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We investigate the quantum properties of fields generated by resonantly enhanced wave mixing ba
on atomic coherence in Raman systems. We show that such a process can be used for gener
of pairs of Stokes and anti-Stokes fields with nearly perfect quantum correlations, yielding almo
complete (i.e., 100%) squeezing without the use of a cavity. We discuss the extension of the wa
mixing interactions into the domain of a few interacting light quanta. [S0031-9007(99)08560-9]

PACS numbers: 42.50.Ar, 42.50.Dv, 42.50.Lc, 42.65.–k
on
w
st

dia
rp-
nce.
ery
a

]
ent
ns
ave
ss-

s of
ist-
e
he
s.
ds

ith

y
e-

ct
n

c-
nd
ith
ch
in

ra-
n

We
One of the intriguing and potentially useful aspects o
nonlinear optical phenomena is their ability to suppre
intrinsic quantum fluctuations [1]. However, the effort
to exploit these properties were hindered, either by t
small values of nonlinearities in available optical crysta
or by absorption losses and the associated noise in reson
atomic systems with large nonlinearities. For exampl
four-wave mixing is known to result, in principle, in
squeezed-state generation or nonclassical correlations
but all experimental realizations reported to date show
rather limited noise reduction and required the use
cavities [3].

The work of the past few years has shown that su
stantial improvements in resonant nonlinear optics can
achieved by utilizing the concepts of quantum coheren
and interference [4,5]. The aim of the present contributio
is to demonstrate the usefulness of this regime of nonli
ear optical enhancement for applications involving qua
tum correlations and reduction of quantum noise. As a
example, we consider here four-wave mixing in resona
Raman systems [5], where atomic phase coherence can
used to generate a large nonlinearity and at the same ti
suppress resonant absorption. Recent theoretical [6] a
experimental work [7] demonstrated that the efficient no
linear interactions in this system can lead to mirrorles
parametric oscillation, where pairs of counterpropaga
ing Stokes and anti-Stokes photons are generated spo
neously from noise. We here show that under certain, ve
realistic conditions this process can be considered as id
from the viewpoint of quenching of quantum noise. A
a result, the generated Stokes and anti-Stokes field co
ponents can possess practically perfect quantum corre
tions, leading, e.g., to an almost complete suppression
the quantum fluctuations in one quadrature of a combin
mode (i.e., 100% squeezing). We point out that this can
achieved even in the case when the intensity of the drivi
fields approaches, under realistic experimental condition
the few-photon level. These results, together with rece
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studies on strongly interacting photons [8], single-phot
switching [9], and few photon quantum control [10], sho
that a truly new regime of nonlinear optics involving ju
a few interacting light quanta is feasible.

Physically, such a performance of the nonlinear me
is due to the possibility of eliminating the resonant abso
tion and associated noise processes via atomic cohere
Furthermore, the associated large linear dispersion is v
important for achieving phase matching [7] and plays
key role in the reduction of the oscillator linewidth [11
which will be discussed in detail elsewhere. The pres
results open new interesting possibilities for applicatio
as diverse as novel frequency standards and gravity-w
detection on one hand and quantum-information proce
ing on the other [12].

In the present paper we discuss the noise propertie
electromagnetic waves propagating in a medium cons
ing of double-L atoms as shown in Fig. 1 in a four-wav
mixing configuration. Four optical waves are tuned to t
vicinity of the corresponding optically allowed transition
These fields include two counterpropagating driving fiel
with frequenciesnd1, nd2 and Rabi frequenciesV1 and
V2, and two probe fields (anti-Stokes and Stokes) w
carrier frequenciesn1  nd1 1 v0 andn2  nd1 2 v0,
where v0  vb1 2 vb2 is the ground-state frequenc
splitting. The probe fields are described quantum m
chanically in an effective 1D model. The fields intera
via the long-lived coherence on the dipole-forbidde
transition between the metastable ground statesjb1l
andjb2l.

We here utilize a Langevin approach in which colle
tive atomic variables and fields are described by time- a
position-dependent stochastic differential equations w
d-correlated Langevin forces [13]. The present approa
develops from the semiclassical analysis of Ref. [6],
which, in particular, a phase transition to mirrorless pa
metric oscillation was noted. We now proceed with a
analysis of the quantum fluctuations in such a system.
© 1999 The American Physical Society 1847
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FIG. 1. Atoms in doubleL configuration interacting with two
classical driving fields (V1,2) and two quantum fields (E1,2).
All optical transitions are assumed to be radiatively broadene

obtain stochastic equations which, for undepleted pum
fields, can easily be solved by Fourier transformation.

We introduce slowly varying dimensionless field var
ablesÊ1,2sz, td which contain only modes propagating in
the1z and2z direction, respectively:

Ê1sz, td 
X
k.0

akstdeisk2k1dzein1t , (1)

Ê2sz, td 
X
k.0

a2kstde2isk2k2dzein2t , (2)

where k1,2  n1,2yc. Following the approach of [13]
we derive stochastic differential equations forc-number
analogs of the fieldŝE ! E and collective atomic op-
erators of the medium consisting of the four-state atom
shown in Fig. 1. Apart from the stochastic noise sourc
these equations have a form identical to the semiclas
cal density matrix equations for such an atomic syste
The diffusion coefficients for noise correlations are d
rived using the fluctuation-dissipation theorem and ge
eralized Einstein relations. We find that the propagati
of the Fourier components of Stokes and anti-Stok
fields Ep

1sz, vd, E2sz, vd is governed by the (c-number)
equationsµ

≠

≠z
1

iv

c

∂
Ep

1sz, vd  2i
k1

2e0
Pp

1sz, vd , (3)µ
2

≠

≠z
1

iv

c

∂
E2sz, vd  i

k2

2e0
P2sz, vd . (4)

Here the Pl ’s are the c-number variables proportional
to the corresponding polarizations in the appropria
units, and the Fourier transform is defined asFspdsvd 
1y

p
2p

R
dt e2ivtFspdstd. Solving the equations of mo-

tion for the atomic variables in lowest order of the Stoke
and anti-Stokes fields, we find

Plsz, vd  e0xllsz, vdElsz, vd 1 e0xlmsz, vd

3 eiD $k?$rEp
msz, vd 2 flsz, vdykl , (5)
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wherehl, mj  h1, 2j andm fi l. D $k is a possible geomet-
rical phase mismatch,xllsz, vd are the self-coupling and
xlmsz, vd (m fi l) the cross coupling (x s3d-type) suscepti-
bilities of the medium [6]. Both do not depend on the am
plitudes of Stokes and anti-Stokes fields but are functio
of the drive fields and thus in general space depende
f1,2sz, vd are noise sources, which ared correlated in fre-
quency and position. In the following we assumeD $k  0.
Note, however, that a nonzero phase mismatch can ea
be compensated in the present system by a small det
ing of the Stokes and anti-Stokes fields from two-photo
resonance. Thus the equations of motion for the Fouri
components of the fields at frequencyv are

d
dz

∑
Ep

1
E2

∏
 i

∑
a11 a12
a21 a22

∏ ∑
Ep

1
E2

∏
1

i
2e0

∑
fp

1
f2

∏
, (6)

where a1j ; a1jsz, vd  2k1x
p
1jsz, vdy2 2 dj1oyc,

anda2j ; a2jsz, vd  2k2x2jsz, vdy2 1 dj2oyc.
In order to solve the inhomogeneous boundary-valu

problem we assume undepleted driving fields and tran
form away their remaining space dependence due to t
refractive index. Thusaijsz, vd ! aijsvd. Assuming
vacuum input [Ep

1s0d  0, E2sLd  0] at both sides of the
medium of lengthL, we eventually find

Ep
1sLd 

Z L

0
dz0 ifp

1 sz0dMsz0dh 1 a12f2sz0d sinshz0d
2e0MsLdheiãsz02Ld ,

(7)

E2s0d 
Z L

0
dz0 a21f̃p

1 sz0d sinshz0d 2 if̃2sz0dMsz0dh
2e0MsLdheiãsL2z0d ,

(8)

where we have dropped the frequency dependen
f̃iszd  fisL 2 zd, ã  sa11 1 a22dy2, a  sa22 2

a11dy2, h 
p

a2 1 a12a21, and Msz, vd  cosshzd 1

iayh sinshzd. These expressions predict infinite growth
of the Stokes and anti-Stokes fields from vacuum when

MsL, vd ! 0 or tanshLd  i
h

a
, (9)

which is the oscillation condition [6,14].
Let us proceed now with a special case in which on

of the driving fields (sayV1) is tuned near resonance
with the corresponding single-photon transitionb2 ! a1,
whereas the second driving fieldV2 has a detuning
D ¿ jV2j from the transitionb1 ! a2. For simplicity
assume also equal Rabi frequencies of the driving fiel
jV1j  jV2j  jVj. In this case most of the population
is in the lower stateb1, and there is almost no absorption
of the driving fields. For small Fourier frequencies (clos
to the two-photon resonance) we find

a11 
kf2v 1 ig0g

jVj2
2

v

c
, a12  a21 

k

D
,

a22 
v

c
. (10)
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We here have assumed that the coupling constantsk 
3ys8pNl

2
i gad are equal for all transitions and that th

two-photon detuning of all relevant Fourier componen
is small, such thatjvyVj ø 1. ga is the common decay
rate out of the upper levels,g0 is the decay rate of the
coherence between the lower states, andN is the number
density of atoms. Following the procedure of Ref. [13
we find for the nonvanishing noise correlations [15]

k f1sz, vdfp
1 sz0, v0dl . 4e2

0
kL
c

g0

V2 dsz 2 z0ddsv 1 v0d ,

(11)

k f1sz, vdf2sz0, v0dl . 4e2
0

kL
c

i
D

dsz 2 z0ddsv 1 v0d ,

(12)

k f2sz, vdfp
2 sz0, v0dl . 4e2

0
kL
c

ga

D2 dsz 2 z0ddsv 1 v0d ,

(13)

where we have identified the quantization length with th
length of the cellL. In the case described by Eq. (10
parametric oscillation occurs atv  0 when

MsL, 0d  cosshLd 1 sg0Ddys2jVj2d sinshLd  0 ,
(14)

with h  k
p

1yD2 2 g
2
0y4jVj4. Hence oscillation can

be achieved ifV2 . g0jDjy2. It should be noted that this
is easily satisfied sinceg0 is the relaxation rate of a long-
lived ground-state coherence. Close to this oscillati
condition the spectrum of the output field diverges [14]:

nisvd ;
c
L

Z
dv0 Ep

i svdEisv0d ,
1

jMsL, vdj2
. (15)

Note that in the limitg0 ! 0, D ¿ ga, andv ! 0 the
coefficientsa11, a22, which correspond to the self-coupling
susceptibilities, become negligible and all noise corre
tions except fork f1f2l vanish. This corresponds to four-
wave mixing withideal noise properties[1,2]. The Stokes
and anti-Stokes photons generated from vacuum [Ep

1s0d 
0, E2sLd  0] possess in this case perfect quantum corr
lations, i.e., 100% squeezing. Hence the quantum fluct
tions of a particular quadrature of the linear combination
output fieldsd̂usvd ; fÊ1sL, vd 1 Ê2s0, vdgeiuy

p
2 can

be almost completely suppressed near the threshold
parametric oscillation. We define the fluctuation spectru
of the combined mode at the output of the cell by

Susvd 
c

4L

Z
dv0

3 kfd̂usvd 1 d̂
y
u svdg, fd̂usv0d 1 d̂

y
u sv0dgl ,

(16)

whereka, bl  kabl 2 kal kbl. As can be verified from
the commutation relation fÊ1,2sz, vd, Ê

y
1,2sz, v0dg 
e
ts

],

e
)
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sLycddsv 2 v0d (which holds for Fourier frequencie
small compared to the carrier frequencies), the norm
ization is such thatSu  1y4 corresponds to the standar
quantum limit. Using Eqs. (7) and (8) for the evaluatio
of normally ordered averages, and assuming that
system is close to the threshold [jMj2  jMsL, 0dj2 ø 1]
we find for the optimum phaseu  py4:

S1s0d ; Spy4s0d 
jMj2

4
1

p

4

√
2

g0D

jVj2
1

ga

D

!
,

(17)

where we have neglected all but linear terms ing0yV2

and gayD2. The first term on the right-hand side of th
above expression is the residual quantum noise suppre
by nonlinear wave mixing. The second term is an atom
noise contribution, which results from the finite relaxatio
rate of the ground-state coherence and the associated
sorption losses. Finally, the third contribution is the co
responding noise contribution due to the absorption of
far-detuned driving field. Choosing the optimum valu
for the detuning [D2

opt  gajVj2ys2g0d] we find that the
maximum noise suppression is reached already be
the oscillation threshold (forjMj2 ,

p
g0DyV2) and is

given by

S1s0d ! p

√
g0ga

2jVj2

!1y2

. (18)

The extent to which the parametric oscillator can
considered as ideal is determined by the absorption los
of the medium. In contrast to the usual two-level-ty
systems [3] this absorption is here determined by
decay of the ground-state coherence and by the detu
of one of the driving fields from single photon resonan
(D). For

jVj2 ¿ g0ga, D ¿ ga, V , (19)

ideal correlations of Stokes and anti-Stokes fields
obtained.

For nonzero Fourier components the noise reduct
deteriorates. It is clear that the bandwidth of squeezin
always on the order of the spectral width of the genera
field, which becomes small near the oscillation thresho
For sufficiently smallg0, v, andjMj we can approximate
Ssvd as

Soptsvd ø
sjMj2y2 1

p
1 1 v2ydv2

0 2 1d2

jMj2 1 v2ydv
2
0

1
p

4

√
2

g0D

jVj2
1

ga

D

!
Zsvd , (20)

wheredv0  V2yD and we have setu to the optimum
value for each Fourier frequencyu  py4 2 kLvy
s2V2d. Zsvd , 1 is some function, which is on the
order of unity for arbitraryv. Its exact form is of no
1849



VOLUME 82, NUMBER 9 P H Y S I C A L R E V I E W L E T T E R S 1 MARCH 1999

7).

,

.

t.

-

,

t,
,

,

or-
v.

in
to

ults
importance here. It follows directly from the abov
equation that some squeezing is present forv , V2yD,
whereas maximum correlations, given by Eq. (18), occ
within the bandwidth on the order ofg0sV2ygag0d1y4.
It is worth noting that in the present system all releva
spectral widths are determined by the atomic disp
sion [9].

It is important to emphasize that the strong couplin
regime corresponding to the conditions of ideal phot
correlations or squeezing (19) can easily be realized e
for very low driving-field intensities, since the ground
state relaxation rateg0 can be very small. For example
in the experiments involving hyperfine sublevels of th
ground state of alkali vapors such as [7], this rate cou
be made as small as 1–100 Hz. Even if a detuningD

on the order of few tens of MHz is chosen, the Ra
frequencies corresponding to the valueV2  g0jDj may
well be close to the tens of kHz level. Under experimen
conditions where the driving beams are in single spat
modes and diffraction limited,l , 1 mm, and where the
optical pulse length is on the order of coherence lifetim
(,1yg0), the required Rabi frequencies correspond to on
a few driving photons. In this limit efficient parametric
interactions and mixing involving only a few interactin
light quanta may take place. This opens up a rath
unique regime of nonlinear optics which allows, at lea
in principle, for single photon quantum control [9,10], an
for “inelastic collisions” of single light quanta yielding
correlated photons at different frequencies or polarizatio
Furthermore, in such a regime the quantum nature of
driving fields as well as finite-size effects may becom
important [16].

In conclusion, we have demonstrated that resonant n
linear interactions involving atomic coherence can be us
for efficient generation of quantum-correlated electroma
netic fields with 100% squeezing without the use of cav
ties. We have shown that under appropriate conditions
resonant wave mixing process based on double-L atomic
media can be regarded as ideal even for extremely l
driving input powers. We expect these features of coh
ent atomic systems to be of interest in many areas of opt
spectroscopy, and quantum control.
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