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We identify form-stable coupled excitations of light and matter (“dark-state polaritons”) associated
with the propagation of quantum fields in electromagnetically induced transparency. The properties of
dark-state polaritons such as the group velocity are determined by the mixing angle between light and
matter components and can be controlled by an external coherent field as the pulse propagates. In
particular, light pulses can be decelerated and “trapped” in which case their shape and quantum state
are mapped onto metastable collective states of matter. Possible applications of this reversible coherent-
control technique are discussed.

PACS numbers: 42.50.Gy, 03.67.–a, 42.65.Tg
Dark states and electromagnetically induced trans-
parency (EIT) [1,2] can be used to make a resonant,
opaque medium transparent by means of quantum inter-
ference. Associated with the induced transparency is a
dramatic modification of the refractive properties. This
can result, for instance, in very slow group velocities [3].
In the present contribution we study the propagation of
quantum fields in EIT media. We demonstrate the exis-
tence of form-stable quantum excitations associated with
such propagation, which we term “dark-state polaritons.”
The polaritons are mixtures of photonic and Raman-like
matter branches. We show that their group velocity is
directly related to the ratio of the two contributions and
can be externally manipulated by adiabatically changing a
coherent control field. In particular, dark-state polaritons
can be stopped and reaccelerated in such a way that their
shape and quantum state are preserved. In this process the
quantum state of light is ideally transferred to collective
atomic excitations and vice versa.

The possibility to coherently control the propagation
of quantum light pulses via dark-state polaritons opens
up interesting applications involving the generation of
nonclassical states of atomic ensembles (in squeezed or
entangled states), reversible quantum memories for light
waves [4–6], and high resolution spectroscopy [7]. Fur-
thermore, the combination of the present technique with
studies on few-photon nonlinear optics [8–12] can be
used, in principle, for processing of quantum information
stored in collective excitations of matter. It may also
provide an interesting tool to study quantum scattering
phenomena in systems involving coherent cold collisions.
In this regard this work opens a link between nonlinear
optics for light waves and nonlinear atom optics. For
example, an interaction (or entanglement) between light
waves can be induced by a collisional interaction of
atoms (s-wave scattering) or vice versa. Finally it may be
interesting to combine the adiabatic mapping technique
with methods to excite solitons or vortex states of the
atomic center-of-mass motion in double Bose-Einstein
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condensates [13]. In this way the quantum properties of
these excitations could be manipulated and analyzed.

We consider a medium consisting of L-type 3-level
atoms with two metastable lower states, as shown in Fig. 1.
A quantum field described by the slowly varying dimen-
sionless operator

Ê�z, t� �
X
k

ak�t�eikze2i�n�c� �z2ct� (1)

couples resonantly the transition between the ground state
jb� and the excited state ja�. n � vab is the carrier fre-
quency of the optical field. The upper level ja� is further-
more coupled to the stable state jc� via a coherent control
field with the slowly varying, real Rabi frequency V�t�.
For the purposes of the present discussion the external field
can be treated classically. We assume that initially (i.e.,
before the quantum pulse arrives) all atoms are in their
ground states jbj�. To describe the quantum properties of
the medium, we use collective, slowly varying atomic op-
erators, appropriately averaged over small but macroscopic
volumes containing Nz ¿ 1 particles at position z,

ŝab�z, t� �
1

Nz

NzX
j�1

jaj� �bjje
2ivab t . (2)

The interaction between light and atoms is governed by the
Hamiltonian

V̂ � 2N
Z dz

L

µ
h̄g

X
k

akeikzŝab�z� 1 h̄Vŝac�z�
∂

1 H.c. (3)

Here g � �
q

n

2 h̄e0V is the atom-field coupling constant
with � being the dipole moment of the a b transition
and V being the quantization volume. N is the number of
atoms in this volume and L is its length in the z direction.

The evolution of the Heisenberg operator corresponding
to the optical field can be described in a slowly varying
amplitude approximation by the propagation equation
© 2000 The American Physical Society
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FIG. 1. 3-level L-type medium resonantly coupled to a classi-
cal field with Rabi frequency V�t� and quantum field Ê�z, t�.
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≠
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Ê�z, t� � igNŝba�z, t� . (4)

The atomic evolution is governed by a set of Heisenberg-
Langevin equations

≠

≠t
ŝmn � 2gmnsmn 1

i
h̄

�V̂ , ŝmn� 1 Fmn , (5)

where gmn are the transversal decay rates and F̂mn are
d-correlated Langevin noise operators.

We now assume that the Rabi frequency of the quantum
field is initially much smaller than V and that the number
of photons in the input pulse is much less than the number
of atoms. In such a case the atomic equations can be
treated perturbatively in Ê. In zeroth order only ŝbb � 1
is different from zero and in first order one finds

ŝba � 2
i

V�t�
≠

≠t
ŝbc , (6)

ŝbc � 2
gÊ
V

2
i
V

∑µ
≠
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1 gba

∂

3

µ
2

i
V

≠

≠t
ŝbc

∂
1 F̂ba

∏
. (7)

In the above equations we disregarded a (small) decay of
the Raman coherence �gbc�.

The propagation equations simplify considerably if we
assume a sufficiently slow change of V, i.e., adiabatic
conditions [8,10]. By introducing a normalized time t̃ �
t�T , where T is a characteristic time scale, and expanding
the right-hand side (rhs) of (7) in powers of 1�T , we find
in lowest nonvanishing order

ŝbc�z, t� � 2g
Ê�z, t�
V�t�

. (8)

Note that �F̂x�t�F̂y�t0�� � d�t 2 t0� � d�t̃ 2 t̃0��T . Thus
in the perturbative and the adiabatic limit the propagation
of the quantum light pulse is governed by the equationµ

≠

≠t
1 c

≠

≠z

∂
Ê�z, t� � 2

g2N
V�t�

≠

≠t
Ê�z, t�
V�t�

. (9)

If V is constant, the term on the rhs simply leads to a
modification of the group velocity of the quantum field
according to yg � c��1 1

g2N
V2 �. In the general case, the

field equation will acquire an additional term proportional
to � �V�V�Ê which describes reversible changes in quantum
amplitudes due to stimulated Raman scattering.
One can obtain a very simple solution of Eq. (9) by
introducing a new quantum field Ĉ�z, t� via the canonical
transformation

Ĉ�z, t� � cosu�t�Ê�z, t� 2 sinu�t�
p

N ŝbc�z, t� ,

cosu�t� �
V�t�p

V2�t� 1 g2N
, (10)

sinu�t� �
g
p

Np
V2�t� 1 g2N

.

Ĉ obeys the following equation of motion:∑
≠

≠t
1 c cos2u�t�

≠

≠z

∏
Ĉ�z, t� � 0 , (11)

which describes a shape-preserving propagation with ve-
locity y � yg�t� � c cos2u�t�:

Ĉ�z, t� � Ĉ

µ
z 2 c

Z t

0
dt cos2u�t�, t � 0

∂
. (12)

Several interesting properties of the new field should
be noted. By introducing a plane-wave decomposition
Ĉ�z, t� �

P
k Ĉk�t�eikz , one finds that the mode operators

Ĉk and Ĉ
y
k obey the commutation relations

�Ĉk , Ĉ1
k0 � � dk,k0

∑
cos2u 1 sin2u

1
N

X
j

�ŝj
bb 2 ŝj

cc�
∏

.

(13)

In the linear limit considered here, where the number den-
sity of photons is much smaller than the density of atoms,

ŝ
j
bb 	 1, ŝ

j
cc 	 0. Thus the new field possesses bosonic

commutation relations and we can associate with it bosonic
quasiparticles (polaritons). Furthermore, one immediately
verifies that all number states created by Ĉ

y
k are dark states

[2,5]:

jDk
n� �

1
p

n!
�Ĉy

k �nj0� jb1 . . . bN � , (14)

where j0� denotes the field vacuum. The states jDk
n�

do not contain the excited atomic state and are thus im-
mune to spontaneous emission. Moreover, they are eigen-
states of the interaction Hamiltonian with eigenvalue zero,
V̂ jDk

n� � 0. For these reasons we call the quasiparticles
dark-state polaritons.

In summary, we have found a shape-preserving, polari-
tonlike mixture of an electromagnetic field and collective
Raman coherences. This excitation is not of the soliton-
type since no special pulse shape or pulse area is re-
quired. It is related to the classical adiabaton solutions
of pulse-pair propagation in L-type media [14,15] in the
limit of one strong and one weak field. We emphasize,
however, that the field can here be in any quantum state.

One of the most interesting aspects of dark-state po-
laritons is the possibility to coherently control their prop-
erties by changing V�t�. For example, by adiabatically
rotating u�t� from 0 to p�2, one can decelerate and stop
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an input light pulse. In this process, pulse shape and the
quantum state of the light pulse are mapped onto collec-
tive states of matter in which they are stored. Likewise,
the polariton can be reaccelerated to the vacuum speed of
light; in this process, the stored quantum states are trans-
ferred back to the field. This is illustrated in Fig. 2, where
5096
we have shown the coherent amplitude of a dark-state po-
lariton which results from an initial light pulse as well as
the corresponding field and matter components. One rec-
ognizes that the pulse shape is preserved and that the stop-
ping corresponds to a transfer from field to atomic Raman
excitations:
â
y
k â

y
l ây

m . . . j0� jb1 . . . bN � √!
p

N ŝk
cb

p
N ŝl

cb

p
N ŝm

cb . . . jb1 . . . bN � j0� , (15)
where the plane-wave decomposition ŝcb�z� � ei�n�c�z 3

�
P

k ŝ
k
cbe2ikz� has been used.

The transfer of quantum states between light and
matter opens interesting prospectives for the generation of
nonclassical atomic ensembles in squeezed and entangled
states, high-precision spectroscopy with resolution beyond
the standard quantum limit [7] as well as reversible
quantum memories. Furthermore, by trapping correlated
photons in separate media, entangled states of separated
atomic ensembles can be created. With respect to these
applications this paper is complementary to our earlier
studies in which we showed that quantum states of light
can be mapped onto Dicke-like collective states of an EIT
medium in an optical resonator [4,5]. The quantum states
of matter generated in the case of this paper are more
complicated, however, trapping the light in a traveling-
wave geometry does not require special shaping of the
classical driving pulses (quantum impedance matching),
which is necessary in a cavity configuration.

FIG. 2. Propagation of a dark-state polariton with envelope
exp
2�z�10�2�. The mixing angle is rotated from 0 to p�2 and
back according to cotu�t� � 100
1 2 0.5 tanh�0.1�t 2 15�� 1
0.5 tanh�0.1�t 2 125��� as shown in (a). The coherent amplitude
of the polariton C � �Ĉ� is plotted in (b), and the electric field
E � �Ê� and matter components jscbj � j�ŝcb�j in (c) and (d),
respectively. Axes are in arbitrary units with c � 1.
We also note related studies on quantum memories for
light involving mapping the quantum state of the field onto
atoms by dissipative absorption [6,16]. In contrast to these
approaches the adiabatic passage technique [17] used here
allows for a complete and reversible excitation transfer of
arbitrary quantum wave packets.

Finally, our approach is also different from the mecha-
nism suggested recently in [18], in which “freezing” of the
light pulse in a laboratory frame was proposed using mov-
ing atoms.

The above analysis involves a perturbation expansion,
an adiabatic approximation, and disregards the decay of
Raman coherence. In what follows the validity of these
approximations is discussed. We note that, by making use
of (8), one finds g2Ê1Ê�jVj2 � ŝcbŝbc. In other words,
the ratio of the average intensities of quantum and control
fields is proportional to that of the matter field �ŝcc�. If the
initial number of photons in the quantum field is much less
than the number of atoms, �ŝcc� is always much smaller
than unity. Therefore the mean intensity of the quantum
field remains small compared to that of the control field
even when the latter is turned to zero.

In order to check the validity of the adiabatic approxi-
mation we consider the first correction to ŝbc:

ŝbc 	 2
gÊ
V

1
1
V

µ
≠

≠t
1 gba

∂
1
V

≠

≠t
gÊ
V

1 . . . .

(16)

The nonadiabatic correction in (16) leads to a dissipative
spectral narrowing (pulse spreading) of the quantum field
due to the finite bandwidth of the transparency window
[10]. This results in a “pulse” matching of quantum and
classical control fields [15,19]. Using the adiabatic solu-
tion (12), one can verify that these corrections are small
for propagation distances:

z ø zmax �
g2N
gab

3
L2

p

c
, (17)

where Lp is the length of the input pulse. Hence, in order
to trap a pulse with negligible losses, it is required that

g2NLp

cgab
¿ 1 . (18)

This condition contains the number of atoms which is
a signature of collective interactions. It should be con-
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trasted to the strong-coupling condition corresponding to a
quantum state transfer in cavity QED [20,21]. We note, in
particular, that in the optically dense medium the adiabatic
condition (18) is much easier to implement.

The effect of the Raman-coherence decay can be easily
estimated using the explicit expression for the generated
matter states (15). It is clear that the collective states
containing ne atomic excitations will dephase at a rate
gbcne. Hence, the time of the storage should be limited
to ts ø �gbcne�21 to avoid decoherence [5].

In the discussion above we have considered the case
where the control field depends only on time. This can
be realized, e.g., when the control field propagates in a
direction perpendicular to that of the quantum field. In
experiments involving hot atomic vapors, copropagation
is required, however, in order to cancel Doppler broaden-
ing. Therefore propagation effects of the control field need
to be considered. If the quantum field is weak, the con-
trol field propagates as in free space and thus V�z, t� �
V�t 2 z�c�. In this case, one finds

µ
≠

≠t
1 c cos2u�z, t�

≠

≠z

∂
Ê�z, t�
V�z, t�

� 0 . (19)

Since the group velocity is now also z dependent, trapping
of the pulse does not preserve the shape exactly. Never-
theless it is evident that trapping and a reversible transfer
of the quantum state from light to atoms are still pos-
sible. In experiments, however, a more practical approach
can be taken in which a light pulse enters the medium
already with y0

g ø c. In such a case retardation of the
control field can be ignored and one has V�t 2 z�c� 	
V�t�. Since the index of refraction is close to unity there
will be no reflection losses at the entrance plane. However,
the polariton pulse becomes spatially compressed accord-
ing to Lp�L0

p � y0
g�c, and its amplitude grows according

to the boundary condition Ĉ�0, t� �
q

c�y0
g Ê�0, t�. In this

way, the total number of polaritons inside the medium is
equal to the number of photons outside.

In conclusion we have shown that it is possible to con-
trol the propagation of quantum pulses in optically thick
L-type media. This coherent control mechanism is based
on dark-state polaritons associated with EIT. In particular,
a quantum light pulse can be “trapped,” in which case its
shape and quantum state are preserved in stationary atomic
excitations. The matterlike polariton can then be reacceler-
ated and converted back into a photon pulse. These proper-
ties of dark-state polaritons can be used for squeezing and
entanglement transfer from light to atoms. Furthermore,
we anticipate interesting applications involving nonlinear
interactions between such polaritons.

We thank M. O. Scully for many stimulating discus-
sions. This work was supported by the National Science
Foundation.

[1] See, e.g., S. E. Harris, Phys. Today 50, No. 7, 36 (1997).
[2] For a review on dark states and coherent population trap-

ping, see E. Arimondo, Prog. Opt. 35, 259 (1996).
[3] L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi,

Nature (London) 397, 594 (1999); M. Kash et al., Phys.
Rev. Lett. 82, 5229 (1999); D. Budker et al., Phys. Rev.
Lett. 83, 1767 (1999).

[4] M. Fleischhauer, S. F. Yelin, and M. D. Lukin, Opt. Com-
mun. (to be published).

[5] M. D. Lukin, S. F. Yelin, and M. Fleischhauer, Phys. Rev.
Lett. 84, 4232 (2000).

[6] A. E. Kozhekin, K. Mølmer, and E. Polzik, quant-ph/
9912014.

[7] D. J. Wineland et al., Phys. Rev. A 46, R6797 (1992); 50,
67 (1994); S. F. Huelga et al., Phys. Rev. Lett. 79, 3865
(1997).

[8] S. E. Harris, Y. Yamamoto, Phys. Rev. Lett. 81, 3611
(1998); S. E. Harris and L. V. Hau, Phys. Rev. Lett. 82,
4611 (1999).

[9] H. Schmidt and A. Imamoğlu, Opt. Lett. 21, 1936 (1996).
[10] M. D. Lukin and A. Imamoğlu, Phys. Rev. Lett. 84, 1419

(2000).
[11] A. S. Zibrov, M. D. Lukin, and M. O. Scully, Phys. Rev.

Lett. 83, 4049 (1999).
[12] For a review on nonlinear optics and EIT, see M. D. Lukin,

P. R. Hemmer, and M. O. Scully, Adv. At. Mol. Opt. Phys.
42B, 347 (2000), and references therein.

[13] K. P. Marzlin et al., Phys. Rev. Lett. 79, 4728 (1997);
R. Dum et al., Phys. Rev. Lett. 80, 2972 (1998).

[14] R. Grobe, F. T. Hioe, and J. H. Eberly, Phys. Rev. Lett. 73,
3183 (1994); E. Cerboneschi and E. Arimondo, Phys. Rev.
A 52, R1823 (1995).

[15] M. Fleischhauer and A. S. Manka, Phys. Rev. A 54, 794
(1996).

[16] A. Kuzmich, K. Mølmer, and E. S. Polzik, Phys. Rev. Lett.
79, 4782 (1997); J. Hald, J. L. Sørensen, C. Schori, and
E. S. Polzik, Phys. Rev. Lett. 83, 1319 (1999).

[17] K. Bergmann, H. Theuer, and B. W. Shore, Rev. Mod. Phys.
70, 1003 (1998).

[18] O. Kocharovskaya, Yu. Rostovtsev, and M. O. Scully,
quant-ph/0001058.

[19] S. E. Harris, Phys. Rev. Lett. 70, 552 (1993); 72, 52 (1994).
[20] A. S. Parkins et al., Phys. Rev. Lett. 71, 3095 (1993);

T. Pellizzari et al., Phys. Rev. Lett. 75, 3788 (1995).
[21] J. I. Cirac et al., Phys. Rev. Lett. 78, 3221 (1997); S. J.

van Enk et al., Science 279, 205 (1998).
5097


