can also be labeled by different photon recoil momenta,
which allows the detection of these symmetric entangled
states by a time-of-flight analysis of atoms. For example,
for a system of two atoms one has the following correspon-
dence |aa〉 → 0, |ab〉 → 2k, |bb〉 → 4k, |ar〉 → k, |br〉 → 3k
between external and internal degree of freedom of atoms.

In order to confirm that in the regime of the Rydberg
blockade, the Hamiltonian (10) reproduces the dynam-
ics of the primary system, we numerically integrated the
Schrödinger equation with the Hamiltonian (10).

Figure 4 shows the transfer efficiency to the state |ar〉.
For large α, a comparison of two plots (Figs. 4 and 2)
shows essential difference, which can be attributed to the
fact that as α increases the blocked condition (U0 >> α)
is getting worse. While for relative small α they are
almost identical. It is remarkable that, for a wide range
of parameters the dynamics of the primary system can
be well-discribed by the Jaynes–Cummings Hamiltonian
(10). The isomorphism to the Jaynes–Cummings model
has a number of interesting consequences. First of all,
it simplifies the analysis by allowing the employment of
angular momentum techniques. Second many known fea-
tures of the Jaynes–Cummings dynamics can be used
to produce a variety of interesting states of an atomic
ensemble by the Rydberg blockade. However, despite
its apparent simplicity the two-mode Jaynes–Cummings
model is not an exactly solvable model.

Fig. 4. Numerical integration of the Schrödinger equation with
the Hamiltonian (10). The population transfer efficiency to the
state 1√

2
(|ar〉+ |ra〉) for varying delay and varying peak Rabi

frequency α (the other parameters are the same as in Fig. 2).

5 Two-mode Jaynes–Cummings model

5.1 Dark and bright bosons

In this section, the properties of the Hamiltonian (10) are
discussed offering an explanation for the patterns shown
in Figures 2 or 4 including the threshold behavior of high
population-transfer efficiency. Introducing the dark and
bright boson operators reference [16]

D = a cos θ − b sin θ, (12)

B = a sin θ + b cos θ, (13)

with tan θ = ΩP /ΩS allows a convenient analysis of the
spectrum of (10). In terms of these bosonic operators the
Hamiltonian (10) reads

HJC =
pk

M

(
D†D −B†B

)
cos 2θ − Erσ†σ− (14)

+Ω0

(
B†σ− +Bσ+

)
+
pk

M

(
D†B +B†D

)
sin 2θ

with Ω0 =
√

Ω2
P + Ω2

S .
We note that the time dependence of populations with

interactions switched on and off adiabatically (pkM T >> 1,
Ω0T >> 1) can be discussed based on the instantaneous
eigenstates of the time-varying Hamiltonian (15) (i.e. in
the adiabatic basis ). For fast atoms (p >> k) the second
term in (15) is proportional to the recoil energy Er and
thus can be neglected. For ease of notation from this point
onwards, the recoil frequency and momentum are used for
the units of corresponding quantities.

https://epjd.epj.org/
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Fig. 5. Two-atom eigenstates of the Hamiltonian (15) for
α = 20 (a) and α = 60 (b). The initial momentum p = 10.

In Figure 5, we have plotted the instantaneous eigen-
states of the Hamiltonian (15) for two fast atoms (p = 10)
with the peak Rabi frequency α = 20 (Fig. 5a) and α = 60
(Fig. 5b). The lines do not cross but have avoided cross-
ings, some of them cannot be seen on this scale. We stress
that in our case real crossings are forbidden. This follows
from the fact that the Hamiltonian (10), which is uni-
tary equivalent to (15), can be represented as a tridiagonal
matrix (see Fig. 3). For such matrices, there is a theorem
that states that all the eigenvalues are simple i.e., nonde-
generate if none of the off diagonal elements vanish (see
e.g. [17]).

The mixing angle θ (t) rotates from θ (−∞) = π
2 to

θ (+∞) = 0. We define the transfer state to be the partic-
ular eigenstate of the Hamiltonian (15) and system evolves
from this state. The paths (the arrows are plotted as
a guide to the eye) of the transfer-state eigenvalue are
shown in Figure 5. When the evolution is adiabatic the
population remains in one eigenstate of the Hamiltonian
(15) (see Fig. 5a). The diabatic evolution of the transfer
state may occur through some sufficient weakly avoided
crossings (see Fig. 5b) and is responsible for the tran-
sition |aa〉 → |ar〉. During such diabatic evolution, the
transfer state changes from one adiabatic eigenstate to

another. Hence, the key to successful population transfer
|aa〉 → |ar〉 is a combination of the overall adiabatic evo-
lution with some localized diabatic process. To this end we
examine the time evolution of the transfer-state energy at
each instant.

The changes in the state of atoms can be thought as
a three step process: the atoms interact with the pulse
ΩP (t) (I-step), both pulses interact with atoms (II-step)
and at the end of the interaction the pulse ΩS (t) interacts
with atoms (III-step). The “diabatic” crossings appear
at first and third steps corresponding to small values of
sin 2θ.

Hence, at the first and last steps, when the overlap
between the Rabi frequencies is negligibly small (sin 2θ →
0) the spectrum of the Hamiltonian can be specified
by the number of dark bosons ND = D†D with eigen-
values 0, 1, . . . , N . After simple algebra one finds the
spectrum

E
(+)
k = 2p

(
2k −N +

1

2

)
cos 2θ (15)

+

√
(p cos 2θ)

2
+ Ω2

0 (N − k) ,

E
(−)
k = 2p

(
2k −N +

1

2

)
cos 2θ (16)

−
√

(p cos 2θ)
2

+ Ω2
0 (N − k),

E(0) = 2pN cos 2θ, (17)

of the Hamiltonian

H̃JC = 2p (2ND −N) cos 2θ + 2pσ†σ− cos 2θ (18)

+ Ω0

(
B†σ− +Bσ+

)
, (19)

where k = 0, 1, . . . , N − 1 is the occupation number in
the dark boson mode.

Figure 6 displays the eigenvalue curves (15)–(17) in
comparison with the exact energies (obtained numeri-
cally) for small (α = 20), intermediate (α = 50) and
large (α = 160) values of α. They are in quite good
agreement for early and late times. To understand the
dynamics we examine the time evolution of the transfer-

state energy E
(+)
0 (the dark-bosons are absent). Note that,

at very early times, the transfer-state energy coincides
with 2pN (cos 2θ → −1 as t → −∞). Figure 6 shows a
complex energy diagram with numerous real or sufficient

weakly crossings between E
(±)
k and E(0). At crossings

with sufficiently large interaction 2p
(
D†B +B†D

)
sin 2θ

Landau–Zener transitions between diabatic states will
occur. As can be seen from Figure 6a for small α the pop-

ulation flows from E
(+)
0 through all intermediate energies

E
(±)
k , k = 1, 2, ...N −1 and reaches at the end E(0) → 2pN

(cos 2θ → 1 as t → +∞). It follows from equations (15)

https://epjd.epj.org/
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and (17) that the crossing between E
(+)
N−1 and E(0) occurs

at

cos 2θ (tc) =
Ω0 (tc)

2
√

2p
, (20)

and does not depend on N . Hence, if (for Gaussian pulses
(9) with τ = T )

[Ω0 (t)]max ≈ α << 2
√

2p, (21)

i.e. cos 2θ (tc) << 1 (sin 2θ (tc) ≈ 1) the interaction
2p
(
D†B +B†D

)
sin 2θ (tc) connects these two states and

turns this crossing into an avoided one, as shown by the
blue lines in Figure 6a. Thus, when the evolution is adia-
batic the population remains in one and only one adiabatic
eigenstate of the Hamiltonian (10). In other words, the
Doppler shift p prevents any excitation in the system. The
atomic system remains in its initial state. This explains
the threshold behavior of the population transfer effi-
ciency depending on α in Figure 4. While for moderate
strong-driving regime, diabatic evolution of the transfer
state may occur through some suffciently weakly avoided
crossings, when

2
√

2p . α .
2
√

6√
6−
√

33
p (22)

significant transfer to state with E
(+)
N−1 → 2p (N − 1) i.e.

the state |ar〉 observed (see Fig. 6b). The right hand side
of the inequality (22) defines the regions in the parameter

space where a crossing between diabatic energies E
(+)
N−2

and E
(+)
N−1 is allowed, while the left side prevents a cross-

ing of E
(+)
N−1 and E(0) at times t where the interaction

2p
(
D†B +B†D

)
sin 2θ (t) is strong. Strictly speaking, the

inequalities (22) define the borders of high and low trans-
fer efficiency to the state (2) . As α increases further α &

2
√
6√

6−
√
33
p, the transition probability to the state

∣∣∣∣∣∣a...a︸︷︷︸
N−2

br

〉
with energy E

(+)
N−2 → 2p (N − 3) approaches unity (see

Fig. 6b). In the limit of large α & 8p
√
N , as can be seen

from equation (15) (see Fig. 6c) the transfer-state energy

E
(+)
0 crosses with all E

(+)
k diabatically. Next we note

that according to (15), at the end of the interaction the
transfer-state energy becomes equal to −2p (N − 1). As a
consequence the transfer state would make the transition

to state

∣∣∣∣∣∣b...b︸︷︷︸
N−1

r

〉
i.e. the state (1).

From the above qualitative discussions it is clear that
the required laser Rabi frequencies for successful popula-

tion transfer to the state

∣∣∣∣∣∣a...a︸︷︷︸
N−1

r

〉
i.e. the state (2) is the

independent of system size. This prediction is verified by

Fig. 6. Energies of Hamiltonians (p = 10) (15) (the blue lines)
and (18) (red, yellow and green lines) for two atoms, for (a)
α = 20, (top frame), (b) α = 50 (middle frame), (c) α = 160
(bottom frame).

numerical calculations of the population of the state (2)
at the end of the interaction.

Figure 7 displays the calculated final population of∣∣∣∣∣∣a...a︸︷︷︸
N−1

r

〉
with the Jaynes–Cummings Hamiltonian (10) as

a function of α for different number of atoms N . Indeed,
as seen in the above figure, nearly the complete popula-
tion transfer to the state (2) is observed within a certain
range of α. This was predicted by the analytical estimates
(22). Moreover, the width of the region of large transfer

https://epjd.epj.org/
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Fig. 7. Final-state population of the target state (2) for N =
2, 3, 4, 5 and 10 atoms as function of α. Other parameters are
τ = T , p = 10.

efficiency is not sensitive to the number of atoms. Look-
ing at Figures 2 and 4 (two atoms), we may argue that a
similar behavior is to be expected using the Hamiltonian
(8) with a very large U0. However, the numerical simula-
tions become difficult as the number of atoms increases.
We hope to return to this topic in a future publication.

6 Conclusion

In this work, an efficient and robust method to gener-
ate the entangled state (2) for a strongly interacting,
moving Rydberg atomic ensemble has been proposed. It
was shown that when the Doppler shift is much larger
than the photon recoil energy, the entangled state (2)
can be created by two laser pulses with peak amplitudes
independent of system size. It was also shown that the
proposed method is reminiscent of an adiabatic passage:
combination of the adiabatic evolution with some localized
diabatic one. Moreover, we found that the symmetric
entangled atomic states can be labeled by different photon

recoil momenta. This allows the detection of these states
by making use of a time-of-flight analysis of atoms.

The author thanks M. Fleischhauer, K. Bergmann and B.W.
Shore for helpful discussions. Financial support by the DFG
through the priority program GiRyd, SPP 1929 is gratefully
acknowledged.
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