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Abstract—We study the spreading of an initially localized wave packet of a particle hopping on a one-
dimensional superlattice during a cycle of a topological Thouless pump. Two contributions to the dis-
persion of the adiabatic pumping process are identified: a dynamical part and a geometrical part. The
magnitude of the dynamical contribution to the spreading depends on the dispersion of the adiabatic
transfer state and the cycle time. Unlike the dynamical one, the geometrical contribution does not
depend on the duration of the adiabatic process and can be made much smaller than the lattice spac-
ing. We show that as the adiabaticity is enhanced by prolonging the period of the pumping process, the
uncertainty in coordinate space is increased linearly with the adiabaticity parameter. We propose a
mechanism to smoothen the energy surface of the adiabatic transfer state to reduce the spreading of
the spatial distribution of the transported particle. This diminishes or even eliminates (up to the geo-
metric contribution) the dispersion of the coordinate during the transport process.
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1. INTRODUCTION
Forty years ago, David Thouless [1] showed that an adiabatic cyclic variation of a periodic potential in

space and time can cause a quantized motion of particles. The average displacement of the particle does
not depend on details of the time dependence of the parameters and, if an initial state with equal ampli-
tude in all momentum states of a Bloch band is chosen, can be expressed solely in terms of a topological
invariant, the Chern number [2], defined over a periodic Brillouin zone formed by quasi-momentum and
time. The same holds in an insulating many-body state, were one Bloch band is fully occupied. Adiabatic
pumping of single particles has attracted considerable theoretical and experimental interest in recent
years. It has received much attention mainly due to its robustness against external parameter uncertainties.
These studies focused mainly on the average displacement of the particle during a pump cycle. For the
case of non-interacting particles, quantized pumping has been demonstrated with ultracold atoms [3, 4]
by measuring the average shift (displacement) of the center of mass of an atomic cloud with in situ imag-
ing. A Thouless pump was experimentally realized also in several other synthetic topological systems [5, 6]
and including systems with interactions [7]. When interactions (i.e. nonlinearities) are added to the sys-
tems, the pumping can become fractional [8].

While irrelevant in insulating many-body states, the band dispersion plays an essential role during adi-
abatic pumping of a single particle and can lead to a spreading of the wave packet over the entire system.
Potential applications of adiabatic pumps make it necessary to minimize this spreading. The present paper
investigates the effects of the energy-band dispersion on quantized particle transport. We show that in the
adiabatic limit, two contributions to the uncertainty of the particle coordinate arize: a dynamical and a
geometrical part. The dominant contribution comes in general from the dynamical part, which depends
explicitly upon the dispersion of the band Hamiltonian and the cycle time. Unlike the dynamical one, the
geometrical contribution does not depend on the duration of the process, and it is much smaller than the
lattice spacing. We show that the problem associated with the undesired spreading of the probability dis-
tribution can be minimized by judicious change of the initial band state so that the energy as a function of
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lattice quasi-momentum is smooth. This offers a means of diminishing, or even eliminating (up to the
geometric contribution), the dispersion of the coordinate during the transport process.

Concretely, we consider the Rice-Mele model [9], i.e. a quantum particle in a one-dimensional lattice
with variable, alternating hopping amplitudes subject to a staggered onsite energy offset in the tight-bind-
ing limit. In principle, such a model can be implemented in many different physical systems, e.g., for neu-
tral cold atoms in an optical superlattice potential [10], two-dimensional photonic crystals [11], or in
waveguide structures where time is replaced by the propagation coordinate [12].

2. PARTICLE TRANSPORT IN A TIME-DEPENDENT BLOCH HAMILTONIAN
We discuss a single particle on one-dimensional lattice with lattice constant , and an number of

lattice sites  (even integer) with periodic boundary conditions. The system is described by the Hamilto-
nian

(1)

where  is the Hamiltonian band matrix describing the dynamics of a single cell and  are the ortho-
normalized Bloch vectors with components

 is the quasi-momentum of the particle and  is the coordinate of the cell on the lattice.
The solution of the Schrödinger equation ( )

(2)

with the initial condition , can be represented as

where  gives the initial quasi-momentum probability distribution. The evolution of a cell is governed
by

(3)

Now we assume that  is explicitly time-dependent and periodic i.e., . The
momentum dependence of  causes tunneling transitions between different superlattice sites. In the
following, we will only analyze the case when the initial state  coincides with one of the adiabatic
states of the Hamiltonian .

In order to describe transport processes it is convenient to work in the Wannier basis [13]
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the cell, is
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In the following we will examine the case of large system size . In this limit, this sum can be
replaced by an integral

(6)

and the expression (4) transforms into

(7)

where

(8)

Then, the center-of-mass coordinate can be expressed as

The relative shift of the center of mass in a period  reads

(9)

Throughout this paper, we assume that , where  is the coordinate of the initially occupied
cell. In other words, we assume that the system starts in an initial state where all quasi-momentum states
are equally occupied.

Analogously, we may calculate the uncertainty of the coordinate (the second momentum of the parti-
cle distribution) after one pumping cycle. After a simple calculation, we eventually obtained the following
form

where

(10)

(11)

and

(12)

is the projection operator onto an orthogonal state to .
The second term,  in Eq. (11), generally includes significant dynamical and small geometric con-

tributions. These geometric dispersions do not depend on the adiabatic parameter, i.e. on period . We
show that smoothing the energy surface of the adiabatic transfer state can reduce the wave packet spread-
ing. In contrast, geometric contributions are unavoidable during the pumping process. In the next section,
we evaluate the spreading of the wave packet based on adiabatic approximation.

3. ADIABATIC EVOLUTION AND NON-ADIABATIC CORRECTIONS
For simplicity we now consider a two-band system i.e. each elementary cell has two internal states. To

be specific we discuss the two band Rice-Mele model [9]
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(13)

where  are Pauli matrices. This model describes a particle moving along a one-dimensional superlat-
tice with alternating hopping amplitudes  and a staggered onsite energy offset . The generaliza-
tion for arbitrary number of bands is straightforward.

In the limit when the Hamiltonian varies arbitrarily slowly (adiabatically), the solutions  of
the Schrödinger Eq. (3) corresponding to different initial instantaneous eigenstates of 

(14)
can be written in the form (see [2, 15, 16])

(15)

(16)

where

(17)

and

(18)
is the spectral gap of the Hamiltonian. In the derivations of these expressions, we have imposed the par-
allel transport condition on instantaneous eigenstates

(19)
i.e.
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When the exponential factor in the integrand of Eq. (17) oscillates (adiabatic limit), the calculation of the
integral (17) leads to

(21)

Substituting this into Eq. (15) gives for the integrand of 
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which does not depend on  and .
As already mentioned in the introduction in the limit when the Hamiltonian  varies arbitrarily

slowly, the average displacement of the particle per cycle is related to a 2D topological invariant, the Chern
number
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where  is the Berry curvature [14]
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The Chern numbers of the two bands of Hamiltonian (13) are  (see e.g. [2]).
It is remarkable that for any trajectory (the closed path encircles the singularity point, where the gap

 vanishes) in the parameter space the average displacement  is the same. On the contrary, as
we will see in the following, the second momentum, , does depend on the path of the pumping pro-
cess.

After a simple calculation, we arrive at the following expression for the spreading of the particle

(24)

where

(25)

(26)

(27)

In deriving these expressions, i.e. Eqs. (25)–(27), we have assumed that spatial inversion symmetry is
present, i.e., the band has the properties [2]

(28)

We see that the first and second terms  and  do not depend on  nor on , i.e., they
have a geometric origin and depend on the shape of the trajectory in the parameter space. Thus the two
first (25) and (26) have a geometric origin rather than a topological one. Usually, these geometrical con-
tributions are much smaller than the dynamical one. It is easy to see that the last term  is propor-
tional to the accumulated dynamical phase that is the adiabaticity parameter . To overcome this
large spreading of the probability distribution, we propose in the following to smooth the energy surface
of the adiabatic transfer state .

There is a simple way to understand the physical meaning of . The centre of mass
of the particle moves along the lattice with a total velocity
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where the first term is the usual group velocity. The second one is the anomalous velocity due to the Berry
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which yields . The physical meaning of Eq. (26) is less transparent. The first factor of
the integrand in Eq. (27) is simply the non-adiabatic transition amplitude from the initial adiabatic state

 to the second adiabatic state . The probability for such non-adiabatic excitation is essentially neg-

ligible. However, the second adiabatic state has a large relative group velocity  (even though the

transfer adiabatic state  has a f lat energy band) and therefore the product of these two factors yields a
non-vanishing non-adiabatic contribution.

To confirm these observations, we have performed a numerical simulation of the Rice-Meme model,
eq.(13) with the path for the pumping process parameterized as

(30)

and

(31)

During the adiabatic pump cycle, the system moves along a path  in the  and  parameter space.
By assuming that the particle evolution starts from the adiabatic eigenstate

 where  and  describe states of the particle being inside the left and

right potential wells, respectively. It is instructive to see how the distribution evolves in space and time.
Figure 1 obtained directly from the numerical solution of the Schrödinger equation with the band Ham-
iltonian (13). As we can see from Fig. 1a, for small ( ), the initially localized particle at middle of
the chain, after one period nearly ends up in the next to the initial one with the average displacement

. While, for large  (see Fig. 1b), the distribution spreads over all sites leading to low
efficiency of transport towards the first neighbor site. Although, in this case, the average position is shifted
by  (almost one) unit cell to the right in one pumping cycle, the visibility of the topological transport
is abysmal. Thus, from a practical point of view, it may be questioned whether it would be really worth-
while to achieve  by improving the adiabaticity of the pumping process. From the above qualita-
tive observations, it is clear that the adiabaticity enhanced by the prolonged duration will smear the visi-
bility of the feature of the Thouless pumping process.

The dynamical part of the spreading can be easily computed, which yields .
Although the numerical factor in front of  is small, it is large enough to smear out the spatial distri-
bution in a deeply adiabatic regime. From this expression, we see that for , the uncertainty in
coordinate . In contrast the average displacement  is about . In the following, we
show how, in principle, to reduce the numerical factor by globally changing tunneling couplings between
lattice cells.

4. OVERCOMING THE SPREADING

The problem associated with the undesired spreading  can be minimized by judicious “engi-
neering” of the initial energy band . We have reexamined the model (13) with the addition
of an energy shift, i.e.
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to produce an adiabatic state with zero group velocity (f lat band).The term  does not change the
adiabatic eigenstates of the Hamiltonian. In other words, the topological and geometrical features remain
unchanged in the adiabatic limit. While the dynamical contribution , for the f lat band vanishes.
The remainder part of , involves only the geometrical contribution.

Although this compensation of the band energy of the transfer state is ideal for observing the particle’s
topological transport, it is not so simple to realize experimentally. The problem is that in order to com-
pensate the large energy , a very complicated space-time dependent inter-cell tunneling process
should be added to the hoppings with amplitudes . Alternatively, a f lat band model can be con-
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Fig. 1. Probability distribution  in space over one period  for different values of the adiabatic parameter : (a)

 and (b) . The path for the pump is parameterized as:  and
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structed by the replacement , (without loss of generality, one may assume that
). However, in real space, the f lattened Hamiltonian  includes arbitrary long-range

hoppings.

However it is not necessary to fine-tune the inter-cell global tunneling terms. We show now, that keep-
ing only a few short-range tunneling terms gives almost f lat band. To this end, let us consider the following
Hamiltonian

(33)

It differs from the original Rice-Mele model by the additional term  which induces the global
tunneling between the nearest neighbor superlattice cells with the rate .

In the following, we show that the physical mechanism of the reduction  is related to partial com-
pensation of the dispersion of the transfer adiabatic state. The adiabatic energy of the transfer state of the
Hamiltonian (33)
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can be expanded in a Fourier series with respect to 
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Fig. 2. Variation of  as a function of the parameter . The parameters of the pumping process are the same as in Fig. 1.
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5. CONCLUSIONS
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dinate small in comparison with the average displacement. The minimum uncertainty of the coordinate
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such that it becomes a smooth function of the quasi-momentum. We have shown here that there is in addi-
tion an unavoidable geometrical spreading of the probability distribution, which depends on the details of
realizations of the pumping process but does not depend on the period of the adiabatic process.
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Our analysis shows that it should be possible to overcome these difficulties and for a smooth, adiabatic
transfer state to achieve high visibility in the quantized transport. A modified Rice-Mele tight-binding lat-
tice model is taken as an example to show that the shift per cycle can be larger than the dispersion and the
same time, very close to the ideal value.
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