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Abstract
Although for photon Bose–Einstein condensates themainmechanismof the observed photon–
photon interaction has already been identified to be of a thermo-optic nature, its influence on the
condensate dynamics is still unknown.Here amean-field description of this effect is derived, which
consists of an open-dissipative Schrödinger equation for the condensate wave function coupled to a
diffusion equation for the temperature of the dye solution.With this system at hand, the lowest-lying
collectivemodes of a harmonically trapped photon Bose–Einstein condensate are calculated
analytically via a linear stability analysis. As a result, the collective frequencies and, thus, the strength of
the effective photon–photon interaction turn out to strongly depend on the thermal diffusion in the
cavitymirrors. In particular, a breakdownof the Kohn theorem is predicted, i.e.the frequency of the
centre-of-mass oscillation is reduced due to the thermo-optic photon–photon interaction.

1. Introduction

In recent yearsmany theoretical and experimental results have contributed to a basic understanding of quantum
fluids of light [1], wheremany photons propagate in nonlinear optical systems. The corresponding collective
features are due to effective photon–photon interactions, which are induced by the nonlinearmatter. The
hydrodynamic behaviour of light in a cavity, first noted by Lugiato and Lefever in 1987 [2], was theoretically
brought forward in [3] by deriving aGinzburg–Landau equation for laser light inside a cavity. These theoretical
workswere complemented by the experimental proof of superfluidity of light via the pioneering observation of
stable quantised vortices by Swartzlander and Law in 1992 [4].With this the natural question arose, whether
light could also undergo the equilibriumphase transition of Bose–Einstein condensation. This intriguing
questionwas partly answered in 2002when thefirst exciton-polariton condensate was realised [5]. However,
such condensates have turned out to be not of a Bose–Einstein type, as their life time is shorter than the intrinsic
equilibration time. In contrast to that an equilibriumBose–Einstein condensate (BEC) of pure light was
achieved in Bonn in 2010 [6]. Although this is still a driven-dissipative system like the exciton-polariton
condensates, the favourable time scale ratio allows for the observation of equilibrium effects [7].

The experimental setup to create a BECof photons consists of amicrocavity filledwith a dye solution. There
the cavity provides awell-defined ground state for the effective two-dimensional photon gas, as can be seen from
the paraxial approximation, and the dye leads to a thermalisation of the photon gas via absorption and emission
processes of the photons [8]. As the corresponding absorption and emission rates are related via a Boltzmann
factor according to theKennard–Stepanov relation [9–12], the photon gas inherits the thermalisation from the
dyemolecules. Provided that the pumping power is large enough in order to compensate unavoidable cavity
losses and thermalisation proceeds faster than these losses, the photon gas can undergo an equilibriumBose–
Einstein phase transition [13].
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Furthermore, the absorption and emission processes lead to effective photon–photon interaction
mechanisms, see figure 1.One is the Kerr effect, where a nonlinear susceptibility causes the refractive index of
the dye solution to be proportional to the intensity of the electric field in the cavity [14]. Note that amicroscopic
theory of theKerr interaction in a photon BEC is based on a Lindbladmaster equation [15–17]. A second
interaction effect is due to the heating of the dye solution, as the quantum efficiency of the dye is below 100%.
This leads to a shift of the refractive index of the solvent [14] and correspondingly to a thermo-optic photon–
photon interaction. As the latter ismediated by the temperature diffusing through the dye solution, it is non-
local in space and retarded in time. So far the strength of the effective photon–photon interaction has been
experimentally determined bymeasuring the increase of the condensate widthwith the photon number [6, 13].
From this it is concluded, that themain contribution of the interaction is due to the thermo-optic effect. The
strength of the interaction, which can be defined to be dimensionless in two spatial dimensions [18, 19], is
measured to have values up to = ´ -˜ ( )g 7 3 10 4 [6, 13], where the precise value depends on the detailed
experimental configuration. An interaction strength of the same order was observed in another experiment in
London in 2016 [20].

From atomic BECs it is known that observing the condensate dynamics represents a valuable diagnostic tool
tomeasure systemproperties in general and two-particle interaction strengths in particular. For instance,
observing collective frequencies of trapped condensates is a precise way tomeasure the strength of the contact
interaction up to an astonishing precision of1‰ [21]. Therefore, observing the collective frequencies of a
photonBEC is expected to yield additional profound information about the nature and the strength of the
effective photon–photon interaction. Thismotivates to analyse in the following the lowest-lying collective
modes of a photon BECunder the influence of the thermo-optic interaction in view of future experiments.

2.Model

Aminimalmean-field description of the thermo-optic interaction consists of two equations [22–24]. One is a
nonlinear Schrödinger equation that accounts for the evolution of the electric field inside the cavity, which is
assumed to be linearly polarised. The second equation describes the diffusion of the temperature, produced by
the non-perfect absorption processes of photons.

As the experiment takes place inside amicrocavity, the electric field can be treated in paraxial approximation
[14, 25–28]which allows us tomap the three-dimensionalmassless photon gas in a sphericalmirror geometry to
a two-dimensional gas of bosonic particles. These particles possess amass w= ( )m n ccutoff 0

2, where the
cavity-cutoff frequency is denoted byωcutoff and the light velocity in the dye solution is c/n0. Furthermore, these
particles are trapped in a harmonic potential with frequency W = ( )c L R n2 0 0, that is determined by the
cavity length L0 and the radius of curvatureR of themirror [6, 13, 29]. Thus, the evolution of the condensate
wave function y ( )tr, , i.e.the electricfield normalised to the photon number, is described by an open-
dissipative Schrödinger equation of the form [23, 29–31]

Figure 1. Scheme of effective photon–photon interactionmechanisms. The electric field, here represented by the condensatewave
functionψ, couples in twoways to the refractive index n. Once via theKerr effect, which is due to the non-vanishing third-order
susceptibilityχ(3), and, secondly, also an increase of the dye-solution temperatureT due to the heating coefficientB is present. This
yields via the thermo-optic coefficientβ a changeΔn of the refractive index.
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Here, the remaining transversal degrees of freedom are denoted by = ( )r rr , T
1 2 . The thermo-optic effect is

described by the nonlinearity in (1) involving the temperature differenceD ( )T tr, between the actual intra-
cavity temperature and the room temperature. Here the coupling coefficient gT=−βmc2/n0 with the thermo-
optic coefficientβ quantifies the energy shift due to the heating. As discussed above, it is justified to neglect the
much smaller Kerr interaction. Due to the unavoidable cavity losses, the photon BEC is intrinsically an open
system. Following [32], an incoherent pump scheme ismodelled by the imaginary part in (1). The pump is
described by the coefficient p and the losses by the decay rateΓ. Note that the emission and absorption processes,
which do not lead to a loss of photons, i.e.the coherent ones that are proportional to the quantum efficiency η,
are not considered here. Thus, the loss rateΓ is only proportional to 1−η and gives rise to a heating of the dye
solution as discussed below. Furthermore, the effects of a coordinate dependentmass and interaction strength
[33, 34] are not taken into account, as these effects are negligible within the experimental parameter range.

On the other hand the temperature differenceD ( )T tr, follows a diffusion equation. Reducing it from three
to two spatial dimensions by the procedure described in appendix yields

t
y¶ D =  - D +⎜ ⎟⎛

⎝
⎞
⎠( ) ( ) ∣ ( )∣ ( )T t D T t B tr r r,

1
, , , 2t 0

2 2

where the temperature diffusion constant is denoted byD0=λw/(cpρ). It depends on the thermal conductivity
λw, the specific heat cp and the density ρ of the solvent [35]. The heating coefficient of the dye solution is given by

r= G ( )B mc L n cp
2

0 0 [24].Moreover, the temperature relaxation is governed by the time scale τ, which
depends in general on the length scales of both the cavity and themirrors, see appendix.Note that in [22] only
the limiting case t  ¥ is treated.

A formally similarmean-fieldmodel was already establishedwithin the realmof exciton-polariton
condensates [32], where the exciton bath plays a role comparable to the temperature for the photon BEC.
However, the time scales of the two systems are inverted. In an exciton-polariton condensate the relaxation of
the exciton reservoir is fast compared to the dynamics of the condensate, allowing its adiabatic elimination. In
contrast to that, the photon BECdynamics, which is determined by the trap frequencyΩ, occurs on amuch
faster time scale than the dynamics of the temperature, whose time scale is given by the large relaxation time τ.
Thus, the resulting thermo-optic photon–photon interaction yields such a significant temporal retardation that
no influence on any condensate dynamics is expected.

Nevertheless, in the following it is shown that the collective frequencies of the photonBEC turn out to be
modified by the thermo-optic photon–photon interaction. The reason is that, in the steady state, the refractive
index near the trap centre ismodified, so the collectivemodes exploring its neighbourhood experience
effectively a changed potential. Or, put differently, the temperature profile can be considered as themotional
history of the condensate and, thus, the condensate effectively scatters with its ownhistory.

3.Methods

An analytical and a numerical evaluation of the system (1), (2) is performed.Whereas the analyticalmethod
relies on aGaussian ansatz for both the condensate wave function and the temperature difference in order to
reduce the PDE system to a set ofODEs, the numerical technique is based on afinite-differencemethod. Both
methods are explained in detail below.

3.1. Analyticalmethod
The usual variational approach for dealingwith collective excitations in ultracold quantumgases is based on
Hamilton’s principle [36–38]. As the photonBEC is intrinsically an open system, however, no such principle
exists, as the energy is not a conserved quantity. This problem can be circumvented by considering the equations
ofmotion of the cumulants [39, 40], i.e. calculating the evolution equations for the centre-of-mass and for the
widths. Due to the openness of the system also the photon number ò y=( ) ∣ ( )∣N t r trd ,2 2 represents an
additional variational parameter. For finding an ansatz for the photonwave function it is worthwhile noting that
the ground state of the non-interacting system is a simpleGaussian function. As the interaction in the photon
BEC ismeasured to be small, it is justified to consider the condensate wave function to be ofGaussian shape,
where thewidth is used as a variational parameter. Note, that this ansatz still holds true for small pump and loss
parameters [41]. Therefore, the ansatz for the condensate wavefunction is chosen to be of the form:
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where the centre-of-mass coordinates are denoted by x0j(t)with the phasesCj(t), whereas qj(t) describe the
condensate widths, and theAj(t) stand for the corresponding phases. The different coordinate directions are
indicated by j=1, 2. Since all current photonBEC experiments are workingwith a particular pump sequence
[6, 13], the duty cycleσmodels a continuous pump in the ansatz. Thus, the number of photons present on
average in the cavity is given byσN. This averaging coarse-grains the dynamics, and for the steady-state values
considered later the ansatz turns out to be reasonable. As the temperature difference is induced by the photons, it
is justified to assume also aGaussian shape for its distribution, which solves by itself the homogeneous part of the
diffusion equation (2):
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HereΔT0(t) denotes the amplitude of the temperature difference, y0i(t) describes the centres of the distribution
and si(t) their widths. The aim is now to calculate the equations ofmotion for the amplitudes, the centre-of-
masses and thewidths, as well as their phases, following the procedure of [40].

Themean-field equations (1), (2) are solvedwith the ansatz (3), (4) for condensate wave function and
temperature difference by applying the cumulant approach [40]. After eliminating the phases, the evolution of
the remaining dynamical variables is described by the following set of equations
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Here, the overlap of the temperature-difference distribution and the condensate is described by
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accounts for the pump and loss influence on thewidths, whereas
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are the corresponding ones for the centre-of-mass.

3.2. Numericalmethod
The numerics performed in the present work is based on themethod developed in [42–44]. Here, the
propagation of the two equations (1) and (2) is done via a split-stepmethod. First, both the condensate wave
function and the temperature difference distribution are propagatedwith respect to the spatial derivatives by a
Crank–Nicholson scheme. Afterwards the evolution regarding the remaining (non)linear equations is
performed by infinitesimal exponential propagation. The space-time discretisation is chosen such that the
calculational effort and the discretisation errors are well balanced. As initial wave function the steady state wave
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functionwith slightly perturbedwidth and finite centre-of-mass is used.Due to this all threemodes, which are
calculated analytically, are excited. From the calculatedwave function both the centre-of-mass and thewidth of
the photon density are extracted and analysed by using a fast Fourier transformation. From thismethod the
oscillation frequencies of the different collectivemodes can be read off.

4. Steady state

From the equations ofmotion of the cumulants (5a), it follows that the temperature evolution is determined by
the condensate. So the steady state is completely described by the latter. Furthermore, due to the trap isotropy
the condensate shape is also isotropic. Accordingly, the dependence of the equilibrium condensate width q0 on
the equilibriumphoton numberN0 is described by

p t
= - +

+
˜

( )
( )

q l

gN

q D
0

1 1 2

2
, 9

0
4

osc
4

0

0
2

0
2

where = W( )l mosc denotes the oscillator length.Moreover, the dimensionless interaction strength turns
out to be


s t=˜ ( )g

m
g B, 10T2

showing that the interaction strength is determined by the properties of the used dye solution, the geometry of
themicrocavity, as well as by the pump scheme.Note, that this result is comparable to that in [24]. In addition,
the effective photon–photon interaction can directly be controlled via the relaxation time τ by changing the
geometry of the cavitymirrors, see (A.11). However, it turns out that in the experimental situation, where the
longitudinal and the transversal extension of themirrors are of the order L1∼1 cm and L⊥∼1 mm, the
temperature relaxation inside the cavity is governed by the transversal temperature diffusion in themirrors and
(A.11) simplifies to

t
p

= ^ ( )L

D2
, 11

2

2
1

with the diffusion constantD1 of themirror. In case of a large diffusion constant of the solvent, i.e. t D q0 0
2,

the condensate width q0 approaches the non-interacting value losc. This results from a suppression of the
thermo-optic interaction as all the temperature excitations are quickly transported through the dye solution. In
the opposite case the behaviour p= +[ ˜ ( )]q l N g1 20 osc 0

1 4 is reproduced, which is well known from2D
atomic BECs [45].

The numerical solution of (9) is shown infigure 2, where the values of the Bonn experiment with the solvent
ethylene glycol are used [13, 46, 47]. The dye solution is characterised by

l r b= = = = = - ´- - - - - -n c1.46, 0.26 W m kg , 144.5 J mol K , 1110 kg m , 4.68 10 Kw p0
1 1 1 1 3 6 and

G = 1 s. The cavity geometry is given by = ´ =-L R1.5 10 K and 1 m0
6 . The pump scheme yields a duty

cycle ofσ=1/16 000. The effectivemirror diffusion constantD1 is of the order of - -10 m s6 2 1, thus yielding the
relaxation time t ~ 0.1 s.With this the value of the dimensionless interaction constant is calculatedwithin the
mean-fieldmodel to be

Figure 2. Steady state (9) of the system (1), (2)with the ansatz (3), (4) for two different values of the diffusion constantD. The red line
(circles) corresponds to the experimental value = ´ - -D 9.16 10 m s0,exp

8 2 1 and the green one (diamonds) to the larger value
= ´D D 100 0,exp

2. Themarkers indicate the full numerical solution of the system (1) and (2) as explained in section 3.2.
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~ -˜ ( )g 10 , 124

which is in remarkable agreementwith the experimental value [6, 13, 20].

5. Linearised dynamics

Linearising the equations ofmotionwith respect to small elongations out of the equilibrium yields a decoupling
of the centre-of-mass from thewidth dynamics. Therefore, the dipolemode, which is a pure centre-of-mass
motion, can be discussed separately from the breathing and the quadrupolemode, which are in- or out-of-phase
width oscillations, respectively. Atfirst the investigation aims for the dipolemode, which can be described by the
vector d d d= ( ˙ )x x yv , ,i i i i

T
0 0 0 , where δ denotes small perturbations of the steady state and i=1, 2 indicates the

respective coordinate directions. The linearised equation ofmotion is given by =˙ Sv vi idipole . The eigenvalues of
Sdipole are complex due to the pumping and the coupling to the diffusion equation. The real parts describe the
oscillation frequency of the dipolemode, whereas the imaginary parts represent the corresponding damping
rates, which are discussed below. The frequencies are shown infigure 3, where the dashed lines are the results of a
variational solution of the plainGross–Pitaevskii equation [36]. In atomic BECs the dipolemode frequency
equals the trap frequency, which corresponds to a centre-of-massmotion in a harmonic potential, according to
theKohn theorem [38]. In the present case of a temporal non-local interaction, however, a shift to smaller
frequencies is observed, which shows that the aforementioned scattering of the condensate with its ownhistory
leads, indeed, to a slowing down of the condensatemotion and, thus, to the breakdown of theKohn theorem.
Furthermore, a stronger temperature diffusion in the solvent leads to a smaller frequency shift. This shows again
that the diffusion suppresses the thermo-optic interaction.

The equations ofmotion describing the breathing and the quadrupolemode are coupled equations of the
temperature and the condensate widths in both directions aswell as the photon number and the temperature
amplitude, which are summarised in the vector d d d d d d d d= ( ˙ ˙ )T N q q r q q rw , , , , , , , T

1 1 1 2 2 2 . The evolution of
these quantities is described by =˙ Sw wwidths , where the real part of the eigenvalues of Swidths is shown in
figure 3. Again, the frequencies are shifted to smaller values compared to a contact interaction. Even the
breathingmode frequency, which turns out to be always twice the trap frequency for a contact interaction
irrespective of the particle number and the strength of the contact interaction [45], gets shifted to smaller values.
As before, wefind that a larger diffusion strength yields a smaller frequency shift.

Infigure 4 the damping rates corresponding to the oscillation frequencies are plotted. As only a thermo-
optic damping effect and no damping stemming from thematter is taken into account, these rates turn out to be
quite small and also slightly positive. However, compared to the pulse duration, which is about 500ns, the
instability occurs on amuch larger time scale of W ~-10 10 s6 4 . Nevertheless, this instability reflects the
missingmatter degree of freedomof the presentmean-field theory.

Figure 3.Oscillation frequencies obtained from real parts of the eigenvalues of Sdipole describing the dipolemode oscillation (green,
squares) and of Swidths describing the quadrupole (blue, diamonds) and the breathingmode (red, circles) for the experimental value of
the diffusion constant = ´ - -D 9.16 10 m s0,exp

8 2 1. For the larger diffusion constant = ´D D 100 0,exp
2 the dipolemode frequency

is visualised by the light blue (left triangles), the one of the quadrupolemode by the grey line (lower triangles) and the breathingmode
by the pink (upper triangles) line. The dashed ones result from a variational evaluation of a simple Gross–Pitaevskii equationwith a
harmonic trapping potential. Themarkers visualise the results of a numerical evaluation of system (1) and (2) as explained in section
3.2.
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However, the damping rates are expected to be of the order of the reabsorption time, i.e.of the order of 10ps
to 100ps [7]. Thus, in view of a trap frequency of pW = ´2 37 GHz, a few oscillations should be
experimentally observable.

6. Summary and experimental perspective

In this paper the influence of a thermal shift of the refractive index on the photon BECdynamics is worked out.
This shift yields an effective photon–photon interactionwhich is non-local in space and retarded in time. Due to
the geometry dependence of the temperature diffusion, the strength of the effective photon–photon interaction
can be controlled by the shape of themirrors.Moreover, due to the retardation in time, the Kohn theoremdoes
not hold in the present case and the dipolemode frequency is shifted to frequencies smaller than the trap
frequency. Additionally, the temperature diffusion of the solvent has a large influence on the effective photon–
photon interaction. The same happens to the breathing and the quadrupolemode.However, the damping rates
of the collectivemodes are supposed to be larger once amore detailed theory takes the absorption and emission
behaviour of the dye properly into account.

The above predicted features can, in principle, bemeasured in twoways. Thefirst one relies on a direct
observation of the collectivemodes. The dipolemode, e.g. can be excited by using two lasers, where the first one
pumps the cavity homogeneously and the second one creates a BEC via an off-centre pulse. The excitedmode
can then be observed bymeasuring spatially the light leaking out of the cavity. As the dipolemode oscillation
frequencies are expected to be of the order of the trap frequency, a streak camera is necessary in order to resolve
these extreme time scales. The experiment performed in [7] can be seen as a proof of principle in this respect.
The secondmethod is an indirectmeasurement via the eigenfrequencies of the cavity [48]. In case of small
interaction, which is the case in the photonBEC, the dipolemode corresponds to the difference of the lowest two
cavity eigenfrequencies. Due to the interaction and the corresponding condensate broadening the third lowest
energy state is also partially populated. This allows us to examine the breathing-mode by spectrally resolving the
cavity emission.
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Appendix. Temperature diffusion inmirrors

The purpose of this appendix is to derive the diffusion behaviour of the temperaturewithin the cavity setup
depicted infigure A1. The geometry is simplified by assuming planarmirrors in comparison to the original
geometry, which consists of spherically curvedmirrors.

A.1. Formulation of boundary value problem
The complete cavity ranges from z=−L/2 to z=L/2, whereas themirrors extend from the boundaries up to
z=−L0/2 and z=L0/2, respectively. The temperature diffusion constants of the dye solution filling the space

Figure 4.Damping rates of the eigenmodes of Sdipole and Swidths. The green solid line corresponds to the damping of the dipolemode,
whereas the green dashed line belongs to the temperature-difference oscillation. The remainder visualises the damping rates of the
breathingmode (red, dashed), the quadrupolemode (blue, short dashed), the temperature-difference amplitude (brown, dashed–
dotted), the temperature-difference breathingmode (orange, dotted) and one of the photon number (dashed-double-dotted).
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between themirrors and of themirrors themselves are denoted byD0 andD1, respectively. Thus, the
corresponding diffusion equation for the temperature differenceΔT between the actual temperature of the
experimental setup and the room temperature reads [49]

¶ D =  D +· [ ( ) ] ( )T D z T S, A.1t

with the function q= + - -( ) ( ) (∣ ∣ )D z D D D z L 20 1 0 0 containing the respective diffusion constants and S
being a source termwith support only inside the cavity. Due to the symmetry of the considered geometry in
figure A1, it is sufficient to consider only the non-negative z half space togetherwith the vonNeumann boundary
condition

¶ D ==∣ ( )T 0. A.2z z 0

On the other hand, the temperature difference obeys theDirichlet condition

D = =( ) ( )T z L 2 0 A.3

at the border of themirror. Furthermore, at z=L0/2, i.e.the contact of themirror and the dye solution, the
temperature difference is continuous:

 
 

D - = D +
 

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ ( )T

L
T

L
lim

2
lim

2
. A.4

0

0

0

0

Integrating (A.1) in the neighbourhood of thematerial transition yields a jump condition for the first derivative
of the temperature difference





¶ D = ¶ D


= -


= +∣ ∣ ( )D T D Tlim lim . A.5z z L z z L0

0
2 1

0
20 0

A.2.Dimensional reduction of boundary value problem
The aim is now to derive an effective equation for the transversal diffusion of the temperature difference within
the cavity. Due to the piecewise defined diffusion functionD(z), the ansatz for the temperature difference is
chosen to be

D = D D^ ^ ( ) ( ) ( )T T t T zr , A.60 0 0

inside the cavity and

D = D Dt-
^ ^ ( ) ( ) ( )T T T zre A.7t

1 1 1

for themirror. Bywriting down these two ansatzes three assumptions have beenmade. First, the transversal
component inside the cavityDT̂ 0 varies on a time scale set by the photon condensate. This scale ismuch faster
than the intrinsic scale of the diffusion process and, therefore, this component acts on its own time scale. The
second assumption accounts for the steady state of the diffusion process in themirror. Accordingly, the ansatz
(A.7) involves only an exponential time dependencewith the relaxation time τ. Lastly, only the lowest
temperature differencemode is considered, as thismode decays least and has, therefore, the largest amplitude.
With the two ansatzes (A.6), (A.7) the diffusion equation (A.1) reduces to one equation for each region, which
are linked via the boundary conditions (A.2)–(A.5).

Solving the diffusion boundary value problem leads to the following results. The relaxation time τ in the
mirrors consists of the decay time of the transversal diffusion process

Figure A1. Simplified geometry of the cavity setupwith flatmirrors.Within the region  -L z L2 20 0 the diffusion constant
takes the valueD0, whereas in the outer region  ∣ ∣L z L2 20 the diffusion constant is given byD1.
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t
p

=^
^ ( )L

D4
A.8

2

2
1

and the longitudinal relaxation time twhich is determined by the transcendental equation

t t t t
=

 

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( )D L

D

D L

D
tan

2
cot

2
. A.90 0

0

1 1

1

Here, themirror length is denoted by L1=L−L0. Furthermore, we assume that the relaxation time of the
longitudinal diffusion inside the cavity occurs at the same time scale as the diffusion process inside themirrors.
In the limit of amicrocavity, i.e. L L0 1, one finds

t
p

= ( )L

D
. A.101

2

2
1

Therefore, the totalmirror decay time τ is given by

t
p p

= +
^

( )D

L

D

L

1 4
. A.11

2
1

2

2
1

1
2

This result is plotted infigure A2 for the parameters of the Bonn experiment, where thewidth of themirrors is
given by =L̂ 1 mm, whereas the length of themirror L1 is of the order of 1cm. Thus, in that cases (A.11)
simplifies to (11). As a consequence, the effective longitudinal relaxation time of the temperature difference
inside the cavity is provided by the transversal temperature difference diffusion in themirrors. Finally, the
resulting two-dimensional diffusion equation for the transversal temperature difference within the cavity turns
out to be

t
¶ D =  - D +^ ^ ^ ^⎜ ⎟⎛

⎝
⎞
⎠ ( )T D T S

1
, A.12t 0 0

2
0

which coincideswith (2) in themain part. Note that the remaining source term takes the form

ò= D^ ^ ^ ( ) ( ) ( ) ( )S t
L

z S z t T zr r,
2

d , , . A.13
L

0 0

2

0

0
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