
chiralities (28), which clearly confirms this quan-
tization within the experimental errors. Our
measurements demonstrate that even when the
global topology has Chern number zero, the
distribution of Berry curvature can be very rich.
Our measurement scheme can be readily ex-

tended to characterize bands with Chern num-
bers different from zero (17, 19). In principle, one
could start in a shallow lattice, where reaching
nonzero Chern numbers is feasible, and for the
tomography project onto flat bands, which can
be reached, such as by dynamical control over
the offset. Our method for generating the topo-
logical bands is spin-independent and does not
couple different spin states. It therefore can be
extended to high-spin systems (29) or to strongly
interacting spin mixtures, which are expected to
lead to interesting many-body phases (30–32).
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QUANTUM SIMULATION

Bloch state tomography using
Wilson lines
Tracy Li,1,2 Lucia Duca,1,2 Martin Reitter,1,2 Fabian Grusdt,3,4,5 Eugene Demler,5

Manuel Endres,5,6 Monika Schleier-Smith,7 Immanuel Bloch,1,2 Ulrich Schneider1,2,8*

Topology and geometry are essential to our understanding of modern physics, underlying
many foundational concepts from high-energy theories, quantum information, and condensed-
matter physics. In condensed-matter systems, a wide range of phenomena stem from the
geometry of the band eigenstates,which is encoded in thematrix-valuedWilson line for general
multiband systems. Using an ultracold gas of rubidium atoms loaded in a honeycomb optical
lattice, we realize strong-force dynamics in Bloch bands that are described by Wilson lines and
observe an evolution in the band populations that directly reveals the band geometry. Our
technique enables a full determination of band eigenstates, Berry curvature, and topological
invariants, including single- and multiband Chern and Z2 numbers.

G
eometric concepts play an increasingly im-
portant role in elucidating the behavior of
condensed-matter systems. In band struc-
tures without degeneracies, the geometric
phase acquired by a quantum state during

adiabatic evolution elegantly describes a spectrum
of phenomena (1). This geometric phase— known
as the Berry phase— is used to formulate the
Chern number (2), which is the topological in-
variant characterizing the integer quantum Hall
effect (3). However, condensed-matter properties
that are determined by multiple bands with de-
generacies, such as in topological insulators (4, 5)
and graphene (6), can seldom be understood with
standard Berry phases. Recent work has shown
that such systems can instead be described using
Wilson lines (7–10).
Wilson lines encode the geometry of degener-

ate states (11), providing indispensable information
for the ongoing effort to identify the topological
structure of bands. For example, the eigenvalues
of Wilson-Zak loops (i.e., Wilson lines closed by
a reciprocal lattice vector) can be used to formu-
late the Z2 invariant of topological insulators (7)
and identify topological orders protected by lattice
symmetries (8, 9). Although experiments have ac-
cessed the geometry of isolated bands through var-
ious methods, including transport measurements
(3, 12, 13), interferometry (14, 15), and angle-resolved
photoemission spectroscopy (5, 16), Wilson lines have
thus far remained a theoretical construct (7–10).

Using ultracold atoms in a graphene-like honey-
comb lattice, we demonstrate that Wilson lines
can be accessed and used as versatile probes of
band structure geometry. Whereas the Berry phase
merely multiplies a state by a phase factor, the
Wilson line is a matrix-valued operator that can
mix state populations (11) (Fig. 1A). We measure
the Wilson line by detecting changes in the band
populations (17) under the influence of an external
force, which transports atoms through reciprocal
space (18). In the presence of a force F, atoms
with initial quasimomentum qð0Þ evolve to quasi-
momentum qðtÞ ¼ qð0Þ þ Ft=ℏ after a time t.
If the force is sufficiently weak and the bands
are nondegenerate, the system will undergo adia-
batic Bloch oscillations and remain in the lowest
band (18). In this case, the quantum state merely
acquires a phase factor composed of the geometric
Berry phase and a dynamical phase. At stronger
forces, however, transitions to other bands occur,
and the state evolves into a superposition over
several bands.
When the force is infinite with respect to a

chosen set of bands, the effect of the dispersion
vanishes, and the bands appear as effectively de-
generate (Fig. 1B). The system then evolves ac-
cording to the formalism of Wilczek and Zee for
adiabatic motion in a degenerate system (11). The
unitary time-evolution operator describing the
dynamics is the Wilson line matrix (19)

Ŵqð0Þ→qðtÞ ¼ P exp½i ∫
C
dqÂq� ð1Þ

where the path-ordered (P) integral runs over the
path C in reciprocal space from qð0Þ to qðtÞ and
Âq is the Wilczek-Zee connection, which encodes
the local geometric properties of the state space.
In a lattice system with Bloch states jFn

qi ¼
eiq⋅̂r jun

qi in the nth band at quasimomentum q,
where r̂ is the position operator, the elements of
the Wilczek-Zee connection are determined by the
cell-periodic part jun

qi as An;n0
q ¼ ihun

qj∇qjun0
q i.

The diagonal elements (n ¼ n0) are the Berry
connections of the individual Bloch bands, which
yield the Berry phase when integrated along a
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closed path. The off-diagonal elements (n ≠ n′)
are the interband Berry connections, which cou-
ple the bands and induce interband transitions.
Although the evolution described by Eq. 1 must

be path-ordered when the Wilczek-Zee connections
at different quasimomenta do not commute, it can
also be path-independent under certain circum-
stances (9, 20). For example, when the relevant
bands span the same Hilbert space for all quasi-
momenta, as is the case in our system, the Wilson
line operator describing transport of a Bloch
state from Q to q reduces to ŴQ→q ¼ eiðq−QÞ⋅̂r

(9, 19, 21)). Consequently, the elements of the
Wilson line operator simply measure the overlap
between the cell-periodic Bloch functions at the
initial and final quasimomenta (9, 21)

Wmn
Q→q ¼ hFm

q jeiðq−QÞ⋅̂r jFn
Qi ¼ hum

q jun
Qi ð2Þ

Hence, access to the Wilson line elements facil-
itates the characterization of band structure topol-
ogy in both path-dependent and path-independent
evolution. In both cases, the topological information

is encoded in the eigenvalues of the Wilson-Zak
loops. In the latter case, the simplified form of the
Wilson line in Eq. 2 additionally enables a map
of the cell-periodic Bloch functions over the entire
Brillouin zone (BZ) in the basis of the states jun

Qi
at the initial quasimomentum Q.
We create the honeycomb lattice by interfering

three blue-detuned laser beams at 120(1)° angles
(Fig. 2A). At a lattice depth V0 ¼ 5:2ð1ÞEr, where
Er ¼ h2=ð2ml2LÞ is the recoil energy, lL is the
laser wavelength, and m is the mass of 87Rb, the
combined width e ≈ h� 3 kHz of the lowest two
bands is much smaller than the h� 15 kHz gap
to higher bands. Consequently, there exists a regime
of forces where transitions to higher bands are
suppressed, and the system is well approximated
by a two-band model (19).
We probe the lattice geometry with a nearly pure

Bose-Einstein condensate of 87Rb, which is initially
loaded into the lowest band at quasimomentum
q ¼ G, the center of the BZ (Fig. 2B). To move the
atoms in reciprocal space, we linearly sweep the
frequency of the beams to uniformly accelerate
the lattice, thereby generating a constant inertial

force in the lattice frame. By independently con-
trolling the frequency sweep rate of two beams
(Fig. 2A), we can tune the magnitude and direc-
tion of the force and move the atoms along ar-
bitrary paths in reciprocal space.
To verify that we can access the Wilson line

regime, where the dynamics are governed entirely
by geometric effects, we transport the atoms from
G to different final quasimomenta using a vari-
able force jFj and perform band-mapping (17) to
measure the population remaining in the lowest
band (Fig. 2C). For vanishing forces, we recover
the adiabatic limit, where the population remains
in the lowest band. For increasing forces (i and
ii in Fig. 1B), where the gradient jFjd over the
distance between A and B sites d is less than the
combined width e, the population continuously
decreases. However, at strong forces (iii in Fig. 1B),
where jFjd > e, the population saturates at a
finite value. For example, after transport by one
reciprocal lattice vector (blue data in Fig. 2C), about
one-quarter of the atoms remain in the first band,
in stark contrast to typical Landau-Zener dynamics,
where the population vanishes for strong forces (22).

SCIENCE sciencemag.org 27 MAY 2016 • VOL 352 ISSUE 6289 1095

E
ne

rg
y

R(t)R(0)

Wilson lineBerry phase

R(t)R(0)

degenerate
levels

W

Increasing force

ii iiii

|F|d
Energy

qx

qy

Fig. 1. Wilson lines and effectively degenerate Bloch bands. (A) In a non-
degenerate system (left), adiabatic evolution of a state throughparameter space
R results in the acquisition of a geometric phase factor, knownas theBerry phase.
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quantity called the Wilson line. If the degenerate levels can be experimentally dis-
tinguished (blue and yellow coloring), then population changes between the levels
are detectable. (B) The band structure of the lowest two bands of the honeycomb

lattice is given in effective energy units of jFjd,whereF is the applied force used to
transport theatomsandd is thedistancebetweennearest-neighbor lattice sites.As
jFj is increased, the largest energy scale of the bands becomes small compared to
jFjd. At large forces (iii), the effect of thebandenergies is negligible, and the system
is effectively degenerate. In this regime, the evolution is governed by theWilson line
operator.We distinguish between the bands using a band-mapping technique that
detects changes in the band population along the Wilson line path.
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Fig. 2. Reaching the Wilson line regime in the honeycomb lattice. (A) Sche-
matic of the honeycomb lattice in real space with A (B) sublattice sites denoted by
solid (open) circles. The lattice is formed by interfering three in-plane laser beams
(blue arrows) with frequency w. Sweeping the frequency of beam i by dwi creates a
force Fi in the lattice frame in the propagation direction of beam i (19). (B) Two
copies of the first BZ of the honeycomb lattice, separated by a reciprocal lattice
vectorG. By changing the relative strengths of Fi (red arrows), the atoms can be
moved along arbitrary paths in reciprocal space. Each BZ features nonequivalent
Dirac points K and K′ at the corners of the hexagonal cell. High-symmetry
points G, at the center of the BZ, and M, at the edge of the BZ, are also shown.
(C) The population remaining in the first band for different forces after
transport to G þ 0:2G (green), G þ 0:55G (red), and G þG (blue). Inset num-
bers i to iii refer to band schematics in Fig. 1B, representing the diminishing

effect of the dispersion for increasing force.The data agree well with a two-level,
tight-binding model (dashed line) that approaches theWilson line regime (thick
shaded line) at large forces. Discrepancies at larger forces result from transfer to
higher bands and match well with ab initio theory using a full band structure
calculation including the first six bands (thin solid line) (19). For all subsequent
data,we use jFjd=e ¼ 4:8, indicated by the dashed gray line. Error bars indicate
the standard error of the mean (SEM) from 10 shots per data point.
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Theoretically, the population in the first band
after the strong-force transport directly mea-
sures the Wilson line element jW 11

G→qj2 ¼
jhF1

qjŴG→qjF1
Gij2 in the basis of the band ei-

genstates. Based on Eq. 2, the saturation value
jW 11

G→qj2 ¼ jhu1
qju1

Gij2 of the population after
transport to q is a measure of the overlap be-
tween the cell-periodic Bloch functions of the
first band ju1

qi at G and q. Notably, for the
case of transport by one reciprocal lattice vector
G, the cell-periodic parts jun

qi are not identical,
despite the unity overlap of the Bloch states
jFn

qi at G and G þG. In contrast to the typical
Landau-Zener case, they are also not orthogonal—
hence the finite saturation value.
To corroborate that our experiment measures

the Wilson line, we transport atoms initially in

the ground state at G by up to three reciprocal
lattice vectors (Fig. 3). The threefold rotational
symmetry of the lattice, combined with the sym-
metry of its s-orbitals, makes the path from G to
G þ 3G equivalent to the triangular path shown
in Fig. 3A, such that the overlap between cell-
periodic components of the Bloch wave functions
at the two endpoints is unity (see Eq. 2). Corre-
spondingly, we expect to recover all the popula-
tion in the lowest band after transport from G
to G þ 3G. This prediction is confirmed in Fig.
3B, where we plot the population remaining in the
first band after transport to final quasimomentum
q. The data are well described by a tight-binding
model that takes into account the relative phase
between orbitals on A and B sites of the lattice
due to the Wilson line ŴG→q ¼ eiq⋅̂r . Physically,

this can be understood by assuming that the
real-space wave function simply accumulates a
position-dependent phase when the strong force
F ¼ ℏðq − QÞ=t is applied for a short time t (Fig.
3C). Notably, the result depends crucially on the
real-space embedding of the lattice and would be
different in, e.g., a brick-wall incarnation (23) of
the same tight-binding model. Discrepancies from
the tight-binding model result from population
transfer to higher bands (19).
As the Wilson line enables a comparison of

the cell-periodic Bloch functions at any two
quasimomenta (Eq. 2), it can in principle be ap-
plied to fully reconstruct these states throughout
reciprocal space. To this end, it is convenient to
represent the state ju1

qi at quasimomentum q
in the basis of cell-periodic Bloch functions
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cause of the threefold-rotational symmetry of the honeycomb lattice, a path
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jGj, beginning and ending at G. Colored dots correspond to colored quasi-
momentum labels in (B). (B) The population remaining in the first band after
transport to final quasimomentum q.Theory lines are a single-particle solution
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state by one reciprocal lattice vector corresponds to a 2π phase shift in the
real-space wave functions of each sublattice site. Projecting the combined
lattice and gradient potential V(x) along the path shown in red onto the x axis,
which is the direction of the applied force in the measurements of Figs. 2B and
3B, highlights theeffect of the real-spaceembeddingof thehoneycomb lattice.Since thedistancebetweenA (solid circles) andBsites (opencircles) is 1/3 thedistance
between sites of the same type, there is a phase difference of 2π=3 between the real-space wave functions of A and B sites, which gives rise to the band mixing.

Fig. 4. Measuring relative phases fq at different quasimomenta. (A) Schematic of the
interferometric sequence in the extended BZ scheme (left) and the corresponding rotation
on the Bloch sphere (right). To create a superposition state, atoms initially in the lowest
eigenstate at G − G are rapidly transported to G (i).The phase of the superposition state
is controlled by varying the hold time at G (ii). After the state preparation, the atoms are transported to a final quasimomentum qa, which is parametrized by
the angle a and lies on a circle of radius jGj centered at G (iii). (B) Phases fa referenced to a = 180° for the lattice with AB-site degeneracy (blue) and AB-site
offset (red). Data in blue have been offset by +120° for visual clarity. Dashed lines are a two-band, tight-binding calculation with D=J ¼ 0 (blue) and D=J ¼ 3:1 (red),
where J ¼ h� 500ð10Þ Hz. Error bars indicate fit errors.
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j1i ¼ ju1
Qi and j2i ¼ ju2

Qi at a fixed reference
quasimomentum Q as

ju1
qi ¼ cos

qq
2
j1i þ sin

qq
2
eifq j2i ð3Þ

Mapping out the geometric structure of the
lowest band therefore amounts to obtaining qq
and fq, which parametrize the amplitude and phase
of the superposition between the reference Bloch
states, for each quasimomentum q (24, 25). Whereas
the total phase of ju1

qi is gauge dependent—i.e.,
it can be chosen for each q—the relative phase
fq is fixed for all q once the basis states j1i and
j2i are fixed. Throughout this work, we choose
the basis states at reference point Q ¼ G.
In this framework, the population measure-

ments in Fig. 3B constitute a reconstruction of
the mixing angle qq ¼ 2 arc cosjW 11

G→qj. This can
be visualized as the rotation of a pseudospin on
a Bloch sphere, where the north (south) pole
represents j1i ðj2iÞ. As a function of quasimo-
mentum q, the angle qq winds by 2p=3 per re-
ciprocal lattice vector (see inset of Fig. 3B).
To obtain the relative phase fq, which is

directly connected to the Wilson line via fq ¼
Arg½W 11

Q→q� − Arg½W 12
Q→q� (19), we perform a pro-

cedure analogous to Ramsey or Stückelberg in-
terferometry (26, 27). We initialize atoms in the
lowest band at G − G and rapidly transport them
by one reciprocal lattice vector to prepare a super-
position of band eigenstates at the reference point
G (i in Fig. 4A). We then hold the atoms at G for a
variable time (ii), during which the phase of the
superposition state precesses at a frequency set by
the energy difference between the bands at G.
Following this preparation sequence, we rapidly
transport the superposition state to a final quasi-
momentum qa, lying at angular coordinate a on
a circle of radius jGj centered at G. Measuring
the population of the first band as a function of
hold time yields an interference fringe that reveals
the relative phase fa (19).
We observe quantized jumps of p in the phase

of the interference fringe each time a is swept
through a Dirac point, i.e., every 60° (blue circles
in Fig. 4B) (28, 29). The binary nature of the
phases is a consequence of the degeneracy be-
tween A and B sites, which dictates that the band
eigenstates at each quasimomentum be an equal
superposition of states jFA

qi and jFB
qi on the A

and B sublattices (19). Therefore, on the Bloch
sphere, the pseudospin is constrained to rotate
on a meridian about an axis whose poles represent
the corresponding cell-periodic functions juA

qi
and juB

qi (inset of Fig. 3B). When we remove this
constraint by introducing an energy offset be-
tween A and B sites (19, 30)), we observe smoothly
varying phases that are always less than p (red
circles in Fig. 4B). The dependence of the phase
on angle a indicates both the breaking of inver-
sion symmetry and the preservation of the three-
fold rotational symmetry of the lattice.
Apart from reconstructing the cell-periodic

Bloch functions, our method also provides access
to eigenvalues of Wilson-Zak loops, Ŵq→qþG,
which is essential for determining various topo-
logical invariants (7–9). To this end, we split the

Wilson-Zak-loop matrix into a global phase factor,
which can be measured by extending previous
methods (13–15, 31), and an SU ð2Þ matrix with
eigenvalues eTix. Using the data from Figs. 3B
and 4B, we reconstruct the eigenvalues for a loop
transporting from G to G þG, up to multiples
of p (19). We find the eigenvalue phases to be
x ¼ 1:03ð2Þp=3, in good agreement with the value
of p=3 predicted from the two-bandmodel. Notably,
we measure the same eigenvalues even when the
band eigenstates are modified by an energy offset
between A and B sites (19). This invariance is a
direct consequence of the real-space representa-
tion of the Wilson-Zak loop, ŴG→GþG ¼ eiG⋅̂r

[see Eq. 2 and (19)]. Because the Wilson-Zak
loop depends only on the position operator r̂, the
eigenvalues are determined solely by the physical
locations of the lattice sites, which are unchanged
by the energy offset.
Our versatile approach only employs standard

techniques that are broadly applicable in ultracold-
atom experiments and can be extended to higher
numbers of bands by adopting ideas from quan-
tum process tomography (32). Provided that the
relevant local Hilbert space is identical for all
quasimomenta, our method provides a complete
map of the eigenstates over the BZ, giving access
to the Berry curvature and Chern number. When
this is not the case, the same techniques enable
the reconstruction of Wilson-Zak loop eigenvalues,
which directly probe the geometry of the Wannier
functions (9) and, therefore, the polarization of
the system (21, 33). Consequently, these eigen-
values can reveal the topology of bands with path-
dependent and non-Abelian Wilson lines (9, 11).
Such systems can be realized in cold-atom ex-
periments by periodically modulating the lattice
(12, 30, 34–36) to create a quasimomentum-
dependent admixture of additional bands (37) or
coupling between internal states (38–41). More-
over, the addition of spin-orbit coupling (42)
would enable the investigation of the Z2 in-
variant characterizing time-reversal invariant
topological insulators (33, 41, 43–46).
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