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The numerical simulation of quantum many-body dynamics is typically limited by the linear growth of

entanglement with time. Recently numerical studies have shown that for 1D Bethe-integrable models the

simulation of local operators in the Heisenberg picture can be efficient. Using the spin-1=2 XX chain as

generic example of an integrable model that can be mapped to free fermions, we provide a simple

explanation for this. We show furthermore that the same reduction of complexity applies to operators that

have a high-temperature autocorrelation function which decays slower than exponential, i.e., with a power

law. Thus efficient simulability may already be implied by a single conservation law as we will illustrate

numerically for the spin-1 XXZ model.
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White’s Density Matrix Renormalization Group
(DMRG) [1] and its more recent generalizations to time
evolution using the time evolving block decimation
(TEBD) [2] or t-DMRG [3] algorithms are indispensable
tools in the numerical simulation of one-dimensional quan-
tum many-body systems. They permit high-accuracy cal-
culations, provided that the entanglement between any two
complementary partitions remains small. For finite-range
interactions this is the case for the ground state [4].
However, in real time evolution the entanglement often
grows linear in time, limited only by the Lieb-Robinson
upper bound [5,6]. E.g., for the spin- 12 XY chain the evo-

lution of the entanglement entropy was investigated in [7]
showing explicitly the linear growth in time.

However, the evolved state contains a lot of information
which is of little interest. Experimental measurements as
well as theories are almost solely concerned with quantities
that can be expressed in terms of only a small number
of elementary operators. This suggests going to the
Heisenberg picture (HP) and simulating the dynamics of
these operators. Prosen et al. [8,9] were the first to pursue
this approach. They observed an exponential speedup in
simulations of local operators for integrable systems. So
far there is, however, no general understanding of why
this is the case and whether or not integrability is crucial.
In the present Letter we provide an explanation of the
speedup for models that can be mapped to free fermions.
We also argue that integrability is not necessary and that
the existence of a conservation law may suffice for the
efficient simulation of local operators that constitute the
conserved quantity. We discuss the spin- 12 and spin-1 XXZ

models as specific examples supporting and illustrating our
arguments.

In order to do HP simulations using, e.g., the TEBD

scheme, the operator ÔðtÞ at time t is expressed in terms
of a matrix product operator (MPO). For typical observ-
ables this is straightforward for the initial time t ¼ 0.

Time evolution then means updating the matrices accord-
ing to the Heisenberg equation using a Trotter decomposi-
tion. Efficient simulation requires that the matrix
dimension of the MPO’s (called bond dimension) is limited
to a maximum value �. I.e., only the � largest Schmidt
values in the Hilbert space of operators are kept, corre-
sponding to a small operator-space (OS) entanglement
between any two complementary partitions. To quantify

the entanglement of an operator ÔðtÞ, which after proper
normalization can be viewed as state vector in OS, we use
the OS Rényi entropies (OSRE):

S� ¼ log2Tr�̂
�

1� �
� S�; � > �> 0: (1)

Here �̂ is the corresponding reduced density matrix in OS
resulting from tracing out one partition at a given bond. In
the limit � ! 1, S� is the well-known von Neumann en-
tropy, which is a good measure of bipartite entanglement.
For � ! 0, S� gives the dimension of the Hilbert space.
Clearly for anMPO of bond dimension�, the maximum for
all Rényi entropies is log2�. Although it is not yet fully
established when a quantum state or an operator is faith-
fully represented by a matrix product with finite bond
dimension, one can employ the results of Schuch et al.
[10] to show that efficient simulation is impossible if the
Rényi entropies with �> 1 scale faster than logarithmi-
cally with time. If S�>1 grows linearly in time, we must
expect that the computational cost required to reach a
certain accuracy will grow exponentially with time (note
that this is not necessarily true for S� with � � 1 [10]). In
fact, for the time evolution of typical state vectors in the
Schrödinger picture this is often the case [11]. On the other
hand, an at most logarithmic growth of S�>1 is a necessary
condition for an efficient simulability. Although not
sufficient, it also gives good indication when such a simu-
lation is possible. In the following, we discuss the time
evolution of the OSRE for a generic model, the XXZ chain,
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Ĥ ¼ � 1
2

P
jð�̂x

j�̂
x
jþ1 þ �̂y

j�̂
y
jþ1 þ ��̂z

j�̂
z
jþ1Þ, where �̂x;y;z

denote Pauli matrices or spin-1 matrices (eigenvalues �1,
0, 1) in the spin-1 case, respectively. The spin- 12 case is

integrable for any value of the anisotropy �. For � ¼ 0
(spin- 12 XX model) this model can be mapped to free

fermions.
Integrable models equivalent to free fermions.—Let us

consider the spin- 12 XXZ model as a generic example of a

1D integrable model. We have calculated the time evolu-
tion of the OSRE S2 for different operators using the
TEBD scheme with open boundary conditions and a fourth
order Trotter decomposition [12]. The restriction to open
boundary conditions is not an issue for local operators as
long as the time is shorter than the propagation time to the
boundaries [5]. Although not shown the OS von-Neumann
entropy S1 has the same scaling behavior. One clearly
notices that the OSRE of all operators scales at most
logarithmically in time, an observation made already by
Prosen et al. for other integrable models [9,13]. In the
special case of � ¼ 0 the entropy saturates at a finite value
for some operators like �̂z.

In the following we provide an explanation for the case
of the XX model, i.e., for � ¼ 0, which can be mapped to
free fermions. This will be done by reexpressing the XXZ
model in terms of Majorana fermions [14], which turns out
to be more convenient than the Wigner-Jordan form:
ŵ2j�1 ¼ ðQl<j�̂

z
l Þ�̂x

j , ŵ2j ¼ ðQl<j�̂
z
l Þ�̂y

j . The Majorana

operators are Hermitian and fulfill anticommutation rela-
tions fŵj; ŵlg ¼ 2�jl. The three types of interactions in the

XXZ model can be reexpressed as

�̂ x
j�̂

x
jþ1 ¼ �iŵ2jŵ2ðjþ1Þ�1;

�̂y
j�̂

y
jþ1 ¼ iŵ2j�1ŵ2ðjþ1Þ;

�̂z
j�̂

z
jþ1 ¼ �ŵ2j�1ŵ2jŵ2ðjþ1Þ�1ŵ2ðjþ1Þ:

(2)

A complete basis in the OS is given by P̂� ¼ Q
jŵ

�2j�1

2j�1 ŵ
�2j

2j ,

where � � ð�1; �2; . . .Þ and f�lg 2 f0; 1gN . We can
now define adjoint-fermion annihilators and creators

via âjjP̂�i ¼ �jjŵjP̂�i, âyj jP̂�i ¼ ð1� �jÞjŵjP̂�i, with
fâj; âyl g ¼ �jl. Associating the adjoint vacuum jP̂0i with

the unity operator 1, i.e., j1i ¼ jP̂0i, we can express all

operators in terms of adjoint fermions [13]: jP̂�i ¼Q
jðây2j�1Þ�2j�1ðây2jÞ�2j j1i. Mapping the Heisenberg equation

gives a Schrödinger-like equation for the evolution in OS,

i
d

dt
P̂� ¼ ½P̂�; Ĥ�� i

d

dt
jP̂�i ¼ j½P̂�; Ĥ�i ¼: Ĥ jP̂�i; (3)

with a ‘‘super’’-Hamiltonian Ĥ . Explicitly calculating
the terms in the commutator for the XX model

via j½P̂�; �̂
x
j�̂

x
jþ1�i ¼ 2iðây2jâ2ðjþ1Þ�1 � H:a:ÞjP̂�i, and

j½P̂�; �̂
y
j�̂

y
jþ1�i ¼ �2iðây2j�1â2ðjþ1Þ � H:a:ÞjP̂�i yields

Ĥ XX ¼ i
X
j

ðây2jâ2jþ1 þ ây2j�1â2jþ2 � H:a:Þ: (4)

This Hamiltonian corresponds to two uncoupled chains of
free fermions. The total number of adjoint fermions,P

2N
m¼1 â

y
mâm, is conserved. Note that the anisotropy � in

the original XXZ Hamiltonian would introduce recombina-
tion and pair creation across the chains. Although the above
mapping is nonlocal, operators acting only left of a given site
j will be mapped to fermions that are again only left of this
very site. So the OSRE of the original XX model will be the
same as the corresponding state vector Rényi entropy of two
uncoupled chains of free fermions. Thuswe have to calculate
the entanglement dynamics of the two uncoupled chainswith
an initial state given by the operator in questions to get the
OSRE. The key point is that local operators are equivalent to
very special, simple initial states in the corresponding fer-
mion chains. We here have to distinguish between finite
index operators (those that involve only a finite number of
adjoint fermions) and infinite index operators (involving a
number proportional to the system sizeL). Anexample of the

first kind is j�̂z
ji ¼ �iây2j�1â

y
2jj1i. Examples of the second

kind arise either from local operators like j�̂x
ji ¼

ij�1ðQ2ðj�1Þ
l¼1 âyl Þây2j�1j1i or non local ones like jF̂i ¼

jQj�1
l¼1 �̂

z
l i ¼ ij�1ðQ2ðj�1Þ

l¼1 âyl Þj1i.
We proceed by showing that the bipartite Rényi entropy

S2 for a system of free fermions in 1D is strictly related to
the number fluctuations in any one of the two partitions
assuming a fixed total number. We can assume that the
initial state of the fermions corresponding to the local
operators of interest is a Gaussian state. Because of the
free evolution it remains Gaussian and can be transformed
into a product form �̂ ¼ N

j�̂j where the �̂j correspond to

site j and have eigenvalues
1��j

2 , j�jj � 1. The square of

the variance of the total particle number in each partition
is then �N2

A ¼ P
j2Að1� �2

j Þ=4 ¼ �N2
B [15]. On the

other hand S2 ¼�log2Tr�̂
2 ¼�P

jlog2½1� ð1��2
j Þ=2�.

Using 2
ln2

x
2�x ��log2ð1� xÞ � 1

ln2
x

1�x , where 0 � x � 1
2 ,

one obtains

4

ln2
�N2 � S2 � 2

ln2
�N2: (5)

For finite index operators we find saturation as can be
seen in Fig. 1. This reflects the fact that there is only a finite
number M of free particles in both chains together. Thus a
finite � of 2M yields the exact solution [16] for all times
[17]. For infinite index operators we observe logarithmic
growth of the OSRE, see Fig. 1. While the infinite number
of involved adjoint fermions may suggest a linear growth
of �N2, this is not the case. The superstate corresponding

to a infinite index operator like jF̂i (a finite size example of
which is shown in Fig. 1) is filled up completely with
fermions in the left part of the chains. Inside these regions
the Pauli principle prevents hopping of fermions and thus
only particles at the edge can move and fill the empty parts
of the double chain. For the half-filled chain Antal et al.
have shown that �N2 ffi ðlntþDÞ=2	2 in the limit of
large t with a known constant D> 0 [18]. Other infinite
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index operators that result in a initial occupation of the two

chains different from that of jF̂i only on a finite number of
sites show the same logarithmic behavior of the OSRE, see
j�̂þi at a single site, also shown in Fig. 1. This explains the
dynamics of the OSRE in the XX model as a generic
example of a model that can be mapped to free fermions.

Nonintegrable models.—We now show that there is an-
other class of systems and operators that may allow an
efficient simulation in the HP.We construct an upper bound
for the OSRE S�, �> 1, in terms of the infinite-
temperature autocorrelation function (ITAC). Without
loss of generality we assume a normalized operator, i.e.,
1
dL
Tr½ÔyÔ� ¼ 1, where d is the local dimension of the

chain. With respect to a splitting of the chain of length L

into two parts here and below all Â act on the subchain A of

length LA and all B̂ on B of length LB. Any operator can be

represented as ÔðtÞ ¼ P
m;n�mnðtÞÂm � B̂n with orthonor-

mal bases 1
dLA

Tr½Ân
yÂm� ¼ 1

dLB
Tr½B̂y

nB̂m� ¼ �nm. � is a

matrix and its singular values
ffiffiffiffiffiffi

n

p
(
1 � 
2 � . . . are

the eigenvalues of �̂) are coefficients of a Schmidt decom-

position ÔðtÞ ¼ P�
n¼1

ffiffiffiffiffiffi

n

p
ÂnðtÞ � B̂nðtÞ, where � is at

most d2minðLA;LBÞ. This allows us to express the ITAC in
terms of Schmidt coefficients. We find for �> 1

jhÔyðtÞÔiT¼1j ¼ jTr½�yðtÞ�ð0Þ�j � X�
k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k
kð0Þ

q
(6)

� Tr
ffiffiffiffiffiffiffiffiffi
�̂ð0Þp �X�

k¼1

ffiffiffiffiffiffiffiffiffiffiffi

kð0Þ

p
Tr

ffiffiffiffiffiffiffiffiffi
�̂ð0Þp 
�=2

k

�
1=�

(7)

¼ ðTr
ffiffiffiffiffiffiffiffiffi
�̂ð0Þ

p
Þ1�ð1=�Þ

�X�
k¼1


�
k

�
1=2�

: (8)

In (6) we made use of von Neumann’s trace inequality (see,
e.g., [19]). Furthermore, Jensen’s inequality can be used

because x1=� is concave in x. Finally (8) is true by the

Cauchy-Schwarz inequality. Assuming an initial product

operator, Tr
ffiffiffiffiffiffiffiffiffi
�̂ð0Þp ¼ 1, for simplicity, we obtain

S� � 2�

1� �
log2jhÔyðtÞÔiT¼1j for �> 1: (9)

If the ITAC decays with a power law or slower in time, S�
will grow at most logarithmically for �> 1. The ITAC has
been studied over decades in condensed matter physics as
it is measured in nuclear magnetic resonance and neutron
scattering experiments in magnetic spin chains. While not
proofed rigorously, it is believed that the Blombergen–de

Gennes conjecture [20] of spin diffusion holds: if
P

L
j¼1 Ôj

is a conserved quantity, then the ITAC of Ôj will show

diffusive behavior (i.e., 	1=
ffiffi
t

p
in 1D). To our knowledge

there is no counterexample except for integrable models,
where this diffusive behavior can turn into a ballistic one
(i.e., 	1=t in 1D) [21,22]. Nevertheless it always remains
slower than exponential. We conclude that in the HP TEBD
we can expect S2 to grow at most logarithmically in time,
even if the model is nonintegrable, if the initial operator
belongs to a conservation law (for integrable systems there
is an infinite number of those, but one is sufficient). This in
turn indicates that an efficient classical simulation should
be possible for large times.
The spin-1 XXZ chain is an example of a nonintegrable

system, although extension to additional higher-order non-
linear terms may turn it into an integrable one [23,24]. The
total z magnetization

P
L
j¼1 �̂

z
j is conserved. This will lead

to a logarithmic scaling of S2 for �̂z. Figure 2 shows
numerical indication for this. It should be noted that the
spin-1 model is computationally much harder than the
spin- 12 model since the local Hilbert space dimension is

increased. Although we do observe logarithmic scaling of
the OSRE corresponding to �̂z, the prefactor is large, such
that we cannot go too far in time. The plot shows data for
different matrix dimension � up to the point where the
cutoff error becomes substantial. A clear tendency is vis-
ible: on the logarithmic scale S2 approaches a straight line,
while in the linear plot a sublinear scaling is evident. This
is consistent with the expected logarithmic scaling of the
OSRE. For �̂þ Fig. 2 shows logarithmic scaling of S2 only
for � ¼ 1 because only then the total x and y magnetiza-
tion are also conserved. Otherwise it indicates linear
growth of S2 with time. We can understand this now as a
direct consequence of the Blombergen–de Gennes conjec-
ture, which predicts a power law rather than an exponen-
tially decaying ITAC in the isotropic case (see insets of
Fig. 2). We note that the regular and chaotic Hamiltonians
used in the original work by Prosen and Žnidarič [8] have
also been investigated numerically. The OSRE shows
the expected time dependence, i.e., logarithmic scaling
in the regular and linear scaling in the chaotic case.
From the numerical results we can also extract the von

Neumann entropy as a function of time. It scales exactly as
S2 in the spin- 12 model for all operators we looked at. The

results are not conclusive in the spin-1 case, however, since
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FIG. 1 (color online). OSRE dynamics for the 40 site spin- 12
XXZ model for a split in the center. The legend gives initial
operator and anisotropy in the order in which the arrow cuts the
graphs. Dashed lines mark infinite index operators (see text).
� ¼ 1000 is used in all cases and the numerical error is negli-
gible on the time scale shown.
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the dependence on the matrix dimension � used in the
simulations is much stronger. At least they do not contradict
the presumption, that again the scaling is the same as for S2.

In summary, we have given a simple explanation of the
at most logarithmic time dependence of the OSRE S2 for
the spin-1=2 XX model as a generic integrable model that
can be mapped to free fermions. The operator dynamics in
that model is equivalent to two uncoupled chains of free
fermions with an initial state corresponding to the operator
under consideration. For local operators these initial states
are rather simple. E.g., an operator �̂z

j corresponds to a

single fermion in each chain. We have shown that the
bipartite OSRE S2 is strictly related to the fluctuations of
the fermion number in the two partitions, which in turn
allowed a simple understanding of the entropy dynamics.
We have shown furthermore that for any model, integrable
or not, S2 in OS can be bound by the ITAC of the consid-
ered operator. This in turn means that for systems and
observables for which the Blombergen de Gennes conjec-
ture of spin diffusion holds, an at most logarithmic growth
of the OS entanglement is expected. The latter applies,
e.g., for local operators that constitute a global conserva-
tion law.
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