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We study stimulated Brillouin scattering (SBS) in an ultradispersive coherent medium, and show that
the properties of SBS change drastically when the group velocity of light in the material approaches or
becomes less than the speed of sound. In particular, forward SBS not allowed in a dispersionless bulk
medium takes place in the coherent medium.
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It is textbook wisdom that forward stimulated Brillouin
scattering (SBS) is forbidden by energy and momentum
conservation [1], with the strongest scattering typically in
the backward direction. Surprisingly, we find that in ultra-
dispersive coherent media, just the opposite can happen.
Namely, maximum scattering is in the forward direction
while back scattering is forbidden.

Atomic coherence plays an important role in quantum
optics. Coherent resonant nonlinear optics provides new
materials that have large optical nonlinearities and small
absorption [2]. In particular, recent progress in coherent
resonant nonlinear optics has been made possible by elec-
tromagnetically induced transparency (EIT) [3], which is
the basis for the present work.

The EIT observed in multilevel atomic systems is ac-
companied by a steep linear dispersion which results in
substantial reduction of the group velocity of light to val-
ues comparable with (or even less than) the speed of sound
in the media. Such slow group velocity (“slow light”) has
been demonstrated experimentally in cold [4] and hot [5]
atomic gases as well as in crystals doped by rare-earth
ions [6].

The reduction of resonant absorption together with the
steep dispersion opens the possibility for new kinds of
resonant interactions between electromagnetic and acous-
tic waves. For example, it has been shown in [7] that
the longitudinal gradient force, acting on a two-level test
atom, can be enhanced via spatial compression of an opti-
cal pulse moving with ultraslow group velocity in a coher-
ent medium. This enhanced force yields a ballistic atom
motion and atom surfing, and a new kind of local pondero-
motive light scattering.

On the other hand, as has been shown in [8] taking ad-
vantage of the large linear dispersion associated with EIT,
it is possible to achieve phase matching between electro-
magnetic waves and acoustic waves in a dielectric fiber
doped by three-level L-type ions. This can lead to an in-
crease of efficiency of ponderomotive nonlinear interaction
between the electromagnetic waves and holds promise for
applications, e.g., production of squeezed light.

The main goal of the present work is to study the proper-
ties of light scattering in a coherent medium itself without
0031-9007�01�86(10)�2006(4)$15.00
doping it or using any nonlinearities of a host background
material. We here show that, in a medium consisting of
three-level L-type atoms (Fig. 1), forward SBS is pos-
sible. Because of the steep linear dispersion associated
with EIT phase matching conditions between the acoustic
and electromagnetic waves change dramatically compared
with those of media with small dispersion. This allows one
to obtain a strong acousto-optical interaction yielding SBS
even in the forward direction. This should be observable
in atomic gases and in solids doped with rare-earth ions
and might increase the sensitivity of existing methods of
measurements based on SBS.

In order to set the stage for the present ideas, let us
first recall the physics of ordinary SBS. The original work
of Brillouin [9], devoted to the study of the scattering of
light by thermally excited acoustic waves, as well as subse-
quent experimental [10] and theoretical [11] investigations
of stimulated light scattering by acoustic waves, has shown
that the most efficient scattering is achieved in the back-
ward direction. Furthermore, the scattering in the forward
direction is not possible; see Eqs. (5) and (6)).

Consider propagation of two plane monochromatic

waves Ep1e2i�n1t2 �k1 �r� and Ep2e2i�n2t2�k2 �r� in a dielectric
medium. The resonant interaction of this traveling inten-
sity wave with sound vibrations of the medium gives rise
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FIG. 1. The scheme of acousto-optical interaction. Probe elec-
tromagnetic waves Ep1 and Ep2 with carrier frequencies n1 and
n2 (d ¿ jn1 2 n2j) and drive wave Ed with carrier frequency
nd propagate in a coherent medium consisting of three level
atoms in L configuration. An appropriate choice of the drive
field intensity allows one to establish strong interaction between
the probe waves and sound wave propagating in the same direc-
tion as the probe waves.
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to SBS. The wave vector of the acoustic wave �q should
satisfy the Bragg’s condition (momentum conservation;
see Fig. 2)

�k2 2 �k1 � �q , (1)

and, by energy conservation, the frequency of the acoustic
wave vb should satisfy

n1 2 n2 � vb . (2)

Condition (1) implies

j �qj2 � j �k1j
2 1 j �k2j

2 2 2j �k1j j �k2j cosu

� �j �k1j 2 j �k2j�2 1 4j �k1j j �k2j sin2 u

2
. (3)

For a dispersionless medium with linear index of refrac-
tion n the absolute values of the wave vectors j �k1j and j �k2j

almost coincide, i.e., j �k2j � j �k1j � nn�c, if n2 � n1 �
n, and dispersion relation for the sound wave is

j �qj � vb�Vs , (4)

where Vs is the speed of sound in the material. Then (3)
and (4) imply

j �qj � 2
nn
c

sin
u

2
, (5)

vb � 2
nVs

c
n sin

u

2
. (6)

Conditions (5) and (6) show that the forward SBS (u � 0)
vanishes.

In an ultradispersion medium

j �k1j 2 j �k2j �
n1n�n1�

c
2

n2n�n2�
c

�
n1 2 n2

c
≠�nn�n��

≠n
�

n1 2 n2

Vg
, (7)

where Vg is the group velocity of light. When Vg � c�n,
as in dispersionless medium, we arrive at the previous
results. However, when Vg is small enough we find a new
expression for the acoustic wave vector.

In particular, the wave vector difference j �k1j 2 j �k2j ap-
pearing in Eq. (7) is now nonzero. From (2) and (7)
we have j �k1j 2 j �k2j � vb�Vg. Taking j �k1j � nn�c, and
from (7) j �k2j � nn�c 2 vb�Vg, we can write Eq. (3) as
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FIG. 2. Geometry for Brillouin scattering.
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and because of (4) Eq. (8) can be used to obtain the equa-
tion for the sound frequency
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Equations (8) and (9) coincide with (5) and (6) for
Vg ¿ Vs.

The dispersion relation (9) shows that there is no scat-
tering if Vs . Vg, because both roots of Eq. (9) are non-
positive (j �k2j . 0). The acoustic frequency for backward
scattering when Vg $ Vs is

vbackward
b � 2

nVs

c
n

Vg

Vg 1 Vs
, (10)

while for the forward scattering

vforward
b #

nVs

c
n if Vg � Vs ,

vforward
b � 0 if Vs fi Vg ,

(11)

which is drastically different from the case of dispersion-
less medium. For example, when Vg ! Vs the wave vector
j �k2j goes to zero and, therefore, backward scattering is for-
bidden. In contrast, forward scattering is strongly allowed.

The phase-matching conditions are necessary, but not
sufficient, to guarantee efficient SBS. To find the coupling
between the acoustic and light waves we write the equa-
tions of motion and continuity for the medium as

r0

µ
≠ �y
≠t

∂
� 2 �=�p 1 �r 2 r0�V 2

s � , (12)

≠r

≠t
1 r0 div �y � 0 , (13)

where �y is the velocity of the medium, p is the pressure,
r��r , t� is the density of the medium, and r0 is the unper-
turbed density. The equations are written in lossless linear
approximation, and we assume that r0 ¿ jr��r , t� 2 r0j.

Using Eqs. (12) and (13) we find

≠2r

≠t2 2 V 2
s =2r 2 2gph

≠r

≠t
� =2�Dp� , (14)

where the phonon decay rate term going as gph has been
added “by hand” following the treatment of [1,12]. The
pressure deviation in a medium originating from the inter-
action with electromagnetic fields Dp is given by [1]

Dp � 2N�U� , (15)

where N is the density of the particles of the medium inter-
acting with the electromagnetic field, U is the mean inter-
action energy of the particles and electromagnetic field.
The density modulations result in a running diffraction
grating described by
2007
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µ
≠´
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∂
S

�r 2 r0� , (16)

which leads to SBS.
We focus on forward SBS in a gas of three-level atoms

in a L configuration first (Fig. 1). The present work also
applies to a dielectric doped with such atoms/ions. As-
suming that the acousto-optic interaction is weak enough,
we solve the problem of the interaction of the three-level
atoms with the applied electromagnetic fields and derive
the corresponding permittivity of the medium. We calcu-
late the amplitude of the medium density deviations using
(14), and from (16) derive the equations for the coupling
of electromagnetic and acoustic waves, and an effective
interaction Hamiltonian between the waves.

For copropagating electromagnetic waves, as indicated
in Fig. 1, the interaction Hamiltonian can be written as

H � h̄d�jc� �cj 2 jb� �bj�
2 h̄�jb� �ajV�

p 1 jc� �ajV�
d 1 adj� , (17)

where ja� �aj, jc� �cj, jb� �aj, and jc� �aj are the atomic
projection operators, 2d is the two-photon detuning, Vp

and Vd are the probe and drive Rabi frequencies (i.e.,
Vp � �abEp�h̄, etc.), �ab and �ac are the dipole mo-
menta of the transitions. The drive field is resonant with
ja� ! jc� transition as per Fig. 1.

Analytic expressions for the expectation values of the
lowering operators of the atom sba and sca can be ob-
tained from the stationary solution of the Bloch equations
for the atomic populations and polarizations. The solution
is

sba � Vp

µ
ig0

jVj2
2

2djVdj
2

jVj4

∂
, (18)

sca � Vd

µ
ig0

jVj2
1

2djVpj
2

jVj4

∂
, (19)

scc �
jVpj

2

jVj2
, sbb �

jVdj
2

jVj2
, saa � 0 . (20)

where g0 is the decay rate of the ground state coherence,
jVj2 � jVpj

2 1 jVdj
2 ¿ g0gr , gr is the homogeneous

linewidth of the transitions ja� ! jb� and ja� ! jc�. Con-
sidering the case of g0 ! 0, and using Eqs. (17)–(20), we
obtain an approximation of the expectation value of the
Hamiltonian

Tr�Hs� � �H� 	 h̄d

∑
jVpj

2

jVj2
2

jVdj
2

jVj2

∏
1 O�d3� .

(21)

To find the acoustic density wave r we use the fact
that U 
 �H�, and from Eq. (14) we see that the force
driving the acoustic wave goes as ≠2�H���≠z2�. We envi-
sion a constant (cw) drive Ed and probe Ep . The probe
2008
consists of two fields of frequencies n1 and n2 that lay in
the EIT transparency gap, that is jVj2�gr ¿ d ¿ jn1 2

n2j, where jVj2�gr is the width of the EIT window

Ep � Ep1e2i�n1t2k1z� 1 Ep2e2i�n2t2k2z�.

Assuming a solution of Eq. (14) of the form

r 2 r0 � 2i
q
y

s
h̄m
2vb

�be2i�vbt2qz� 2 byei�vbt2qz�� ,

(22)

where b and by are the creation and annihilation operators
of the phonon field, y is the total volume of the sample,
m � r0y is the mass of the sample; and using (15) and
(21) we arrive at an expression describing acousto-optical
interaction in the dielectric

�̃b 1 �iDv 1 gph�b̃ � qdNy

s
2h̄

mvb

Vp1V
�
p2

jVdj2
, (23)

where b̃ � b exp�2iDvt�, Dv � vb 2 n1 1 n2 [13].
The intensity of the drive field is not a free parameter. To

fulfill phase matching conditions (11) the group velocity of
light should equal the speed of the sound, that is

Vs � Vg �
8pjVdj

2

3Nl2gr
, (24)

where l � 2pc�n is the wavelength of the laser fields,
and n � 1 [14]. Presenting the probe fields as

Epj �

s
2p h̄n

y
apje

2i�nj t2kjz�, j � 1, 2 , (25)

where apj is the annihilation operator we rewrite Eq. (23)
as

�̃b 1 �iDv 1 gph�b̃ � n

s
2h̄d2

mV 2
s vb

q
k

a
y
p2ap1 . (26)

To find the equations describing coupling of the probe
fields to the acoustic wave we use the facts that ´ 2 1 �
4pN�absab�Ep and �≠N�≠r�S � N�r0. Then, using
(18), we deriveµ

≠´

≠r

∂
S

� 2
4p

h̄
N�2d 2 ig0�

r0

�2
ab

jVdj2
. (27)

Taking into account Eqs. (16) and (22) and applying the
method of slowly varying amplitudes to equation �Ep�t� �
inD´�t�Ep�t��2, we obtain the set of equations for the
probe fields

�ap1 � 2g0
c
Vs

ap1 2 n

s
2h̄d2

mV 2
s vb

q
k

ap2b̃ , (28)

�ap2 � 2g0
c
Vs

ap2 1 n

s
2h̄d2

mV 2
s vb

q
k

ap1b̃y , (29)
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where we assume that d ¿ g0. The linear dispersion
term appearing due to L atoms, and proportional to the
two-photon detuning, is already taken into account in wave
vectors �k1 and �k2 and is not included in (28) and (29). Thus
the nonlinear interaction between the fields and phonons
can be described by the Hamiltonian

H0 � 2ih̄g�ay
p1ap2b 2 bya

y
p2ap1� , (30)

with coupling constant

g � n

s
2h̄d2

mV 2
s vb

q
k

. (31)

It is especially interesting to consider the light propa-
gation through an atomic cell and study the sound waves,
generated via the acousto-optic interaction. If a cell with
volume y � 5 cm3 contains atomic vapor (mass per atom
ma � 10222 g) with density of the three level atoms N �
1012 cm23 and density of a buffer gas 1018 cm23, the
coupling constant (31) for d � vb � 106 s21 and Vs �
3 104 cm�s is g � 1 s21. Minimum group velocity of
light in an atomic cell with length 2L can be estimated
as Vg � 2g0L, and for L � 1 cm and g0 � 1.5 104 s21

we have phase matching Vs � Vg and photon-phonon in-
teraction can be realized in practice.

To estimate the value of the coupling constant for a
doped solid we take n � 1015 s21, m � 3 1024 g (which
corresponds to a fiber with cross sectional area A �
1027 cm2 and length L � 103 cm), Vs � 105 cm�s, d �
vb � 108 s21. We get g � 8 s21, as in fused silica [8].

As a simple experimental test of the effect we propose
to inject monochromatic probe wave ap1 into the cell with
externally driven sound wave and look for the modulation
of the probe. That is, the acoustic wave initiates generation
of Stokes as and anti-Stokes aas harmonics of the probe
field. The corresponding interaction Hamiltonian is similar
to (30) and reads

H1 � 2ih̄g�ay
p1as 1 ay

asap1�b 1 adj . (32)

If the intensity of the phonon field is large enough and the
probe is weak enough we can replace the operator b in
(32) by the constant c-number B. In such a case the set of
equations generated by (32) with appropriate decay terms
yields

as,as � 6
1
p

2
ap1�0�e2g0z�Vs sin

p
2 gjBj

z
c

. (33)

For an acoustic wave with power Ps � 10 nW�cm2 the
amplitude B is determined by jBj2 � Psy��h̄vsVs� 	
2 1016. Inserting this value of B into (33) and taking
g � 1 s21 as per the discussion we find as,as�2L� �
60.003ap1�0�. This should be really observable and
provides a direct test of the present effect.
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