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Abstract

We examine spin excitation or polarization transfer via spin chains with long-range ex-
change interactions in the presence of diagonal and off-diagonal disorder. To this end,
we determine the mean localization length of the single-excitation eigenstates of the
chain for various strengths of the disorder. We then identify the energy eigenstates of
the system with large localization length and sufficient support at the chain boundaries
that are suitable to transfer an excitation between the sender and receiver spins con-
nected to the opposite ends of the chain. We quantify the performance of two transfer
schemes involving weak static couplings of the sender and receiver spins to the chain,
and time-dependent couplings realizing stimulated adiabatic passage of the excitation
via the intermediate eigenstates of the chain which exhibits improved performance.
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1 Introduction

Excitation or polarization transfer in interacting few- and many-body quantum systems plays
a key role in many branches of science and technology, ranging from photosynthesis, where
photon energy is transferred from a light-absorbing center to a reaction center via collections
of near-resonant two-level systems (spins) [1], nuclear magnetic resonance of large molecules
involving many interacting spins [2], or quantum state transfer in various spin chains realized,
e.g., by dopants in solids [3–5], arrays of polar molecules [6, 7], superconducting qubits [8],
ions in traps [9,10] or Rydberg atoms in microtraps [11]. Whereas spin chains are commonly
described in the nearest-neighbour approximation, experimentally relevant systems often pos-
sess long-range exchange interactions, or hopping, scaling with distance r as J ∼ 1/rν with
the resonant dipole-dipole interaction, ν= 3, being most frequently the case [1,2,5–7,11].

Many of such systems are inherently disordered. Diagonal disorder leads to exponen-
tial (Anderson) localization of all the eigenstates of one-dimensional systems [12–14], which
would suppresses excitation transfer in sufficiently long spin chains. Off-diagonal disorder also
leads to localization which, however, may be weaker than exponential [15–17]. The localiza-
tion properties of the system with long-range exchange interaction are more subtle [18–23]
and many features still merit further investigation, which is one of the motivations of the
present work.

Specifically, we study disordered spin chains – collection of two-level atoms, molecules or
spins arranged in nearly periodic quasi one-dimensional array and coupled with each other by
the resonant dipole-dipole exchange interaction. We raise the questions whether or not, and
to what degree, such a disordered system can serve for excitation or spin polarization transfer
between the sender and the receiver spins coupled to the opposite ends of the chain in a
controllable way. To that end, we first determine the (single-excitation) localization properties
of the system and their dependence on the energy, comparing and contrasting spin systems
with long-range and nearest-neighbor exchange interactions. Obviously, only chains of length
smaller or comparable to the longest localization length can transfer excitation between the
two ends. Next we identify the energy eigenstates that have sufficient support at the two ends
of the chain to strongly couple to the sender and receiver spins. We then explore two excitation
transfer protocols, one that involves static resonant couplings of the sender and receiver spins
to the most suitable eigenstate of the chain [24,25,25], and the other inspired by stimulated
Raman adiabatic transfer [26–28] that involves counterintuitive time-dependent couplings of
the sender and receiver spins to the corresponding eigenstate of the chain. We find that the
adiabatic coupling, despite being slower than the static coupling scheme, leads to a much
higher probability of excitation transfer as it is more robust to various sources of disorder.

The paper is organized as follows. In Sec. 2 we introduce the Hamiltonian of the system
involving a collections of spins (two-level systems) with long-range resonant dipole-dipole ex-
change interactions and formulate the transfer problem. In Sec. 3 we consider disordered
spin chains and numerically determine the localization lengths for different single-excitation
eigenstates of the system in the presence of energy (diagonal) and position (off-diagonal) dis-
order. In Sec. 4 we present two excitation transfer protocols between the sender and receiver
spins resonantly coupled to a suitable energy eigenstate of a spin chain with no disorder. In
Sec. 5 we extract the mean transfer probability for chains of different length with different
strength and type of disorder. Our conclusions are summarized in Sec. 6.
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Figure 1: Schematic of a position (and energy) disordered chain of spins
i, j, . . . , m, . . . in the x y plane. The spin chain is coupled with rates Js,r to the sender
(s) and receiver (r) spins having energies εs,r .

2 The system

We consider a chain of N spins – two-level systems – interacting with each other via the long-
range exchange interactions Ji j = C3(1 − 3 cos2 θi j)/

�

�r⃗i j

�

�

3
, where C3 ∝ |℘⃗|2 is the electric

or magnetic dipole-dipole interaction coefficient, r⃗i j is the position vector between spins i
and j, and θi j is the angle between the direction of the dipole moments ℘⃗ and the position
vector between the spins. We account only for the near-field part of the total dipole-dipole
interaction potential and neglect the retardation and spontaneous radiative decay of the spin
excitations [29–31], assuming that the typical distance between the spins is much smaller than
the wavelength of the transition between the spin-up and spin-down states. The Hamiltonian
of the system is

H = 1
2

N
∑

i=1

εiσ̂
z
i +

N
∑

i ̸= j

Ji j(σ̂
+
i σ̂
−
j + σ̂

+
j σ̂
−
i ) , (1)

where εi is the excitation energy of spin i, σ̂x ,y,z
i are the Pauli spin operators and

σ̂±i =
1
2(σ̂

x
i ± iσ̂ y

i ) are the raising and lowering operators. We assume that all the spins are
positioned in one (x y) plane (see Fig. 1) and their dipole moments (℘⃗ ∥ ẑ) are perpendicular
to that plane, θi j = π/2 ∀ i, j, thus Ji j = C3/

�

�r⃗i j

�

�

3
.

We assume that a sender and a receiver spins are coupled in controllable way to the oppo-
site ends of a finite spin chain, see Fig. 1. The spin chain is assumed initially fully polarized,
with all the spins unexcited. Our aim is to transfer an excitation between the sender and
receiver spins via the spin chain. To this end, we need to identify and employ extended eigen-
states of the disordered chain having sufficient support at its two ends in order to strongly
couple to sender and reciever spins and mediate the transfer. To selectively couple the sender
and receiver spins to the suitable eigenstates of the chain, we assume that their energies εs,
εr and couplings Js, Jr to the first and last spins of the chain can be precisely controlled, un-
like the energies and couplings of the spins in the disordered chain. Initially, the excitation is
localized at the sender spin, while the spin chain contains no excitations, and our aim will be
to retrieve the excitation from the receiver spin at a specific time τ to be determined below.

We next examine the localization length of the single-excitation eigenstates of spin chains
in the presence of diagonal disorder corresponding to energy disorder of individual spins, and
off-diagonal disorder in the interspin couplings stemming from the position disorder of the
spins.

3 Localization lengths in disordered spin chains

We impose diagonal disorder corresponding to random variations of the spin excitation en-
ergies ε j = ε0 + δε j around some ε0 (which can be set to 0) with δε j having a Gaussian

probability distribution P(δε) = 1p
2πσ2

ε

e
− δε

2

2σ2
ε with the mean 〈δε〉 = 0 and variance σ2

ε. Next,
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the position of each spin j is given by the coordinates (x j , y j). In an ideal 1D lattice with period
a, we would have x j = a j and y j = 0 for all spins j = 1, 2, . . . , N , and the exchange interaction
strength between the nearest-neighbor spins would be J = C3/a

3, the next-nearest neighbors
J/23, etc. We impose the position disorder via x j → a j + δx j and y j → δ y j , where the ran-

dom variables δx j and δ y j have a Gaussian probability distribution P(δµ) = 1
q

2πσ2
µ

ex p(− δµ
2

2σ2
µ
)

(µ = x , y) around mean 〈δµ〉 = 0 with variance σ2
µ. The position disorder then translates to

off-diagonal (interspin coupling) disorder in the Hamiltonian (1).
In the limit of N →∞, disorder leads to (Anderson) localization of all the eigenstates of

the system [12–14]. The wavefunction ψk(x) of each single-excitation eigenstate |ψk〉 is then
localized around some position µk with the localization length ξk. An important characteristic
of the system is the dependence of the localization length ξk on the energy Ek of the eigenstates
to be used for the excitation transfer. To determine the localization length, we numerically
diagonalize the Hamiltonian for sufficiently long chains (N = 1000 spins) to neglect the finite
size effects, and then for each eigenstate we identify the position µk corresponding to the
maximum (in absolute value) of the wavefunction ψk(x) and subsequently fit an exponential
function

|ψk(x)| ∝ e−
|x−µk |
ξk , (2)

to the spatial profile of the eigenstate, extracting thereby the localization length ξk. We note
that the thus obtained localization length is a convenient measure of the spatial extent of the
wavefunction even if it is not exponentially localized (see below).

A more common measure to quantify the localization properties of the eigenstates is the
inverse participation ratio (IPR) [32]. It is, however, not suitable for our purposes, since IPR
cannot determine whether a wavefunction is spatially localized on a number of neighboring
sites or is delocalized on a similar number of remote sites.1 We use, therefore, an alternative
method to verify that the localization length ξk extracted from the exponential fit (2) is a
reliable quantity to characterize our system. We can partition the chain into two halves and
for each eigenstate |ψk〉=

∑N
i=1 v(k)i |i〉 calculate the excitation number variance in one of the

halves [35],
∆n2

k =



n̂2
�

− 〈n̂〉2 , (3)

where n̂ =
∑N/2

i=1 σ̂
+
i σ̂
−
i is the excitation number operator with eigenvalues n = 0, 1 since we

consider only single-excitation states. The variance is therefore given by

∆n2
k = pk − p2

k , (4)

where pk =
∑N/2

i=1 |v
(k)
i |

2 is the probability to find the excitation in the left half of the chain.
Clearly, for a strongly localized state with ξ/a≪ N/2, the probability p is either close to 0

or close to 1 (unless the wavefunction is localized near the center of the chain, µ/a ≃ N/2, the
probability of which is 2ξ/(aN)≪ 1), and the number variance is small, ∆n2→ 0. In the op-
posite limit of a completely delocalized wavefunction ξ/a > N , the probability is p ≃ 1/2
and the number variance approaches the maximum ∆n2 → 1/4. Assuming an exponen-
tially localized wavefunction ψ(x) of the form (2), we can calculate p for any position of the
peak µ, and upon averaging over the peak positions µ/a ∈ [1, N] we obtain a relation

1The inverse participation ratio [32] IPR =
∑

i |vi |4 for a wavefunction |ψ〉 =
∑N

i=1 vi |i〉 quantifies on how
many lattice sites i the wavefunction has support, i.e., IPR is small for a uniformly delocalized wavefunction,
|vi |2 ∼ 1/N ∀ i, and is large if many sites have vanishing populations. The latter, however, does not mean that
the wavefunction is spatially localized, because a wavefunction having large populations on only a few lattice sites
separated by large distance from each other would also have a large IPR. This is in fact what we observe for lattices
with long-range exchange interactions and off-diagonal disorder. Similar wavefunction bi-localization phenomena
also occur in other disordered lattice systems [33,34].
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Figure 2: Mean localization length 〈ξk〉 (in units of lattice spacing a = 1) [left panels
(a1), (b1), (c1)], and mean excitation number variance 〈∆n2

k〉 [right panels (a2),
(b2), (c2)] vs the mean energy 〈Ek〉 (in units of J = C3/a

3) of the k-th eigenstate
of a chain of N = 1000 spins obtained upon averaging over 1000 independent real-
izations of disordered chains with long-range exchange interactions (solid lines with
filled circles) and nearest-neighbor interactions (dashed lines), for (a) energy (diag-
onal) disorder with standard deviation σε, (b) position (off-diagonal) disorder with
standard deviation σx ,y or σJ , and (c) combination of energy and position disorder.
For illustrative purposes, we use in (a) and (b) the strength of the diagonal σε and
off-diagonal σx ,y (or σJ) disorders that lead to comparable localization lengths. In-

set shows the averaged number variance ∆n2 vs ξ/N , as described in the text.

between ∆n2 and ξ/N shown in the inset of Fig. 2. For small ξ/a < N/2, the number vari-
ance grows approximately linearly with the localization length as ∆n2 ≈ 3

8
ξ

aN , and it starts to
saturate thereafter. We note that an equivalent measure of localization of a single-excitation
wavefunction in one partition of the system is the entanglement entropy S [35,36] related to
the number variance via S ≥ (4 ln 2)∆n2.

In Fig. 2 (left panels: a1, b1, c1), we show the mean localization length 〈ξk〉 versus the
mean energy 〈Ek〉 of the eigenstates of spin chains with long-range exchange interactions for
three different cases: (a) diagonal (energy) disorder, (b) off-diagonal (position) disorder, and
(c) combination of diagonal and off-diagonal disorders. The corresponding mean excitation
number variances 〈∆n2

k〉 are shown in Fig. 2 (right panels: a2, b2, c2). For each case we
consider two different strengths of the disorder determined by the standard deviations σε and
σx ,y .

For comparison, we also consider chains with nearest-neighbor exchange interactions and
the same effective disorder as described by Hamiltonian

Hnn =
1
2

N
∑

i=1

εiσ̂
z
i +

N−1
∑

i=1

Ji(σ̂
+
i σ̂
−
i+1 + σ̂

+
i+1σ̂

−
i ) , (5)

where εi are the random spin energies as above, while Ji = J+δJi are the exchange couplings
with J = C3/a

3 and δJi being Gaussian random variables with the mean 〈δJ〉= 0 and standard
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deviation determined by the uncertainty propagation formula

σJ ≈ |∂x D(x , y)|σx +
�

�∂y D(x , y)
�

�σy ,

where D(x , y) = C3/(x2 + y2)3/2.
Note that, in an ideal lattice with no disorder, the single excitation spectrum of Hamilto-

nian (1) is given by

Ek = 2
N
∑

m=1

J
m3

cos
πkm
N + 1

, (6)

while the spectrum of the system with only the nearest-neighbor interactions, Eq. (5), corre-
sponds to the m = 1 term in the above sum, i.e. E(nn)

k = 2J cos πk
N+1 ∈ [−2J , 2J]. One can

treat perturbatively the m > 1 terms of Eq. (6) near the band edges and deduce [37,38] that
the lower edge of the energy band is shifted from −2J to approximately −1.8J while upper
edge is shifted from 2J to approximately 2.4J . Thus, the long-range character of the exchange
interaction affects the energy band structure and the density of states.

Diagonal disorder. Consistent with the above discussion, for a chain with long-range ex-
change interactions and diagonal disorder, we observe in Fig. 2(a1) and (a2) that the profile
of the mean localization length 〈ξk〉 and the nearly identical profile of the mean excitation
number variance 〈∆n2

k〉 are shifted and skewed towards the higher energies 〈Ek〉, as com-
pared to the nearest-neighbor interacting chains. For the presently considered dipole-dipole
interactions, Ji j∝ 1/|ri j|3, the localization length 〈ξk〉 remains finite for all energies 〈Ek〉. We
note, however, that for power-law interaction Ji j∝ 1/|ri j|ν with decreasing ν a localization-
delocalization transition occurs at ν = 3/2 near the (shifted) upper edge of the energy band
〈Ek〉 ≈ 5J [39].

Off-diagonal disorder. Even though the wavefunctions of the eigenstates of a chain with
off-diagonal disorder may not be exponentially localized for all energies, for consistency and
comparison with diagonal disorder, we still use the exponential fit of Eq. (2) to deduce the
localization length and verify its applicability by the corresponding excitation number variance.
For the nearest-neighbor interacting chain with only off-diagonal disorder, the first feature to
note in Fig. 2(b1, b2) is the sharp peak of the localization length at zero energy. This peak is
related to the well-known divergence of the density of states ρ(E)∼ 1

E|ln E|3
[40,41] leading to

the localization length divergence as ξ ∼ |ln E| that follows from the Thouless relation [42].
But unlike the case of diagonal disorder, the eigenstates near zero energy are localized as

|ψ(x)| ∝ e−
p

x/ζ rather than exponentially [15–17]. We note the relevant early studies of
Dyson [43]2 and the insightful connection to the graph theoretical concepts [16].3

The long-range exchange interactions in the chain with off-diagonal disorder [38, 44, 45]
lead to certain modification of the localization spectrum. The zero-energy peak of the nearest-
neighbor interacting chain is now displaced to 〈Ek〉 ≃ −0.22J , which follows from the per-
turbative treatment of Eq. (6) near the center of the band [38], and is suppressed, since

2The study of the anomalous behavior of the localization length near zero energy was initiated by the work
of Dyson [43] on the one-dimensional random harmonic oscillator chain with Poisson distributed couplings. The
singularity exhibits universal behavior as long as the probability distribution of the couplings is well behaved.

3The sharp peak of the localization length at zero energy in lattices with off-diagonal disorder has been con-
nected to the bipartite nature of the lattice [16]. A lattice is called bipartite if the vertices can be partitioned in
two independent and disjoint sets such that every edge connects vertices that belong to a different set. This peak is
suppressed when the underlying lattice is not bipartite, i.e., in the presence of next-nearest neighbor interactions or
diagonal disorder. In our case, the next-nearest neighbor interactions J/8 make the underlying lattice only weakly
non-bipartite, and the peak is shifted and suppressed, but still survives.
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the underlying lattice is weakly non-bipartite due to the weak next-nearest-neighbor interac-
tions, which is in complete agreement with our numerical results in Fig. 2(b1, b2). We note
again that the use of IPR is inadequate to quantify the localization length in the vicinity of
〈Ek〉 ≃ −0.22J , as it would indicate more, rather than less, localized states [38]. That is why
we still use the localization length 〈ξk〉 obtained from the exponential fit of Eq. (2) and verify
its applicability by the corresponding excitation number variance 〈∆n2〉.

Another feature is that, perhaps counterintuitively, disordered chains with long-range ex-
change interactions exhibit shorter localization length in the central part of the spectrum, as
compared to chains with only nearest-neighbor interactions [18, 20, 21]; in effect the long-
range interactions amplify the disorder. But for larger energies the localization length 〈ξk〉
(and the excitation number variance 〈∆n2

k〉) gradually increases [38,46] and it exhibits a sharp
peak near the upper edge of the energy band, 〈Ek〉 ≈ 2.4J . The states near the upper edge
of the energy band are in fact completely delocalized, 〈ξk〉 ≈ N/2, at least for not too strong
off-diagonal disorders that we consider. This behaviour is reminiscent to the emergence of ex-
tended states at the band edge for spin chains with diagonal disorder and long-range hopping
Ji j ∝ 1/|ri j|ν with decreasing power ν, but for our case of off-diagonal disorder and ν = 3,
the sharp peak is much more pronounced.

Combined diagonal and off-diagonal disorder. Finally in Fig. 2(c1, c2) we show the mean
localization length and the mean excitation number variance versus the mean energy for the
chains with both diagonal and off-diagonal disorders that concurrently localize the system
eigenstates. Now the (shifted) zero-energy peak is completely suppressed4 while the eigen-
states with the longest localization length reside between the center and the upper edge of the
band skewed by the long-range exchange interactions.

To summarize, the important information gained by our analysis of the localization lengths
in disordered spin chains is the maximum length of a finite chain that can support excitation
transfer through an extended eigenstate. Conversely, when the chain length exceeds the maxi-
mum localization length of the eigenstates, we expect the transfer to be completely suppressed.
We note that in all cases when the obtained mean localization length is sufficiently shorter than
the chain length, 〈ξk〉 < aN/2, the relation 〈∆n2

k〉 ≈
3
8
〈ξk〉
aN holds to a very good approxima-

tion, which justifies our approach to characterizing the localization properties of disordered
spin chains with long-range exchange interactions.

4 Excitation transfer schemes

The large localization length of single-excitation eigenstates in a spin chain is necessary but
not yet sufficient to ensure efficient transfer of excitation between the sender and receiver
spins. Rather, the extended eigenstates of the chain should have sufficient support at the two
ends of the chain in order to strongly couple to the sender and receiver spins.

To illustrate the procedure for excitation transfer, in this section we consider spin chains
with long-range interactions but no disorder. Solving the eigenvalue problem

H |ψk〉= Ek |ψk〉 , (7)

we obtain the eigenstates |ψk〉 =
∑

i v(k)i |i〉 which couple to the sender and receiver spins at
the two ends of the chain with the corresponding strengths

Ω(k)s = Jsv
(k)
1 , Ω(k)r = Jr v(k)N , (8)

4The diagonal disorder suppresses the shifted zero-energy (Dyson) peak since the varying onsite energies are
equivalent to self-interaction of the vertices which violates the bipartition of the lattice [16].

7

https://scipost.org
https://scipost.org/SciPostPhysCore.6.1.017


SciPost Phys. Core 6, 017 (2023)

Figure 3: Absolute value of the product |v(k)1 v(k)N | of the boundary amplitudes of k-th
eigenvector of the chain vs the eigenenergy Ek (in units of J), for an ordered chain
of N = 61 spins with long-range exchange interaction.

where Js and Jr are the coupling strength of the sender and receiver spins to the first and the
last spins of the chain. Hence, in order to efficiently transfer the excitation from the sender
to the receiver spin via a particular eigenstate |ψk〉 of the chain, this eigenstate should have
large amplitudes |v(k)1,N | at both ends of the chain.

In Fig. 3 we show the absolute value of the product |v(k)1 v(k)N | of the boundary amplitudes
of the different energy eigenstates |ψk〉 of the chain. This figure reveals that the eigenstates
most suitable for the transfer are in the middle of the spectrum, Ek ∼ 0, while the eigenstates
at the upper edge of the spectrum, Ek ≲ 2.4J , would only weakly couple to the sender and
receiver spins and are thus unsuitable for the excitation transfer, despite having large (or even
divergent) localization length in disordered chains. Having in mind the chains with both diag-
onal and off-diagonal disorder exhibiting the localization peak in the vicinity of E = −0.22J ,
we shall tune the energies of the sender and receiver spins to εs,r ≈ −0.22J .

Another critical issue for the efficient transfer via the selected eigestates of the chain is the
small leakage of the excitation, initially at the sender spin, to all other non-resonant eigenstates
of the chain [24,25]. In a chain of N spins, the average distance between the energy eigenstates
is ∆E ≃ 4J/N . Therefore the coupling strength of the sender and receiver spins, tuned to
resonance to a particular eigenstate, should satisfy Ωs,r < ∆E. Since the amplitudes of the

edge states for the most delocalized eigenstates are v(k)1,N ∼ 1/
p

N , we obtain from (8) that the

coupling rates should satisfy Js,r ≲ J/
p

N in order to avoid the leakage of the excitation to the
undesired states of the chain and attain high transfer probability [47].

Static coupling to the chain. To illustrate the ongoing discussion, in Fig. 4 we show the
dynamics of excitation transfer between the sender and receiver spins via spin chains of dif-
ferent length N with no disorder. For convenience, we chose chains with odd number of spins,
N = 11,21, . . ., and tune the energies of the sender and receiver spins εs,r to the energy of the
“fittest” eigenstate closest to E = −0.22J .

The state of the system in the single excitation subspace can be written as
|Ψ〉 = αs |s〉+
∑N

i=1αi |i〉+ αr |r〉, where α j are the amplitudes and | j〉 denotes the state with
the excitation at position j = s, r or i ∈ [1, N]. Initially the excitation is localized at the sender
spin, |Ψ(0)〉 = |s〉, and the couplings Js,r are set to the constant values Js,r ≃ 0.5J/

p
N . The

state of the system |Ψ(t)〉 evolves according to the Hamiltonian (1), and the transfer proba-
bility to the receiver spin Pr(t) = |〈r|Ψ(t)〉|

2 is shown in Fig. 4(a). In a three-state system,
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Figure 4: Excitation transfer via static couplings of the sender and receiver spins with
rates Js,r = 0.49J/

p
N to the chain of N spins with long-range exchange interactions

and no disorder. (a) Transfer probability Pr(t) vs time t (in units of 1/J) for different
chain lengths N . The energies of the sender and receiver spins εs,r are tuned to the
energy of the eigenstate of the chain closest to E = −0.22J . (b) Transfer time τ (gray
filled circles), corresponding to the first peak of the transfer probability in (a) for each
chain length N . Dashed line shows the linear fit τJ = 3.2N+2.3. (c) Time-evolution
of the excitation probability for the sender Ps(t), receiver Pr(t) and intermediate
chain Pc(t), for a chain of N = 11 spins.

complete transfer would occur at time τ = π/(2
p

2Ωs,r). Our multilevel system now behaves
as an effective three-state system with a single intermediate eigenstate of the chain, and the
transfer time scales as τ∝ N consistently with Ωs,r ∝ 1/N , see Fig. 4(b). We note that the
linear scaling of the transfer time with the length of the chain stems from our requirement to
avoid the leakage of excitation into the undesired states. But this scaling is consistent with the
Lieb-Robinson bound [48–50] which is in fact a much lower bound for the achievable transfer
time although with a reduced transfer probability due to the leakage. In Fig. 4(c) we show
the dynamics of probabilities of excitation of the sender spin, Ps(t) = |〈s|Ψ(t)〉|

2, the chain,
Pc(t) =
∑N

i=1 |〈i|Ψ(t)〉|
2, and the receiver spin, Pr(t), during one full transfer cycle.

Time-dependent adiabatic couplings. In a three-state system, a more efficient excitation
transfer can be achieved using an analog of stimulated Raman adiabatic passage (STIRAP)
[26–28]. It involves time-dependent couplings and must be sufficiently slow in order to be
adiabatic, but is robust and avoids populating the intermediate – here the spin-chain – state(s).

Consider an effective three-state system |Ψ〉 = αs |s〉 + αk |ψk〉 + αr |r〉 governed by the
Hamiltonian

Heff =∆εk |ψk〉 〈ψk|+ (Ω(k)s |s〉 〈ψk|+Ω(k)r |r〉 〈ψk|+H.c.) , (9)

where ∆εk = Ek − εs,r is a possible energy mismatch between the selected eigenstate of the
chain |ψk〉 and the sender and receiver spins. This Hamiltonian has a zero-energy coherent
population trapping (or dark) eigenstate |Ψ0〉 ∝ Ω(k)r |s〉 − Ω

(k)
s |r〉 that does not involve the

intermediate state |ψk〉 of the spin chain. With the excitation initially localized on the sender
spin, we set the coupling |Ω(k)r | ≫ |Ω

(k)
s | such that the dark state coincides with the initial state,

|Ψ0〉 = |s〉. We then slowly switch off Ω(k)r and switch on Ω(k)s , which results in an adiabatic
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Figure 5: Stimulated adiabatic transfer of excitation between the sender and receiver
spin using time-dependent couplings of Eq. (10), for chains with long-range exchange
interactions and no disorder. (a) Transfer probability Pr(t) vs time t (in units of
1/J) for chains of different length. (b) Transfer time τ (gray filled circles) as a
function of N , and the linear fit τJ = 14.1N + 6.9 (dashed line). (c) Top panel
shows the time-dependent coupling rates Js,r(t) of Eq. (10), and the bottom panel
shows the dynamics of excitation probabilities of the sender Ps(t), receiver Pr(t) and
intermediate chain Pc(t), for N = 11.

rotation of the dark state |Ψ0〉 towards |r〉, and at the final time τ, when |Ω(k)r | ≪ |Ω
(k)
s |, we

obtain |Ψ0〉 ≃ |r〉. To realize this so-called counterintuitive pulse sequence, we use the time-
dependent boundary couplings

Js,r(t) =
Jmax

s,r

2

�

1± tanh (γt/τ− βs,r)
�

, (10)

where Jmax
s,r ≃ 0.5/

p
N as before, while the parameters γ = 6, βs,r = 2.3,3.6 and the process

duration τ ∝ N are chosen so as to optimize the overlap between the pulses and achieve

adiabaticity with sufficiently large effective pulse area
∫ τ

0 d t
q

|Ω(k)s (t)|2 + |Ω
(k)
r (t)|2 ≳ 10 [27,

28]. We note that the adiabatic population transfer has been applied to multilevel systems
before [51,52].

In Fig. 5 we illustrate the adiabatic transfer protocol for ordered chains of different length
and time-dependent couplings of Eq. (10) but otherwise the same parameters as in Fig. 4. We
achieve nearly perfect population transfer for all considered cases, see Fig. 5(a), at the expense
of longer duration of the process τ, see Fig. 5(b). Note that during the transfer, as the system
adiabatically follows the coherent population trapping state |Ψ0〉, the chain contains almost
no excitation at all times, Fig. 5(c).

5 Transfer probability in disordered chains

Having determined the localization lengths ξ in long disordered spin chains in Sec. 3 and
potentially suitable excitation transfer protocols in Sec. 4, we now analyze the mean
probability 〈Pr〉 of excitation transfer between the sender and receiver spins via disordered
spin chains of finite length N comparable to ξ.
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Static coupling to the chain. We first consider the static transfer protocol of Fig. 4 with fixed
coupling rates Js,r ≃ 0.5J/

p
N of the sender and receiver spins having energies εs,r = −0.22J .

With the excitation initially localized at the sender spin, we terminate the evolution when the
excitation probability of the receiver spin attains its first maximum at t = τ of Fig. 4(b). In
Fig. 6 we show the transfer probabilities 〈Pr〉 averaged over many independent realizations of
disordered spin chains, involving spin-energy (diagonal) disorder, spin-position (off-diagonal)
disorder, and the combination of the two. As expected, increasing the chain length N de-
creases the transfer probability which is due to the stronger disorder-induced localization of
the eigenstates of the chain in the middle of the energy spectrum. We also observe that chains
with only the nearest-neighbor exchange interaction (with εs,r = 0) lead to better transfer
probability, especially for the case of off-diagonal disorder, Fig. 6(b), which is consistent with
their larger localization length under otherwise similar conditions, as discussed in Sec. 3 and
seen in Fig. 2(b).

Time-dependent adiabatic couplings. We finally consider the adiabatic transfer protocol of
Fig. 5 with the time-dependent coupling rates of Eq. (10) applied to the sender and receiver
spins in a counterintuitive order. In Fig. 7 we show the results of our numerical simulations
for the transfer probabilities 〈Pr〉 averaged over many independent realizations of disordered
spin chains. Compared to the static transfer protocol, the performance of adiabatic transfer is
significantly better for all chain lengths and any kind of disorder, be it diagonal, off-diagonal, or
combination of both. We emphasize that in this study, we have focused on the spin excitation
or polarization transfer probability. In contrast, coherent quantum state transfer is much more

Figure 6: Mean excitation transfer probability 〈Pr〉 vs chain length N , obtained upon
averaging over 1000 independent realizations of disordered chains with long-range
exchange interactions (solid lines with filled circles and diamonds) and nearest-
neighbor interactions (dashed lines with light filled symbols), for (a) energy (diago-
nal) disorder with standard deviations σε, (b) position (off-diagonal) disorder with
standard deviation σx ,y or σJ , and (c) combination of energy and position disorder.
We use the static couplings of the sender and receiver spins Js,r = 0.49J/

p
N having

energies εs,r = −0.22J (εs,r = 0 for the nearest-neighbor interacting chains), and the
evolution is terminated at t = τ of Fig. 4(b).
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Figure 7: Mean excitation transfer probability 〈Pr〉 vs chain length N , obtained upon
averaging over 1000 independent realizations of disordered chains with long-range
exchange interactions, for the stimulated adiabatic transfer (green solid lines with
filled squares), compared to the static transfer of Fig. 6 (blue solid lines with filled
circles), for (a) energy (diagonal) disorder with standard deviations σε, (b) position
(off-diagonal) disorder with standard deviation σx ,y , and (c) combination of energy
and position disorder. We use the time-dependent couplings of Eq. (10) for the sender
and receiver spins having energies εs,r = −0.22J , with the transfer duration τ of
Fig. 5(b).

sensitive to diagonal disorder leading to larger dephasing during adiabatic transfer which is
necessarily slower than the static transfer [53].

6 Conclusions

We have presented the results of our studies of disordered, one-dimensional spin-chains with
long-range exchange (resonant dipole-dipole) interactions and their ability to transfer spin
excitation or polarization over long distances. We have performed detailed numerical investi-
gations of the localization length in spin chains with either or both diagonal and off-diagonal
disorder. Many of our results concur with the previously known and well-understood prop-
erties of disordered spin chains, but we have also encountered interesting manifestations of
(de)localization of energy eigenstates that, to the best of our knowledge, have not been prop-
erly addressed before in the context of resonant dipole-dipole (1/r3) interactions, and thus
may warrant further investigation. These, in particular, include delocalization of the eigen-
states at the upper edge of the shifted energy band in spin chains with off-diagonal disorder,
and the modification of the shifted zero-energy Dyson peak of localization length, which we
found to be the most suitable eigenstate for the excitation transfer between the two ends of
the chain.

We have put forward two excitation transfer protocols: a) static protocol involving selective
coupling of the sender and receiver spins to the suitable eigenstate of the chain, and b) time-
dependent adiabatic protocol involving counter-intuitive sequence of couplings of the sender
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and receiver spins to the chain, inspired by stimulated Raman adiabatic passage technique
widely used in atomic and molecular physics. We have found that the adiabatic transfer of
excitation via disordered spin chains has much better performance for all chain length and
any kind of disorder, be it diagonal, off-diagonal, or combination of both. This attests, once
again, the usefulness of this universal method.
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