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Entanglement dynamics in harmonic-oscillator chains

R. G. Unanyan and M. Fleischhauer
Fachbereich Physik und Forschungszentrum OPTIMAS, Technische Universität Kaiserslautern, D-67663 Kaiserslautern, Germany

(Received 7 March 2014; published 26 June 2014)

We study the long-time evolution of the bipartite entanglement in translationally invariant one-dimensional
harmonic lattice systems. We show that for Gaussian states, in quadratic interactions with periodic boundary
conditions, there exists a lower bound for the von Neumann entropy which increases linearly in time. This implies
that the dynamics of harmonic lattice systems can in general not efficiently be simulated by algorithms based on
matrix-product decompositions of the quantum state, and interactions are needed to suppress the entanglement
growth with time.
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I. INTRODUCTION

In recent years so-called matrix product states (MPSs)
have received much attention for the numerical simulation of
one-dimensional (1D) quantum many-body systems [1,2] (see
for review [3]). This is because the ground state of fermionic
and bosonic lattice systems with finite-range interactions and
an excitation gap usually implies an area law of entanglement
[4–8], stating that the von Neumann entropy of a partition
scales with the surface size. In 1D the surface area is indepen-
dent of the size of the system, resulting in a weakly entangled
ground state, which can thus faithfully be represented by
MPS. Even when the excitation gap vanishes, e.g., for free
fermions [9,10] and bosons [13–16], i.e., for critical systems,
there is only a correction which is at most logarithmic in
the system size. The situation is, however, quite different for
nonequilibrium problems as here the scaling not only with size
but also with time is relevant. With respect to the latter only
an upper bound derived by Lieb and Robinson exists [17],
which states that the von Neumann entropy increases at most
linearly in time. Being an upper bound, it does not allow
us to draw any conclusion about the approximability of the
long-time dynamics of quantum many-body systems by MPS.
However, it is very often found that the bipartite entropy does
indeed scale linear in time, which implies that the required
computational resources increase exponentially. For example
it has been shown for the spin- 1

2 XY model that the entropy
grows linearly with time after a global quench [18]. On the
other hand, it was found for the case of free fermions that
the entropy may grow only logarithmically in time [19],
showing that for certain initial states the long-time dynamics
is accessible with MPS-based methods. To the best of our
knowledge, there are no such studies for the entanglement
entropy of bosons.

In the present paper we study the time evolution of the
entropy in 1D bosonic systems that evolve under translation-
ally invariant quadratic Hamiltonians with local or finite-range
couplings. It should be noted that this model is an exactly
solvable one, and the dynamics of logarithmic negativity and
correlation functions between spatially separated oscillators
have been studied in Refs. [11,12]. To separate the problem of
size scaling from the scaling with time, which is the subject
of interest in this paper, we consider a specific class of 1D
systems and initial conditions where the bipartite entropy
becomes independent of system size. Specifically we choose

as the initial state of the time evolution the ground state � of
some local, gapped Hamiltonian H0. One can intuitively expect
that under such initial conditions the bipartite entanglement
entropy of the time-evolved state will be independent of system
size for the following reasons: For the ground state of local
Hamiltonians the presence of an excitation gap is sufficient
for an area law of entanglement [8], hence the entropy of the
initial state is size independent. Furthermore it is easy to see
that the state time-evolved under a Hamiltonian H , �(t) =
exp{−iH t}�, which is the ground state of a time-dependent
Hamiltonian H ′[t] = exp{−iH t}H0 exp{iH t}. The spectrum
of H ′[t] is identical to that of H0, i.e., it too has an excitation
gap. Finally the Lieb-Robinson bounds guarantee that for any
fixed time t its coupling matrix elements between sites i and
j are exponentially small beyond a certain distance lc, i.e.,
for |i − j | > lc. Thus H ′[t] is also of finite range [20]. As
a consequence we can expect that the entanglement entropy
of the time-evolved state will saturate with increasing system
size. However, it is not possible to draw any conclusion about
the time-scaling of entanglement beyond the limits set by the
Lieb-Robinson upper bounds.

In the present paper we show that in contrast to free
fermions the entropy of the time-evolved quantum state of
free bosons always grows linearly in time. This means that
contrary to intuition for bosonic systems interactions are
crucial to suppressing the increase of entanglement with time
and to making long-time simulations with MPS-based methods
possible.

II. TRANSLATIONALLY INVARIANT
HARMONIC OSCILLATORS

To be specific we consider a one-dimensional system of N

bosonic oscillators described by N pairs of canonical operators
x = (x1,x2, . . . ,xN ) and p = (p1,p2, . . . ,pN ). The oscillators
are coupled by a quadratic Hamiltonian of the form

H = 1
2 p2 + 1

2 〈x|V |x〉, (1)

where V is a real, symmetric, positive definite, time-
independent matrix. We assume translational invariance, im-
plying that V is a Toeplitz matrix. Furthermore we consider
periodic boundary conditions, such that V is circulant. Cir-
culant matrices form a commutative algebra. Moreover the
elements of a circulant matrix can be generated from the
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spectral function λ(θ ) > 0:

Vkl = 1

2π

∫ 2π

0
dθ λ(θ ) e−i(k−l)θ . (2)

The square root of the spectral function λ(θ ) can be interpreted
as a dispersion relation, λ1/2(θ ) being the frequency of a wave
with wave number θ .

We now want to determine the scaling of the entanglement
entropy with time. To this end we have to find the time
evolution under the local Hamiltonian (1). The system is
assumed to start its evolution at t = 0 from a Gaussian state,
i.e.,

�(x) = α0 exp

(
−1

2
〈x|B|x〉

)
, α0 =

(
det B

πN

)1/4

, (3)

where B is a real, symmetric, and positive definite Toeplitz
matrix. Periodic boundary conditions imply that B is also
a circulant matrix with spectral function β(θ ). As the initial
state is the ground state of a gapped, local Hamiltonian, β(θ ) is
nonzero and regular corresponding to a noncritical state. Since
the Hamiltonian of the system is quadratic, the time-evolved
state remains Gaussian and we have to search for a solution in
the form

�(x,t) = 1

(πN det Ã−1)1/4
exp

(
−1

2
〈x|A(t)|x〉

)
. (4)

Here and in the following a tilde denotes the real part, i.e.,
X̃= X+X∗

2 . By taking into account the symmetry of B and
after simple calculations one can easily find that A (t) obeys
Riccati’s equation

i
∂A

∂t
= A2 − V, A(0) = B. (5)

Its solution can be written as

A(t) = V 1/2 cos(tV 1/2)B + iV 1/2 sin(tV 1/2)

cos(tV 1/2)V 1/2 + i sin(tV 1/2)B
, (6)

which is again a circulant matrix. The spectral function 
(θ,t)
of its real part Ã can easily be obtained from λ(θ ) and β(θ ):


(θ,t) = β(θ )λ(θ )

λ(θ ) cos2[tλ1/2(θ )] + β2(θ ) sin2[tλ1/2(θ )]
. (7)

Note that if B = V 1/2, the spectral function and thus the matrix
A(t) becomes time independent, because in this case the initial
state is the ground state of the full Hamiltonian.

III. LOWER BOUNDS TO ENTANGLEMENT GROWTH

Having the solution of the Schrödinger equation we can
now calculate the reduced density matrix of a block of
N − n oscillators and from this a lower bound to the rate
of entanglement growth.

A. Reduced density matrix

The reduced density matrix can be obtained by partitioning
the symmetric matrices A (t) and A−1 (t) into blocks

A (t) =
[

T C

CT R

]
, A−1(t) =

[
Q D

DT P

]
, (8)

where T is an n×n and R an (N − n)×(N − n) matrix.
Similar calculations have been done in Refs. [21,22] for the
ground state of a chain of oscillators. After a lengthy but
straightforward calculation we find for the matrix elements of
the reduced density operator (see for details, e.g., [21,22])

ρR(x,x′) = N exp

[ (
x
x′

)T [−� 

∗ −�∗

](
x
x′

)]
, (9)

where x = (xn+1, . . . xN ), x′ = (x ′
n+1, . . . x

′
N ) are the coordi-

nates of the remaining N − n oscillators,

� = R

2
− CT T̃ −1C

4
,  = CT T̃ −1C∗

4
,

and N = (det P̃ −1)1/2/(π )
N−n

2 is a normalization with

P̃ −1 = R̃ − C̃T T̃ −1C̃. (10)

B. Dynamics of von Neumann entropy and purity

We proceed by analyzing the dynamical behavior of the
bipartite entanglement. There are several measures of entan-
glement between parties of a closed system, examples being
the von Neumann entropy S = −tr (ρR ln ρR) and the purity
tr[ρ2

R], where the following inequality holds: S � − ln tr[ρ2
R].

It should be noted that −ln tr[ρ2
R] represents also a lower

bound to all Renyi entropies Sα = 1
1−α

ln tr[ρα
R] with α < 1

as Sα > S1 = S.
To derive a lower bound for the entropy we calculate the

purity of Eq. (9).

tr
[
ρ2

R

] =
∫

dxdx′ρR(x,x′)ρR(x′,x). (11)

The Gaussian nature of (9) allows to calculate this integral in
a straight-forward way

tr
[
ρ2

R

] = (det P̃ −1)

(det[�̃ − ̃] det[�̃ + ̃])1/2
. (12)

After simple algebra one obtains

tr
[
ρ2

R

] = {det[P̃ (R̃ + Z†T̃ −1Z)]}−1/2

� [det(P̃ R̃)]−1/2,

where Z = (C − C∗)/2i. The last inequality follows from the
fact that Z†T̃ −1Z is a positive definite matrix. With this we
find the following lower bound to the von Neumann entropy:

S � − ln tr
[
ρ2

R

]
� 1

2 ln det(P̃ R̃). (13)

To facilitate analytical calculations of determinants, we con-
sider the limits N � 1 and N > n � 1. It can then be
shown [13] that in this limit the elements of matrices R̃ and
P̃ can be generated from the spectral functions 
(θ,t) and

−1(θ,t), respectively. Since 
(θ,t) is a regular function,
i.e., 
(θ,t) > 0 for any t , we may apply the strong Szegö
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FIG. 1. (Color online) Numerical plot for the sum
∑∞

k=1k|ck|2 as
a function of time for a Hamiltonian with spectral function λ(θ ) =
[c − cos(θ )]2 and for initial Gaussian state β(θ ) = 1. The top-most
curve (blue) corresponds to the critical Hamiltonian with c = 1/2,
the middle curve (magenta) to the critical Hamiltonian with c = 1,
and the last (yellow) to a gapped Hamiltonian with c = 3/2. One
clearly recognizes a linear increase with time. The insert shows the
quadratic short-time evolution.

theorem [23] to calculate the determinants. According to this
theorem

S �
∞∑

k=1

k|ck|2, (14)

where the ck are Fourier coefficients of ln 
−1(θ,t), i.e.,

ck = 1

2π

∫ 2π

0
dθ ln 
−1(θ,t) exp(−iθk). (15)

If β(θ ) and λ(θ ) are constant functions, i.e., the oscillators
are uncoupled, all Fourier coefficients (15) vanish except
for c0. In this case Eq. (14) reduces to the trivial bound
S � 0 (entanglement is never generated). In what follows
we will consider only the nontrivial case when λ(θ ) is not a
constant.

In Fig. 1 we have plotted the right-hand side of Eq. (14)
numerically evaluated for an initial state with spectral function
β(θ ) = 1 and a Hamiltonian H with spectral function λ(θ ) =
[c − cos(θ )]2. If c > 1, H has a finite excitation gap since
there is no real zeroth of λ(θ ). If the gap vanishes, i.e., for
c � 1, the ground state of H becomes critical. One clearly
recognizes a linear increase with time in all cases. That the
presence of an excitation gap is irrelevant here is not surprising,
because the initial state has a finite overlap with excited states
except in the trivial case where it coincides with the ground
state.

1. Short-time dynamics

For short times, one should expect that the sum grows
quadratically in time [24]. The spectral function 
(θ,t) in
Eq. (7) for small t scales approximately quadratic in t reads


(θ,t) ≈ β(θ ){1 − [β2(θ ) − λ(θ )]t2}. (16)

The correction to the initial spectral function is proportional
to the difference β2(θ ) − λ(θ ), as was expected. The Fourier
coefficients ck in Eq. (15) can then easily be calculated as

ck ≈ ξk + t2δk , where ξk and δk are some constant numbers.
From this, one can calculate the sum (14) for short time, which
yields

S � �1 + �2t
2. (17)

2. Long-time dynamics

In the following we will derive an analytic estimate for the
lower bound to the entropy for long times. Note that β2(θ ) =
λ(θ ) corresponds to an initial state that is an eigenstate of
H and thus has no time evolution at all. In any real system,
the number of oscillators in the chain is finite and therefore in
order to neglect boundary effects in the thermodynamic limit it
is necessary to consider time intervals t � L/v, where v is the
speed of excitation after a quench, the so-called Lieb-Robinson
speed [17] (see also [20]), and L is the system size. For the
sake of simplicity of the derivations we consider a Hamiltonian
H with a finite excitation gap. The derivation for a nongapped
Hamiltonian is more involved and will not be presented here.
As noted above, the presence of a gap is, however, irrelevant. In
the following we use an alternative expression for

∑∞
k=1k|ck|2

which is very useful for numerical and analytical calculations.
By Parseval’s theorem this sum can be rewritten as (see the
Appendix for details)

∞∑
k=1

k|ck|2 = 1

8π2

∫ π

−π

∫ π

−π

dη1 dη2

ln2 
(η1−η2,t)

(η1+η2,t)

sin2 η2
. (18)

Making use of the inequality∣∣∣∣ ln
x

y

∣∣∣∣ >
1

M
|x − y|, 0 < x,y � M,

one finds

S >
1

M2

∞∑
k=1

k|bk|2, (19)

where M = max 
 (θ,t), and

bk = 1

2π

∫ 2π

0
dθ 
−1(θ,t) exp(−iθk). (20)

The coefficients bk have a simple physical meaning: They
determine the correlations in momentum space over a distance
k, i.e., 〈�(t)|pipi+k|�(t)〉 ∼ bk . With this we have

S >
1

M2

∞∑
k=1

k[ςk + μk(t)]2, (21)

where we have decomposed 
−1(θ,t) in a time-independent
and a time-dependent term

ςk = 1

4π

∫ 2π

0
dθ

λ(θ ) + β2(θ )

β(θ )λ(θ )
cos(kθ ), (22)

μk(t) = 1

4π

∫ π

0
dθ

λ(θ ) −β2(θ )

λ(θ )β(θ )
cos[2tλ1/2(θ )] cos(kθ ). (23)
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The term proportional to ς2
k in Eq. (21) does not depend on

time and can be disregarded. The second term can be estimated
using the Cauchy-Schwarz inequality∣∣∣∣∣

∞∑
k=1

kςkμk(t)

∣∣∣∣∣
�

( ∞∑
k=1

kς2
k

∞∑
k=1

kμ2
k(t)

)1/2

= C1

( ∞∑
k=1

kμ2
k(t)

)1/2

.

Applying again the Cauchy-Schwarz inequality we obtain

∞∑
k=1

kμ2
k(t) =

∞∑
k=1

k|μk(t)||μk(t)|

�
( ∞∑

k=1

k2|μk(t)|2
)1/2 ( ∞∑

k=1

|μk(t)|2
)1/2

,

and by Parseval’s theorem, one has

∞∑
k=1

k2|μk(t)|2

= 1

2π

∫ π

0
dθ

(
d

dθ

λ(θ ) − β2(θ )

λ(θ )β(θ )
cos[2tλ1/2(θ )]

)2

, (24)

and

∞∑
k=1

|μk(t)|2 = −|μ0(t)|2 + 1

2π

∫ π

0
dθ

×
(

λ(θ ) − β2(θ )

λ(θ )β(θ )
cos[2tλ1/2(θ )]

)2

. (25)

The time dependence of the sun |∑∞
k=1kςkμk(t)| is thus

bounded from above by the square root of t .
We now show that the term ∼μk(t)2 in Eq. (21) is bounded

from below by a function linear in t . As the interaction matrix
V is of finite range, the spectral function λ(θ ) is a trigonometric
polynomial of finite degree K. We introduce the group velocity
of eigenmodes of the quenched Hamiltonian (1)

vg(θ ) =
∣∣∣∣dλ1/2

dθ

∣∣∣∣ = 1

2

∣∣∣∣dλ

dθ

∣∣∣∣ 1

λ1/2
. (26)

By the theorem of Bernstein [23] one has max | dλ(θ)
dθ

| �
K max λ(θ ), and therefore

vg(θ ) � K max λ(θ )

2
√

min λ(θ )
= vm. (27)

Hence if k � kmax = vmt for any α > 0 there exists a constant
C2 depending on λ(θ ) and β(θ ) such that for all t and k with
k > vg t

|μk(t)| � C2

kα
. (28)

On the other hand, one finds

∞∑
k=1

kμ2
k(t) >

tvm∑
k=1

kμ2
k(t) >

tvm∑
k=1

k2

1 + k
μ2

k(t)

>
1

1 + tvg

tvg∑
k=1

k2μ2
k(t)

= 1

1 + tvg

⎛⎝ ∞∑
k=1

k2μ2
k(t) −

∞∑
k�kmax=vg t

k2μ2
k(t)

⎞⎠ .

The second term in the brackets vanishes for large t according
to the estimation (28). By Parseval’s theorem we arrive at

∞∑
k=1

kμ2
k(t)

>
1

1 + tvm

1

2π

∫ π

0
dθ

(
d

dθ

λ(θ ) − β2(θ )

λ(θ )β(θ )
cos[2tλ1/2(θ )]

)2

for large t . By neglecting all highly oscillating terms one
eventually finds

S >
t

πvm

∫ π

0
dθ

(
λ(θ ) − β2(θ )

λ(θ )β(θ )

)2

v2
g(θ ) . (29)

Equation (29) is the main result of our paper. We see that the
rate of generation of entanglement is proportional to the group
velocity of excitations of the quenched Hamiltonian. And the
energy difference between initial and quenched states acts as
a source of entanglement production.

IV. SUMMARY

We derived a lower bound to the scaling of the entanglement
entropy Sα,(α � 1) with time in a one-dimensional system
of coupled harmonic oscillators. The main result, Eq. (29),
implies that the bond dimension of the matrices used in an MPS
representation needs to increase exponentially in time to allow
a faithful representation of the dynamical many-body wave
function. This means that in contrast to fermionic systems,
where at least for certain initial conditions a simulation of
the long-time dynamics is possible, for harmonic-oscillator
systems this is in general impossible. For bosons, interactions
are necessary to suppress the growth.

There are many directions for extending the presented
approach. The discussion can be immediately generalized
to a two-dimensional array of harmonic oscillators, with an
interaction of finite range in one direction and an infinite
range in the other direction [25]. Another important study
can be investigating the quench dynamics in long-range
interacting systems including bosonic and fermionic freedoms
in trapped ions [26]. An interesting extension of this work
will be to examine the evolution of the entropy starting from a
non-Gaussian initial state.
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APPENDIX

By definition of Fourier coefficients, we have

ln 
−1(η1 + η2,t) − ln 
−1(η1 − η2,t) =
∞∑

k=−∞
ck[exp(iη2k) − exp(−iη2k)] exp(iη1k) =

∞∑
k=−∞

2ick sin η2k exp(iη1k).

By Parseval’s theorem, one has

1

2π

∫ π

−π

dη1| ln 
−1(η1 + η2,t) − ln 
−1(η1 − η2,t)|2 = 4
∞∑

k=−∞
|ck|2 sin2 η2k,

and therefore

1

8π2

∫ π

−π

∫ π

π

dη1 dη2
| ln 
−1(η1+η2,t)− ln 
−1(η1−η2,t)|2

sin2 η2
= 1

2π

∞∑
k=1

|ck|2
∫ π

−π

dη2
sin2 kη2

sin2 η2
=

∞∑
k=1

|ck|2k.

We have used the fact that for k � 1,

1

2π

∫ π

−π

dη
sin2 kη

sin2 η
= 1

2π

∫ π

−π

dη
|e2ikη − 1|2
|e2iη − 1|2 = 1

2π

∫ π

−π

dη

∣∣∣∣∣
k−1∑
m=0

e2imη

∣∣∣∣∣
2

= k.
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