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Abstract

Although for photon Bose—Einstein condensates the main mechanism of the observed photon—
photon interaction has already been identified to be of a thermo-optic nature, its influence on the
condensate dynamics is still unknown. Here a mean-field description of this effect is derived, which
consists of an open-dissipative Schrodinger equation for the condensate wave function coupled to a
diffusion equation for the temperature of the dye solution. With this system at hand, the lowest-lying
collective modes of a harmonically trapped photon Bose—Einstein condensate are calculated
analytically via a linear stability analysis. As a result, the collective frequencies and, thus, the strength of
the effective photon—photon interaction turn out to strongly depend on the thermal diffusion in the
cavity mirrors. In particular, a breakdown of the Kohn theorem is predicted, i.e. the frequency of the
centre-of-mass oscillation is reduced due to the thermo-optic photon—photon interaction.

1. Introduction

In recent years many theoretical and experimental results have contributed to a basic understanding of quantum
fluids of light [ 1], where many photons propagate in nonlinear optical systems. The corresponding collective
features are due to effective photon—photon interactions, which are induced by the nonlinear matter. The
hydrodynamic behaviour oflight in a cavity, first noted by Lugiato and Lefever in 1987 [2], was theoretically
brought forward in [3] by deriving a Ginzburg—Landau equation for laser light inside a cavity. These theoretical
works were complemented by the experimental proof of superfluidity of light via the pioneering observation of
stable quantised vortices by Swartzlander and Law in 1992 [4]. With this the natural question arose, whether
light could also undergo the equilibrium phase transition of Bose—Einstein condensation. This intriguing
question was partly answered in 2002 when the first exciton-polariton condensate was realised [5]. However,
such condensates have turned out to be not of a Bose—Einstein type, as their life time is shorter than the intrinsic
equilibration time. In contrast to that an equilibrium Bose—Einstein condensate (BEC) of pure light was
achieved in Bonn in 2010 [6]. Although this is still a driven-dissipative system like the exciton-polariton
condensates, the favourable time scale ratio allows for the observation of equilibrium effects [7].

The experimental setup to create a BEC of photons consists of a microcavity filled with a dye solution. There
the cavity provides a well-defined ground state for the effective two-dimensional photon gas, as can be seen from
the paraxial approximation, and the dye leads to a thermalisation of the photon gas via absorption and emission
processes of the photons [8]. As the corresponding absorption and emission rates are related via a Boltzmann
factor according to the Kennard—Stepanov relation [9—12], the photon gas inherits the thermalisation from the
dye molecules. Provided that the pumping power is large enough in order to compensate unavoidable cavity
losses and thermalisation proceeds faster than these losses, the photon gas can undergo an equilibrium Bose—
Einstein phase transition [13].
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Figure 1. Scheme of effective photon—photon interaction mechanisms. The electric field, here represented by the condensate wave
function 1, couples in two ways to the refractive index n. Once via the Kerr effect, which is due to the non-vanishing third-order
susceptibility Y, and, secondly, also an increase of the dye-solution temperature T due to the heating coefficient Bis present. This
yields via the thermo-optic coefficient Fa change An of the refractive index.

Furthermore, the absorption and emission processes lead to effective photon—photon interaction
mechanisms, see figure 1. One is the Kerr effect, where a nonlinear susceptibility causes the refractive index of
the dye solution to be proportional to the intensity of the electric field in the cavity [14]. Note that a microscopic
theory of the Kerr interaction in a photon BEC is based on a Lindblad master equation [15-17]. A second
interaction effect is due to the heating of the dye solution, as the quantum efficiency of the dye is below 100%.
This leads to a shift of the refractive index of the solvent [ 14] and correspondingly to a thermo-optic photon—
photon interaction. As the latter is mediated by the temperature diffusing through the dye solution, it is non-
local in space and retarded in time. So far the strength of the effective photon—photon interaction has been
experimentally determined by measuring the increase of the condensate width with the photon number [6, 13].
From this it is concluded, that the main contribution of the interaction is due to the thermo-optic effect. The
strength of the interaction, which can be defined to be dimensionless in two spatial dimensions [18, 19], is
measured to have valuesup to § = 7(3) x 107*[6, 13], where the precise value depends on the detailed
experimental configuration. An interaction strength of the same order was observed in another experiment in
Londonin 2016 [20].

From atomic BECs it is known that observing the condensate dynamics represents a valuable diagnostic tool
to measure system properties in general and two-particle interaction strengths in particular. For instance,
observing collective frequencies of trapped condensates is a precise way to measure the strength of the contact
interaction up to an astonishing precision of 1%o [21]. Therefore, observing the collective frequencies of a
photon BEC is expected to yield additional profound information about the nature and the strength of the
effective photon—photon interaction. This motivates to analyse in the following the lowest-lying collective
modes of a photon BEC under the influence of the thermo-optic interaction in view of future experiments.

2. Model

A minimal mean-field description of the thermo-optic interaction consists of two equations [22-24]. One is a
nonlinear Schrédinger equation that accounts for the evolution of the electric field inside the cavity, which is
assumed to be linearly polarised. The second equation describes the diffusion of the temperature, produced by
the non-perfect absorption processes of photons.

As the experiment takes place inside a microcavity, the electric field can be treated in paraxial approximation
[14, 25-28] which allows us to map the three-dimensional massless photon gas in a spherical mirror geometry to
atwo-dimensional gas of bosonic particles. These particles possess amass m = /iueuoft (119 /)%, where the
cavity-cutoff frequency is denoted by weyofrand the light velocity in the dye solution is ¢/ny. Furthermore, these
particles are trapped in a harmonic potential with frequency 2 = ¢/2/(LoR) / 1y, thatis determined by the
cavity length L, and the radius of curvature R of the mirror [6, 13, 29]. Thus, the evolution of the condensate
wave function ¥ (r, t),1.e. the electric field normalised to the photon number, is described by an open-
dissipative Schrodinger equation of the form [23,29-31]
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Here, the remaining transversal degrees of freedom are denoted by r = (r;, 7,)”. The thermo-optic effect is
described by the nonlinearity in (1) involving the temperature difference AT (r, t) between the actual intra-
cavity temperature and the room temperature. Here the coupling coefficient g = —3mc*/n, with the thermo-
optic coefficient 3 quantifies the energy shift due to the heating. As discussed above, it is justified to neglect the
much smaller Kerr interaction. Due to the unavoidable cavity losses, the photon BEC is intrinsically an open
system. Following [32], an incoherent pump scheme is modelled by the imaginary partin (1). The pump is
described by the coefficient p and the losses by the decay rate I'. Note that the emission and absorption processes,
which do notlead to aloss of photons, i.e. the coherent ones that are proportional to the quantum efficiency 7,
are not considered here. Thus, the loss rate I" is only proportional to 1 — nand gives rise to a heating of the dye
solution as discussed below. Furthermore, the effects of a coordinate dependent mass and interaction strength
[33, 34] are not taken into account, as these effects are negligible within the experimental parameter range.

On the other hand the temperature difference AT (r, ) follows a diffusion equation. Reducing it from three
to two spatial dimensions by the procedure described in appendix yields

O/ AT (r, t) = (DOVZ - l)AT(r, t) + Bl (r, t)|%, 2)
T

where the temperature diffusion constant is denoted by Dy = \,,/(c,p). It depends on the thermal conductivity
Aw» the specificheat ¢, and the density p of the solvent [35]. The heating coefficient of the dye solution is given by
B = mc’T"/(Lynoc, p) [24]. Moreover, the temperature relaxation is governed by the time scale 7, which
depends in general on the length scales of both the cavity and the mirrors, see appendix. Note thatin [22] only
the limiting case 7 — 00 is treated.

A formally similar mean-field model was already established within the realm of exciton-polariton
condensates [32], where the exciton bath plays a role comparable to the temperature for the photon BEC.
However, the time scales of the two systems are inverted. In an exciton-polariton condensate the relaxation of
the exciton reservoir is fast compared to the dynamics of the condensate, allowing its adiabatic elimination. In
contrast to that, the photon BEC dynamics, which is determined by the trap frequency €2, occurs on a much
faster time scale than the dynamics of the temperature, whose time scale is given by the large relaxation time 7.
Thus, the resulting thermo-optic photon—photon interaction yields such a significant temporal retardation that
no influence on any condensate dynamics is expected.

Nevertheless, in the following it is shown that the collective frequencies of the photon BEC turn out to be
modified by the thermo-optic photon—photon interaction. The reason is that, in the steady state, the refractive
index near the trap centre is modified, so the collective modes exploring its neighbourhood experience
effectively a changed potential. Or, put differently, the temperature profile can be considered as the motional
history of the condensate and, thus, the condensate effectively scatters with its own history.

3. Methods

An analytical and a numerical evaluation of the system (1), (2) is performed. Whereas the analytical method
relies on a Gaussian ansatz for both the condensate wave function and the temperature difference in order to
reduce the PDE system to a set of ODEs, the numerical technique is based on a finite-difference method. Both
methods are explained in detail below.

3.1. Analytical method

The usual variational approach for dealing with collective excitations in ultracold quantum gases is based on
Hamilton’s principle [36—38]. As the photon BEC is intrinsically an open system, however, no such principle
exists, as the energy is not a conserved quantity. This problem can be circumvented by considering the equations
of motion of the cumulants [39, 40], i.e. calculating the evolution equations for the centre-of-mass and for the
widths. Due to the openness of the system also the photon number N (t) = f & |y (x, t)|? represents an
additional variational parameter. For finding an ansatz for the photon wave function it is worthwhile noting that
the ground state of the non-interacting system is a simple Gaussian function. As the interaction in the photon
BEC is measured to be small, it is justified to consider the condensate wave function to be of Gaussian shape,
where the width is used as a variational parameter. Note, that this ansatz still holds true for small pump and loss
parameters [41]. Therefore, the ansatz for the condensate wavefunction is chosen to be of the form:
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where the centre-of-mass coordinates are denoted by x;(f) with the phases C(t), whereas g;(¢) describe the
condensate widths, and the A;() stand for the corresponding phases. The different coordinate directions are
indicated byj = 1, 2. Since all current photon BEC experiments are working with a particular pump sequence
[6, 13], the duty cycle 0 models a continuous pump in the ansatz. Thus, the number of photons present on
average in the cavity is given by oN. This averaging coarse-grains the dynamics, and for the steady-state values
considered later the ansatz turns out to be reasonable. As the temperature difference is induced by the photons, it
is justified to assume also a Gaussian shape for its distribution, which solves by itself the homogeneous part of the

diffusion equation (2):
ATy(t) [ri — yu (O
AT(r, t) = — 22 - =L e b
® 0= ma® F {,-_Zl,z (P } @

Here ATy(f) denotes the amplitude of the temperature difference, yo(t) describes the centres of the distribution
and si(t) their widths. The aim is now to calculate the equations of motion for the amplitudes, the centre-of-
masses and the widths, as well as their phases, following the procedure of [40].

The mean-field equations (1), (2) are solved with the ansatz (3), (4) for condensate wave function and
temperature difference by applying the cumulant approach [40]. After eliminating the phases, the evolution of
the remaining dynamical variables is described by the following set of equations

ON=[p—T + BATy(p + I)GryIN, (5a)
Oxgi = O,(Rig?) + (D,In(q,) — g} IR — Qs — 2ATy G, LY~ X0 (5b)
m(ql + s7)
2.5 "’ 2
0iq; = q;0:iq}) — I7q; + 2819 q] i + —5— i 5 — g,
k
4 Ot — X0i)’a; i
- SIGpan) 2= - (50)
(s +47) 2(q; + si)
0/ ATy = —% + oBN, (5d)
T
0BN
¥y = AT, ——(X0i = ¥p)» (5e)
2
BN oBN
823i2:4D—|—U 2+2 Xoi — Yy | - 5
i ATO ) A 0( 0i = Yoi (5
Here, the overlap of the temperature-difference distribution and the condensate is described by
(x if)’oi)z
eXP[—Zizl,zﬁ]
Gy = = (6)
ﬂ-Hisz \/(qi2 + siz)
Furthermore
o 28Ty Gry | (yy; — x0i)? B 1 @
’ no | P+ a}? 267+ q)
accounts for the pump and loss influence on the widths, whereas
y()i — Xoi
+ BAT,Gry(p + T)—"5—- 8)
RO z—l—sl PATGry(p no(q] + i) (

are the corresponding ones for the centre-of-mass.

3.2. Numerical method

The numerics performed in the present work is based on the method developed in [42—44]. Here, the
propagation of the two equations (1) and (2) is done via a split-step method. First, both the condensate wave
function and the temperature difference distribution are propagated with respect to the spatial derivatives by a
Crank—Nicholson scheme. Afterwards the evolution regarding the remaining (non)linear equations is
performed by infinitesimal exponential propagation. The space-time discretisation is chosen such that the
calculational effort and the discretisation errors are well balanced. As initial wave function the steady state wave
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Figure 2. Steady state (9) of the system (1), (2) with the ansatz (3), (4) for two different values of the diffusion constant D. The red line
(circles) corresponds to the experimental value Dy ey, = 9.16 x 1078 m? s~! and the green one (diamonds) to the larger value

Dy = Do,exp X 102. The markers indicate the full numerical solution of the system (1) and (2) as explained in section 3.2.

function with slightly perturbed width and finite centre-of-mass is used. Due to this all three modes, which are
calculated analytically, are excited. From the calculated wave function both the centre-of-mass and the width of
the photon density are extracted and analysed by using a fast Fourier transformation. From this method the
oscillation frequencies of the different collective modes can be read off.

4. Steady state

From the equations of motion of the cumulants (5a), it follows that the temperature evolution is determined by
the condensate. So the steady state is completely described by the latter. Furthermore, due to the trap isotropy
the condensate shape is also isotropic. Accordingly, the dependence of the equilibrium condensate width g, on
the equilibrium photon number Nj is described by

1 1 2N,
0= 5~ + —F ©)
qo losc 7(2% + DOT)

where Iy = /72 /(m$) denotes the oscillator length. Moreover, the dimensionless interaction strength turns
out to be

- m
§= ;UZTTB» (10)

showing that the interaction strength is determined by the properties of the used dye solution, the geometry of
the microcavity, as well as by the pump scheme. Note, that this result is comparable to that in [24]. In addition,
the effective photon—photon interaction can directly be controlled via the relaxation time 7 by changing the
geometry of the cavity mirrors, see (A.11). However, it turns out that in the experimental situation, where the
longitudinal and the transversal extension of the mirrors are of theorder L; ~ 1cmandL; ~ 1 mm, the
temperature relaxation inside the cavity is governed by the transversal temperature diffusion in the mirrors and
(A.11) simplifies to

T = LJZ‘ s
27'('2D1

(1

with the diffusion constant D, of the mirror. In case of a large diffusion constant of the solvent, i.e. Dy > qoz,
the condensate width g, approaches the non-interacting value I.. This results from a suppression of the
thermo-optic interaction as all the temperature excitations are quickly transported through the dye solution. In
the opposite case the behaviour g, = losc [1 + Nog/ (2m)]'/*is reproduced, which is well known from 2D
atomic BECs [45].

The numerical solution of (9) is shown in figure 2, where the values of the Bonn experiment with the solvent
ethylene glycol are used [13, 46, 47]. The dye solution is characterised by
no = 1.46, A, = 026 Wm~'kg™!, ¢, = 144.5 ] mol ' K™}, p = 1110 kg m~3, § = —4.68 x 10~°/K and
I' = 1/s. The cavity geometryis givenby Ly = 1.5 x 107%/K and R = 1 m. The pump scheme yields a duty
cycleof o = 1/16 000. The effective mirror diffusion constant D, is of the order of 107% m? s~%, thus yielding the
relaxation time 7 ~ 0.1 s. With this the value of the dimensionless interaction constant is calculated within the
mean-field model to be
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Figure 3. Oscillation frequencies obtained from real parts of the eigenvalues of S4;po1. describing the dipole mode oscillation (green,
squares) and of Siqus describing the quadrupole (blue, diamonds) and the breathing mode (red, circles) for the experimental value of
the diffusion constant Dy exp = 9.16 X 10~% m? s~!. For the larger diffusion constant Dy = Dy exp X 102 the dipole mode frequency
is visualised by the light blue (left triangles), the one of the quadrupole mode by the grey line (lower triangles) and the breathing mode
by the pink (upper triangles) line. The dashed ones result from a variational evaluation of a simple Gross—Pitaevskii equation with a
harmonic trapping potential. The markers visualise the results of a numerical evaluation of system (1) and (2) as explained in section
3.2.

g ~ 1074’ (12)

which is in remarkable agreement with the experimental value [6, 13, 20].

5. Linearised dynamics

Linearising the equations of motion with respect to small elongations out of the equilibrium yields a decoupling
of the centre-of-mass from the width dynamics. Therefore, the dipole mode, which is a pure centre-of-mass
motion, can be discussed separately from the breathing and the quadrupole mode, which are in- or out-of-phase
width oscillations, respectively. At first the investigation aims for the dipole mode, which can be described by the
vector v; = (6xg;, 6Xoi> 6)),;)T, where & denotes small perturbations of the steady stateand i = 1, 2 indicates the
respective coordinate directions. The linearised equation of motion is given by v; = Syl vi- The eigenvalues of
Sdipole are complex due to the pumping and the coupling to the diffusion equation. The real parts describe the
oscillation frequency of the dipole mode, whereas the imaginary parts represent the corresponding damping
rates, which are discussed below. The frequencies are shown in figure 3, where the dashed lines are the results of a
variational solution of the plain Gross—Pitaevskii equation [36]. In atomic BECs the dipole mode frequency
equals the trap frequency, which corresponds to a centre-of-mass motion in a harmonic potential, according to
the Kohn theorem [38]. In the present case of a temporal non-local interaction, however, a shift to smaller
frequencies is observed, which shows that the aforementioned scattering of the condensate with its own history
leads, indeed, to a slowing down of the condensate motion and, thus, to the breakdown of the Kohn theorem.
Furthermore, a stronger temperature diffusion in the solvent leads to a smaller frequency shift. This shows again
that the diffusion suppresses the thermo-optic interaction.

The equations of motion describing the breathing and the quadrupole mode are coupled equations of the
temperature and the condensate widths in both directions as well as the photon number and the temperature
amplitude, which are summarised in the vector w = (6T, 0N, 6q,, 64, 0n, 0q,, 04, 6r,)T. The evolution of
these quantities is described by w = Sy,;qins W, Where the real part of the eigenvalues of Sy;quns is shown in
figure 3. Again, the frequencies are shifted to smaller values compared to a contact interaction. Even the
breathing mode frequency, which turns out to be always twice the trap frequency for a contact interaction
irrespective of the particle number and the strength of the contact interaction [45], gets shifted to smaller values.
As before, we find that a larger diffusion strength yields a smaller frequency shift.

In figure 4 the damping rates corresponding to the oscillation frequencies are plotted. As only a thermo-
optic damping effect and no damping stemming from the matter is taken into account, these rates turn out to be
quite small and also slightly positive. However, compared to the pulse duration, which is about 500 ns, the
instability occurs on a much larger time scale of 1076/ ~ 10* s. Nevertheless, this instability reflects the
missing matter degree of freedom of the present mean-field theory.
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Figure 4. Damping rates of the eigenmodes of Sgipole and Syidths- The green solid line corresponds to the damping of the dipole mode,
whereas the green dashed line belongs to the temperature-difference oscillation. The remainder visualises the damping rates of the
breathing mode (red, dashed), the quadrupole mode (blue, short dashed), the temperature-difference amplitude (brown, dashed—
dotted), the temperature-difference breathing mode (orange, dotted) and one of the photon number (dashed-double-dotted).

However, the damping rates are expected to be of the order of the reabsorption time, i.e. of the order of 10 ps
to 100 ps[7]. Thus, in view of a trap frequency of 2 = 27 x 37 GHz, a few oscillations should be
experimentally observable.

6. Summary and experimental perspective

In this paper the influence of a thermal shift of the refractive index on the photon BEC dynamics is worked out.
This shift yields an effective photon—photon interaction which is non-local in space and retarded in time. Due to
the geometry dependence of the temperature diffusion, the strength of the effective photon—photon interaction
can be controlled by the shape of the mirrors. Moreover, due to the retardation in time, the Kohn theorem does
not hold in the present case and the dipole mode frequency is shifted to frequencies smaller than the trap
frequency. Additionally, the temperature diffusion of the solvent has a large influence on the effective photon—
photon interaction. The same happens to the breathing and the quadrupole mode. However, the damping rates
of the collective modes are supposed to be larger once a more detailed theory takes the absorption and emission
behaviour of the dye properly into account.

The above predicted features can, in principle, be measured in two ways. The first one relies on a direct
observation of the collective modes. The dipole mode, e.g. can be excited by using two lasers, where the first one
pumps the cavity homogeneously and the second one creates a BEC via an off-centre pulse. The excited mode
can then be observed by measuring spatially the light leaking out of the cavity. As the dipole mode oscillation
frequencies are expected to be of the order of the trap frequency, a streak camera is necessary in order to resolve
these extreme time scales. The experiment performed in [7] can be seen as a proof of principle in this respect.
The second method is an indirect measurement via the eigenfrequencies of the cavity [48]. In case of small
interaction, which is the case in the photon BEC, the dipole mode corresponds to the difference of the lowest two
cavity eigenfrequencies. Due to the interaction and the corresponding condensate broadening the third lowest
energy state is also partially populated. This allows us to examine the breathing-mode by spectrally resolving the
cavity emission.
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Appendix. Temperature diffusion in mirrors

The purpose of this appendix is to derive the diffusion behaviour of the temperature within the cavity setup
depicted in figure Al. The geometry is simplified by assuming planar mirrors in comparison to the original
geometry, which consists of spherically curved mirrors.

A.1. Formulation of boundary value problem
The complete cavity ranges fromz = —L/2toz = L/2, whereas the mirrors extend from the boundaries up to
z = —Ly/2andz = Ly/2, respectively. The temperature diffusion constants of the dye solution filling the space
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Figure Al. Simplified geometry of the cavity setup with flat mirrors. Within the region —L, /2 < z < Ly /2 the diffusion constant
takes the value Dy, whereas in the outer region Ly /2 < |z| < L/2 the diffusion constant is given by D;.

between the mirrors and of the mirrors themselves are denoted by Dy and D, respectively. Thus, the
corresponding diffusion equation for the temperature difference AT between the actual temperature of the
experimental setup and the room temperature reads [49]

O,/ AT =V - [D(z)VAT ] + S, (A1)

with the function D(z) = Dy + (D; — Dy)0(|z| — Lo/2) containing the respective diffusion constants and S
being a source term with support only inside the cavity. Due to the symmetry of the considered geometry in
figure A1, it is sufficient to consider only the non-negative z half space together with the von Neumann boundary
condition

0,AT|,—o = 0. (A.2)
On the other hand, the temperature difference obeys the Dirichlet condition

AT(z=1L1/2)=0 (A.3)

atthe border of the mirror. Furthermore, atz = Ly/2,i.e. the contact of the mirror and the dye solution, the
temperature difference is continuous:

lim AT(E — 5) = lim AT(& + 6). (A.4)
e—0 2 e—0 2

Integrating (A.1) in the neighbourhood of the material transition yields a jump condition for the first derivative
of the temperature difference

Dohn}) aZAT |Z:L0/2—€ = Dlhn}) 8ZAT IZ:L0/2+€ . (A.5)
e— €

A.2. Dimensional reduction of boundary value problem

The aim is now to derive an effective equation for the transversal diffusion of the temperature difference within
the cavity. Due to the piecewise defined diffusion function D(z), the ansatz for the temperature difference is
chosentobe

ATy = AT o(rs, 1) ATjo(2) (A.6)
inside the cavity and
AT = e "TAT 1 (x) AT 1(2) (A7)

for the mirror. By writing down these two ansatzes three assumptions have been made. First, the transversal
component inside the cavity AT ( varies on a time scale set by the photon condensate. This scale is much faster
than the intrinsic scale of the diffusion process and, therefore, this component acts on its own time scale. The
second assumption accounts for the steady state of the diffusion process in the mirror. Accordingly, the ansatz
(A.7) involves only an exponential time dependence with the relaxation time 7. Lastly, only the lowest
temperature difference mode is considered, as this mode decays least and has, therefore, the largest amplitude.
With the two ansatzes (A.6), (A.7) the diffusion equation (A.1) reduces to one equation for each region, which
are linked via the boundary conditions (A.2)—(A.5).

Solving the diffusion boundary value problem leads to the following results. The relaxation time 7in the
mirrors consists of the decay time of the transversal diffusion process

8
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Figure A2. Plot of the relaxation time (A.11) for the parameter region relevant in the Bonn experiment. The contour lines and the
colour code provide the value of 7. The red cross marks the current values of the Bonn experiment.

47 2D1

T (A.8)

and the longitudinal relaxation time 7 which is determined by the transcendental equation

DO L0/2 D1 L1/2
- = _ . A.
. tan( N ) - cot[ D, ] (A.9)

Here, the mirror length is denoted by L; = L — L. Furthermore, we assume that the relaxation time of the
longitudinal diffusion inside the cavity occurs at the same time scale as the diffusion process inside the mirrors.
In the limit of a microcavity, i.e. Ly < Ly, one finds

L}
7T2D1 '

(A.10)

Therefore, the total mirror decay time 7 is given by

1 o 47T2D1 7'['2D1

T I L2’

(A.11)

This result is plotted in figure A2 for the parameters of the Bonn experiment, where the width of the mirrors is
givenby L, = 1 mm, whereas the length of the mirror L, is of the order of 1cm. Thus, in that cases (A.11)
simplifies to (11). As a consequence, the effective longitudinal relaxation time of the temperature difference
inside the cavity is provided by the transversal temperature difference diffusion in the mirrors. Finally, the
resulting two-dimensional diffusion equation for the transversal temperature difference within the cavity turns
outtobe

1
O, AT, o = (Dovi — —)ATM + S, (A.12)
T
which coincides with (2) in the main part. Note that the remaining source term takes the form
2 Lo/2
S ) = — f dz S(r, 2, ) ATjo(2). (A.13)
o Yo
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